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Abstract: Impurity rate is one of the key performance indicators of the rice combine harvester and
is also the main basis for parameter regulation. At present, the tracked rice combine harvester
impurity rates cannot be monitored in real time. Due to the lack of parameter regulation basis, the
harvest working parameters are set according to the operator’s experience and not adjusted during
the operation, which leads to the harvest quality fluctuating greatly in a complex environment. In
this paper, an impurity-detection system, including a grain-sampling device and machine vision
system, was developed. Sampling device structure and impurity extraction algorithm were studied
to enhance the impurity identification accuracy. To reduce the effect of impurity occlusion on visual
recognition, an infusion-type sampling device was designed. The sampling device light source form
was determined based on the brightness histogram analysis of a captured image under different light
irradiations. The effect of sampling device structures on impurity visualization, grain distribution,
and mass flow rate was investigated by the discrete element method (DEM). The impurity recognition
algorithm was proposed based on Mask R-CNN, which mainly includes an impurity feature extraction
network, an ROI generation network, and a target segmentation network. The test set experiment
showed that the precision rate, recall rate, average precision, and comprehensive evaluation indicator
of the impurity recognition model were 92.49%, 88.63%, 81.47%, and 90.52%, respectively. The
conversion between impurity pixel number and its actual mass was realized according to the pixel
density calibration test and impurity rate correction factor. The bench test result showed that the
designed system has a good detection accuracy of 91.15~97.26% for the five varieties. The result
relative error was in a range of 5.71~11.72% between the impurity-detection system and manual
method in field conditions. The impurity-detection system could be applied to tracked rice combine
harvesters to provide a reference for the adjustment of operating parameters.

Keywords: impurity rate; combine harvester; rice; discrete element method; Mask R-CNN

1. Introduction

The combine harvester is the most widely used agricultural equipment to efficiently ac-
complish harvesting work, such as rice, wheat, etc. The harvested grain inevitably contains
unwanted impurities, including straw, chaff, and light miscellaneous. The impurities in
harvested grain directly affect the workload and production costs of subsequent processing.
Impurity rate is the ratio of material mass other than grain to grain mass, which is one
of the key performance indicators of the combine harvester and is also the key basis for
regulating the threshing and cleaning system [1–3]. The detection of the impurity rate
during harvesting in real time is conducive to work parameter adjustment and improving
the harvesting quality [4,5]. However, the tracked rice combine harvester impurity rates
cannot be monitored in real time at present. Due to the lack of parameter regulation basis,
the harvest working parameters are set according to the operator’s experience and not
adjusted during the operation [6,7]. The harvest quality fluctuates greatly in a complex en-
vironment due to the lack of timely information on the impurity rate. The development of a
combine harvester impurity-detection system is of great significance to improve harvesting
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performance. The improvement in impurity detection and other intelligent technology will
improve agricultural performance [8].

Technologies, such as machine vision and spectral detection, have been applied to
distinguish and quantify the rice and impurity in the grain [9]. The spectral detection
method can overcome the effect of material masking, but its adaptability to the random
state of the material is weak, such as material moisture content and maturity [10,11].
Yu et al. used a convolutional neural network to process hyperspectral images to achieve
a nondestructive detection of imperfect grains and the overall recognition rate of the test
set reached 99.98% [12]. Chen et al. preferred the characteristic wavelengths of wheat
sample spectra with different indicators by principal component analysis and contribution
weight coefficients, and a least squares support vector machine was applied to construct
inverse models of the impurity rate of wheat samples based on different indicators. The
experimental results showed that the modeling coefficient of determination of the inverse
model of impurity rate was greater than 0.9, the validation coefficient of determination was
greater than 0.85, the root mean square error was less than 0.29, and the relative analysis
error was greater than 2 [13].

The machine vision method is well adapted to the material and is the main method
to visualize the quality of the grain. Wallays et al. developed a machine-vision-based
wheat impurity rate detection sensor that can monitor the impurity rate of harvested wheat
online and display the monitored value on an interface [14]. Mahirah et al. designed
a dual-light-source impurity detection device and its accompanying image processing
algorithm for detecting impurities and broken kernels in grains with a measurement
accuracy of >75% [15,16]. Pourreza et al. investigated the distinction between wheat
seeds and impurities in texture features and used a linear judgment analysis classifier to
classify the features with 98.15% accuracy in impurity differentiation [17]. Kayabasi et al.
produced a wheat seed dataset using ANN neural network and Bayesian regularization
learning algorithm from the length, width, area, and perimeter to provide a machine vision
system equipped with dual illumination and image-processing algorithms for detecting and
measuring undesirable objects and damaged grains in harvested rice grains [18]. Chen et al.
optimized the irradiation and installation method of the LED light source to obtain high-
quality images by image histogram, identified the grain and impurity morphologically, and
measured the thousand-grain mass, stalk surface density, and fine stalk line density of rice at
the same time, and established a mathematical model to calculate the impurity mass of grain.
The visualized tree was used to classify the particles labeled in the binary image, so the
impurity in a range of 0 to 2.88% can be monitored [19–21]. Momin et al. used the HSI color
model to segment the image background and, subsequently, of soybean, dockage fractions
were detected using median blurring, morphological operators, watershed transformation,
and component labeling based on projected area and circularity; the identification accuracy
of dockage fractions was 96% [22].

In view of the above research, grain sampling and machine vision were mainly meth-
ods used for real-time impurity rate detection in a combine harvester. However, machine
vision can only identify the impurity on the surface of the grain, and the mutual occlusion
between the rice and impurity has a great influence on the detection results. The extraction
of impurity by color space is also prone to misidentification when it is close to the rice.
Therefore, an infusion-type sampling device was developed to reduce the effect of impurity
occlusion on visual recognition, and impurity extraction algorithms based on Mask-R-CNN
were developed to enhance the impurity identification accuracy. Bench test and field test
were conducted to evaluate the impurity-detection system.

2. Materials and Methods
2.1. Impurity-Detection Method for Rice Combine Harvester

The impurity-detection system mainly includes infusion-type sampling device, current
regulator, industrial computer, and related processing software, as shown in Figure 1.
Harvested grain sampling, grain image analysis, and impurity rate calculation function
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can be implemented. The sampling device (Figure 2) was installed in the grain bin, under
the grain auger. Some of the grain discharged by the auger falls into the sampling device
inlet and then transported by conveyor belt to the outlet and, finally, discharged back into
the grain bin. During this process, the camera captures the grain on the conveyor belt to
achieve continuous image acquisition. The rice and impurity in the image are identified
based on Mask R-CNN. The amount of rice and impurity in pixels is obtained via pixel
statistics. The actual mass of rice and impurity is estimated based on material pixel density
calibration test and the actual impurity rate can be calculated.
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Figure 2. Structure diagram of infusion-type sampling device. (1) Inlet, (2) dust baffle, (3) flow-rate-
adjustment lever, (4) deflector, (5) baffle, (6) camera, (7) light source, (8) conveyor belt, (9) corrugation,
(10) transparent platen, and (11) outlet.

2.2. Structure Analysis of Infusion-Type Sampling Device

Sampling is an important part of the impurity rate detection. To minimize the mutual
shading between impurity and rice, an infusion-type sampling device was designed, as
shown in Figure 2 [error]. The sampling device is made of steel and has a length, width, and
height of 210 mm, 295 mm, and 110 mm, respectively, which mainly includes a deflector,
conveyor belt, camera, light source, etc. The conveyor belt is driven by the DC motor with
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a speed sleeplessly adjustable (0~0.25 m/s). The LED light source brightness and conveyor
belt speed were adjusted by the current regulator. The gap between the deflector and the
conveyor belt can be adjusted in a range of 0~30 mm. The deflector plate can limit the
material flow and a thin layer of around one kernel thick could be created, so that the
mutual occlusion of impurity and rice in the material flow is reduced, which would improve
the detection accuracy of impurity rate. The dust baffle is made of plexiglass to avoid dust
in the grain covering the lens. The conveyor belt is equipped with corrugation to enhance
the grain-conveying capacity and prevent accumulation at the deflector. The corrugation
has a height and interval of 5 mm and 50 mm. Under the conjunction of conveyor belt,
corrugation, and transparent platen, the material is completely constrained in the set space
and can be effectively sampled in face of the working vibration of the harvester.

Daheng MER-132-43U3C CCD camera and VS-LDA4 zoomable lens were used in
combination to capture grain images. The vertical distance between the lens and the
conveyor belt is 120 mm. The resolution of the camera was 1292 pixels × 964 pixels. The
impurity rate detection program was installed on an industrial computer. The collected
grain image and impurity identification result could be displayed and saved in real time.
The industrial computer processor, graphics card, and system memory were Intel Core
i7-4790S, Intel HD Graphics 4600, and 8 GB, respectively.

2.2.1. Light Irradiation

The light irradiation affects the color space of the grain image and the subsequent
impurity recognition algorithm. To investigate the effect of light irradiation on the grain
image, single-sided-strip LED (with a power of 4.5 W and max spectrum of 70,000 LUX),
double-sided-strip LED (each strip LED with a power of 4.5 W and max spectrum of
35,000 LUX) and central-ring LED (with a power of 4.5 W and max spectrum of 70,000 LUX)
were tested as shown in Figure 3. The HSV (Hue Saturation Value) color space model
was used to analyze the light uniformity of grain images captured under different light
irradiations. The V component in the HSV model is the normalized value of the lightness,
ranging from 0 to 1, and it is uncorrelated with light intensity. The effect of light intensity
on brightness and uniformity can be excluded. By comparative analysis of the image V
value distribution histogram and its coefficient of variation, the optimal light source could
be determined [23].
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2.2.2. Light Irradiation

The conveyor belt speed correlates with the sample frequency and the image quality.
If the conveyor belt speed is too slow, the sampling interval is large and the total sample
size is small. However, there will be trailing shadows in the image if the conveyor belt
speed is too fast, affecting the recognition of impurity. To avoid motion blur, the distance of
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object movement within the exposure time is generally required to be less than one pixel in
the image. The conveyor belt speed should meet the condition:

vt < H/h (1)

where v is the conveyor belt speed, m/s; t is the exposure time, 0.7 ms in this paper; H is
the width of visual field in the direction of belt movement, 0.148 m in this paper; h is the
image pixel number in the direction of belt movement, 1292.

According to Equation (1), the conveyor belt speed should be less than 0.164 m/s.
The conveying speed was determined to be 0.15 m/s to balance the material flow rate and
image quality.

2.2.3. The Gap between the Deflector and the Conveyor Belt

The deflector was developed to limit the grain flow and the thickness of grain accu-
mulation on the conveyor belt. The gap between the deflector and the conveyor belt affects
the thickness of the material on the conveyor belt, impurity obscuration situation, and
the grain mass flow rate. If the gap is too narrow, the material flow will be hindered, but
cannot achieve the function of reducing impurity shading when the gap is too large. DEM
simulation was used to investigate the effect of the gap on grain transport in this paper.
The accumulation and obscuration of the grain can be directly observed by simulation.
After simulation, the grain image was intercepted and binarized. The occlusion of impurity
was quantified by the occlusion rate. The calculation equation was:

S =
Npt − Npr

Npt
× 100% (2)

where S is the impurity occlusion rate; Npt is number of impurity pixels without occlusion;
Npr is actual impurity pixel number.

2.3. Grain Transport Analysis Based on DEM
2.3.1. DEM Model

The distribution behavior of the grain in the sampling device was further studied by
DEM. The 3D computer-aided design (CAD) models of the sampling device were imported
into the DEM software EDEM 2018 (DEM Solutions Limited, Edinburgh, UK). The 3D
simulation models and boundary conditions were determined by geometry parameters
and working parameters, respectively. The material other than grain (MOG) in the grain
bin mainly includes cylindrical short stem and fine light residual. The mutual occlusion
between short stem and rice was mainly investigated because the occlusion between the
fine light residual and rice can be neglected. A 9-sphere filling model was constructed to
simulate rice in this paper. The outer envelope of the 9 spheres was ellipsoidal with a long
axis of the ellipse 7.20 mm and a short axis 3 mm. The sphere was symmetrical from left
to right, the distance from the center of the left 4 spheres to the center of the ellipsoid was
1.10 mm, 1.92 mm, 2.2 mm, and 2.77 mm, respectively, and the spheres’ radius from left
to right was 0.80 mm, 1.10 mm, 1.20 mm, 1.40 mm, 1.50 mm, 1.40 mm, 1.20 mm, 1.10 mm,
and 0.80 mm, respectively [24]. The short stalk model is filled with multiple spheres with
a cylindrical outer envelope of 35.00 mm in length and 3.40 mm in diameter [25]. The
simulation model is shown in Figure 4.
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The density, Poison’s ratio, and shear modulus of rice, impurity, belt, and shell are
shown in Table 1 [26,27]. According to the general impurity rate of the rice combine
harvester, the mass ratio of the impurity to rice was set as 0.03:1. The particle factory was
set up for 2 kg of particles generated statically and the simulation time was 10 s.

Table 1. Properties of materials used in EDEM.

Material Density (kg/m3) Poisson’s Ratio Shear Modulus (MPa)

Rice 1350 0.3 180
Impurity 198 0.4 48

Belt 2500 0.49 2
Shell 7800 0.33 80,000

The contact relations in the simulation include six types, rice–rice, rice–impurity, rice–
belt, rice–shell, impurity–belt, and impurity–shell. The contact parameters between the
materials are detailed in Table 2 [28,29]. The Hertz-Mindlin (no slip) model was chosen as
the particle contact model in the EDEM software for the materials. The simulation time
step, environmental gravitational acceleration, and preservation interval were 0.5 × 10−6 s,
9.8 m/s2, and 0.01 s, respectively.

Table 2. Contact parameters used in the EDEM for grain contact model simulation.

Types Collision Recovery
Coefficient

Static Friction
Coefficient

Dynamic Friction
Coefficient

Rice-rice 0.19 0.81 0.05
Rice-impurity 0.17 0.80 0.03

Rice-belt 0.42 0.50 0.01
Rice-shell 0.52 0.45 0.01

Impurity-belt 0.09 0.60 0.02
Impurity-shell 0.10 0.66 0.02

Impurity-impurity 0.23 0.44 0.07

2.3.2. Simulation Design and Validation

Simulation tests were conducted with the deflector gap as the variable. The grain flow
rate and the occlusion rate were taken as the evaluation indicators. The grain flow rate could
be counted by the software post-processing function and the occlusion rate was calculated
according to Equation (2). Based on the geometry of rice and impurity, the test range of the
deflector gap was determined to be 7.5 mm~20.0 mm with a variation of 2.5 mm. To reduce
the influence of random factors such as material generation location and morphology on the
result, the tests were repeated three times at each parameter level and averaged.
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To verify the simulation result, a physical test of grain flow rate was carried out at
the same parameters. The actual grain mass flow rate was measured by placing a sample
box at the outlet of the sampling device. The grain discharge from the sampling device
was collected and weighed within 10 s after the grain flow was stabilized. The actual grain
mass flow rate was calculated and compared with the simulation result.

2.4. Impurity Recognition Algorithm Based on Mask R-CNN
2.4.1. Overall Methodology

The Mask R-CNN method is based on the Faster R-CNN structure by adding a mask
branch that predicts the segmentation target mask, in parallel with the classification and
regression branches, so that the Mask R-CNN has the function of instance segmentation [27].
The Rol Pooling layer is replaced by the Region of Interest Align layer (RoIAlign). The
coordinates of the feature image and the input pixels are aligned to achieve pixel-level
segmentation. In this paper, the grain image feature was recognized by the ResNet-101
network and the corresponding feature map was obtained. Anchor boxes were generated
by Region Proposal Network (RPN) and pooled into fixed-size feature maps with RoIAlign.
The Mask segmentation of rice impurity was completed by the classification branch (CLS)
inside the RPN. Finally, the impurity prediction results were output and the rice pixel
number and impurity pixel number were obtained. The developed impurity recognition
algorithm flowchart is shown in Figure 5.
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2.4.2. Image Annotation and Dataset Production

The designed infusion-type sampling device was installed in the combine harvester
to capture grain images during harvesting and the images were used to investigate the
impurity recognition algorithm. A total of 1200 grain images was captured during rice har-
vesting by the designed sampling device, from which 500 images were randomly selected
for labeling as the training set and the remaining images were used for the testing set.

The images were cropped and scaled to 224 pixels × 224 pixels, and the edge con-
tours of the rice and impurity were manually marked using the image labeling tool LA-
BELME [28]. The annotation labels and coordinates were saved to the corresponding JSON
files. The label image was divided into 2 parts: the area inside the tag is the target and other
areas are considered as background. To increase the sample size of the training set and
strengthen the stability of the model, the training set was expanded to 1500 by changing
the brightness and mirroring. The grain image and the impurity mask image are shown in
Figure 6.
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Figure 6. The captured grain image and the impurity mask image. (a) Fine impurities; (b) coarse
impurities; (c) impurities approximating the color of rice; (d) irregular shape impurities.

2.4.3. Impurity Feature Extraction Network

Convolutional neural network model with different weight layers can be designed
in the Mask R-CNN. The network accuracy increases with the number of layers of the
network, but the training time also increases. The residual network does not increase the
model parameters, which can solve the training degradation problem and improve the
model convergence. ResNet-101 deep residual network with 5 network module layers
combined with FPN was used as the backbone feature extraction network in this paper.
The network structure is shown in Table 3.

Table 3. ResNet-101 network architecture.

Layer Name Output Size Convolution Kernel

Conv1 112 × 112 7 × 7, 64, stride 2
3 × 3 max pool, stride 2

Conv2_x 56 × 56

1 × 1 64
3 × 3 64
1 × 1 256

 × 3, stride 2

Conv3_x 28 × 28

1 × 1 128
3 × 3 128
1 × 1 256

 × 4, stride 2

Conv4_x 14 × 14

1 × 1 256
3 × 3 256
1 × 1 256

 × 23, stride 2

Conv5_x 7 × 7

1 × 1 512
3 × 3 512
1 × 1 2048

 × 3, stride 2

2.4.4. Generation of RoIs and RoIAlign

A fixed-size sliding window was used to scan obtained impurity feature image. An
n-dimensional length feature vector was generated and transferred to the classification and
regression layers. In the classification layer, the Softmax classifier was used to discriminate
the foreground and background of the anchor points. In the regression layer, the center
coordinates, the length, and the width of the anchor borders were adjusted to fit the
candidate frame positions. The RPN multi-task loss function is:
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L(pi, ti) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (3)

where i is the anchor index; pi is the classification probability of anchor i; p∗i is the ground-
truth for anchor i; ti is the difference between the prediction bounding box and the ground-
truth label box in four parameter vectors (the horizontal, vertical coordinate value of the
center point in the bounding box; the width and height of the bounding box); t∗i is the
difference between the ground-truth label box and the positive anchor; Ncls is the anchor
size of mini-batch; Nreg is the anchor position number; Lcls is the log loss over two classes
(object vs. not object); Lreg is the regression loss, activated only if the anchor actually
contains an object; λ is the balance parameter, 10 in this paper.

2.4.5. Target Detection and Instance Segmentation

Target detection result output layer includes classification branch, regression branch, and
FCN (Fully Convolutional Network). The classification branch calculates the classification loss
of target and true label. The regression branch calculates the regression loss of the predicted
frame and the true bounding box. The FCN branch was used for RoI pixel computation,
where the RoI was up-sampled by the deconvolution layer to recover to the original image
size. The average binary cross-entropy of the RoI region pixel values with the original image
region pixel values was computed. The multi-task loss on each sampled RoI is:

L = Lcls + Lreg + Lmask (4)

Lmask = −
N

∑
i=1

y(i)lgŷ(i) +
(

1 − y(i)
)

lg
(

1 − y(i)
)

(5)

where L is model total loss function; Lmask is the average binary cross-entropy loss; N is
sample size; y(i) is expected output for anchor i; ŷ(i) is actual output of anchor i.

Each ROI predicts an output of K * m2 dimensions through the mask branch and it
encodes K binary masks with a resolution of m*m, corresponding to K classes. Then each
pixel was classified by the activation Sigmoid function. The classification branch calculates
the category of the candidate region and the regression branch calculates the location
bounding box of the candidate region. The class, location, and profile of the impurity could
finally be detected by the FCN.

2.4.6. Precision and Recall

The precision rate (P), recall rate (R), average precision (Ap), and comprehensive
evaluation indicator F1 were applied to evaluate the impurity detection:

P =
Tp

Tp + Fp
× 100% (6)

R =
Tp

Tp + FN
× 100% (7)

Ap =

1∫
0

P(R)dR (8)

F1 = 2
P · R

P + R
× 100% (9)

where TP is the number of cases that are positive and detected positive; FP is the number of
cases that are negative but detected positive; FN is the number of cases that are positive but
detected negative; P(R) is the precision rate corresponding to each recall rate.
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2.5. Impurity Rate Transformation Model

As the material background (belt) is stable, crop pixels containing rice and impurity
could be obtained through BackgroundSubtractorMOG (a function in opencv) by subtract-
ing the background from the acquired image. The number of rice pixels is the number of
grain pixels minus the number of impurity pixels. After obtaining the pixel number of
each material (rice and impurity) in the grain, the material pixel density (mass per pixel) is
needed to convert the pixel number into an actual mass to calculate the impurity rate. The
pixel density of rice and impurity was acquired by calibration test as shown in Figure 7. A
certain mass of rice and impurity (the mass of each component is shown in Figure 17) is
separately weighed and spread without obscurity on the calibration device and the object
distance of the camera was the same as the developed sampling device. The acquired
images were binarized with a background grayscale of 0 and a material (rice, impurity)
grayscale value of 255. The number of pixels with a grayscale value of 255 was counted
and the relationship with the material quality was proportionally fitted. The slope of the
fitted equation was the pixel density of the material. The impurity rate was calculated as:

Zs = k
ρi · pni

ρr · pnr + ρi · pni
× 100% (10)

where Zs is impurity rate; ρi is the pixel density of impurity, g/Pixel; ρr is the pixel density
of rice, g/Pixel; pni is pixel number of impurity, Pixel; pnr is pixel number of rice, Pixel; k is
correction factor of impurity rate.
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To address the impact of material variation and moisture content on pixel density,
correction factor of impurity rate k was proposed to compensate the pixel density differences
due to material variability. In practical application, the correction factor of impurity rate k
was acquired through the pre-test. Sample of rice and impurity was collected in advance in
the field. The actual impurity rate Zs1 was obtained after manual sieving and weighing.
After mixing, the material was put into the sampling device to obtain impurity rate Zs2.
The correction factor of impurity rate was calculated as:

k = Zs1/Zs2 (11)

2.6. Bench Test

There are many varieties of rice in China and the differences among varieties in grain
size and one thousand-grain mass are significant. To test the adaptability of the designed
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system to different varieties of rice, a bench test was carried out in the laboratory using
a testing device shown in Figure 8, which could simulate the grain entering the grain
bin from the conveyor. Thus, 5 rice varieties were used in the bench test, which were
Lindao 20, Nanjing 40, Taijing 1105, Ningjing 5, and Liangyou 106. The abovementioned
varieties were obtained in the harvest season. The impurity correction coefficients were
calibrated by sampling before the tests. A certain mass of rice and impurity was weighed
to obtain the actual impurity rate and then mixed smoothly into the hopper. The average
detection impurity rate after a period of circulation was calculated and compared to the
actual impurity rate. Each variety was repeated three times for the average and a total of
15 sets of tests was conducted.
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2.7. Field Test

The field experiment was carried out in Hongqi Farm, Taizhou City (119.923◦ E,
32.456◦ N), Jiangsu Province, November 2021. The test machine was Thinker 4LZ-5.0 type
full-feed tracked combine harvester (Huzhou, Zhejiang, China). The harvested rice variety
is the “Ningjing 5”. Its basic properties were: average plant height of 1,003 mm, a yield of
9100.5 kg/hm2, grain moisture content 27.1%, one-thousand seed mass of 26.7 g. Before
the test, the impurity correction coefficients were calibrated by sampling rice and impurity.
The harvesting distance was 25 m and 5 groups of the test with different forward speed
were carried out. The tracked combine harvester forward speed was 0.5 m/s~1.3 m/s
in increments of 0.2 m/s (since the forward speed can only be controlled manually, the
actual forward speed fluctuates slightly). Each speed was repeated 3 times for average and
15 sets of tests were conducted. After each test, no less than 2 kg of sample from different
locations was taken from the combine harvester grain bin and weighing mass m1. The
sample was cleaned and weighed again after the impurity was removed, m2. The impurity
rate of manual detection can be calculated as:

Zm = (m1 − m2)/m1 × 100% (12)

where Zm is impurity rate of manual detection.

3. Result and Discussion
3.1. Effect of Light Irradiation

The grain images captured under different light irradiations are shown in Figure 9a.
The distributions of the V component are shown in Figure 9b. Under the single-sided-strip
LED, the V value on the LED side was significantly higher than on the other and the
distribution of the V value was disproportionate. Under the double-sided-strip LED, the V
value was higher on the two sides and lower in the central region. Under the central-ring
LED, the peripheral V value was lower than the central area.
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Figure 9. The grain images and the V component distribution under different light irradiations.
(a) Grain images captured under different light irradiations; (b) the distribution of the V component.

To further quantify and analyze the effect of light irradiation on the image brightness,
the V value of each pixel in the image was counted. The V value distribution histogram
under light irradiation is shown in Figure 10. The higher the proportion of lightness
around the median value (V = 0.5) and the smaller the coefficient of variation of the overall
lightness, the more suitable it is for subsequent image processing. The V value percentage
in a range of [0.30, 0.70], [0.25, 0.75], and [0.20, 0.80] and the coefficient of variation of the V
value were calculated and the results are shown in Table 4.
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Table 4. V value distribution indicator.

V Value Indicator
Light Irradiation

Single-Sided-Strip
LED

Double-Sided
Strip LED

Central Ring
LED

Percentage in the range of
[0.30, 0.70] 83.5% 86.6% 91.2%

Percentage in the range of
[0.25, 0.75] 92.0% 93.8% 96.2%

Percentage in the range of
[0.20, 0.80] 96.6% 97.5% 98.6%

Coefficient of variation 0.311 0.301 0.271



Sensors 2022, 22, 9550 13 of 20

According to Figure 10 and Table 4, under the single-sided-strip LED, the percentage of V
value in a range of [0.30, 0.70], [0.25, 0.75], and [0.20, 0.80] was the smallest, which was 83.5%,
92.0%, and 96.6%, respectively. Under the central-ring LED, the percentage of V value in a
range of [0.30, 0.70], [0.25, 0.75], and [0.20, 0.80] was the highest, which was 83.5%, 92.0%, and
96.6%, respectively. The coefficient of variation of the V value under different light irradiation
was 0.311, 0.301, and 0.271, respectively. The V value coefficient of variation was minimized
and the proportion of lightness around the median value was higher under the central-ring
LED. Therefore, the image lightness distribution was most uniform under the central-ring
LED, which was more conducive to the subsequent impurity recognition.

3.2. Effect of the Deflector Gap
3.2.1. Effect on Impurity Visualization

The visualization of the impurity on the conveyor belt under different deflector gaps
is shown in Figure 11. The average occlusion rate of impurity was 2.73% to 18.11% when
the deflector gap varied from 7.5 mm to 20 mm. The occlusion rate increased with the
increasing of the deflector gap. The occlusion of impurity mainly includes covered by rice
and mutual occlusion between impurity. This is because when the deflector gap is small,
the material could be transported in a thinner layer or even in a single layer and there
is little intersection and overlap between impurity and rice. The impurity is partially or
completely covered when the material layer is thick. The occlusion of impurity decreases
with the decreasing grain thickness and cannot be identified through the vision system.
Taking the occlusion rate of impurity less than 10% as the design standard, the deflector
gap should meet the condition that d ≤ 15 mm.
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3.2.2. Effect on the Grain Distribution

The grain distribution on the conveyor belt under different deflector gaps is shown in
Figure 12. When deflector gap d ≤ 10 mm, the impurity was blocked and accumulated at
the deflector. This accumulation also affects the passibility of the grain, leaving gaps in the
conveyor belt (Figure 12a,b). However, intersection and overlap between impurity would
occur when d ≥ 17.5 mm (Figure 12e,f), which indicates that two layers of impurity could
be passed under the gap. This is consistent with the result in Figure 11. To ensure the grain
passability and without impurity multi-layer accumulation at the same time, the deflector
gap should meet the condition that 12.5 mm ≤ d ≤ 15 mm.
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3.2.3. Effect on the Grain Mass Flow Rate

The grain mass flow rate under different deflector gaps is shown in Figure 13. The
average mass flow rate of grain was 0.04 kg/s to 0.15 kg/s when the deflector gap var-
ied from 7.5 mm to 20 mm. The grain mass flow rate increases with the increasing of
deflector gap. The grain mass flow rate decreases as the corrugation passes through the
deflector. The grain mass flow rate was uniform and stable in general, which is beneficial
for impurity identification.
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3.2.4. Simulation Validation

Combining the above results, the variation in impurity occlusion rate and grain mass
flow rate with the deflector gap is shown in Figure 14. The grain mass flow rate and
impurity occlusion rate both increase when the deflector gap increases. The detection
efficiency could be improved by enhancing the deflector gap but the impurity identification
accuracy decreases at the same time. The deflector gap was determined to be 15 mm to
ensure detection accuracy while maximizing sampling efficiency. The sampling efficiency
was 0.094 kg/s at this deflector gap.
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To verify the simulation model, the mass flow rate comparison test was carried out.
After the grain flow was uniform, the sample box was placed at the sampling device outlet.
The test result showed that a total of 0.87 kg of grain was collected in 10 s and the actual
grain mass flow rate was 0.087 kg/s. The simulation flow rate of 0.094 kg has an error of
7.2% with the physical test, which demonstrates that the simulation model is reliable.
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3.3. Impurity Segmentation

The detection model was trained in the Anaconda3 virtual environment. The Keras
2.1.6 and TensorFlow 1.15.0 were used to build the deep learning framework in the Python
3.7 environment. The training process used a migration learning method to initialize the
network using Mask R-CNN COCO pre-trained parameters. Each batch size was processed
with two images. The grain images of the test set were used to validate the identification
model. The number of training steps per epoch, the learning rate, and the skip detection
confidence were set to 100, 0.001, and 90%, respectively. The training time of the 1200 grain
images was 84 h and the average identification time of a single image was 1.58 s. The
impurity detection results under different mass flow rates are shown in Figure 15.
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It can be seen from Figure 15 that the impurity could be identified accurately by
the system in general. In case of an overlap between rice and impurity, they can be
distinguished following the impurity contour boundary. The precision rate (P), recall
rate (R), average precision (Ap), and comprehensive evaluation indicator F1 were 92.49%,
88.63%, 81.47%, and 90.52%. It is difficult to identify when the impurity was relatively fine
and small.

For the purpose of contrasting with the traditional method of identifying rice by
color space and morphology [30], comparative tests were conducted. The grain image
in Figure 16a was converted to HSV color space, and the histogram equalization of the
V-component of the image was obtained in Figure 16b. The range of color threshold
distribution of impurity components was extracted manually, and the morphological
closure operation was used to obtain Figure 16c after color extraction of the image. Via
shape feature analysis, the targets with a large ratio of perimeter to the area were deleted
and the processing result is shown in Figure 16d. Finally, the detection results are marked
on the original image, as shown in Figure 16e.
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Figure 16. Impurity identification based on color space and morphology. (a) Original image; (b) image
equalization; (c) threshold segmentation; (d) removing interference; (e) identification result.

According to Figure 16, the impurity that was close to the rice color failed to be
detected. The gaps between the rice are close to the color and morphology of the impurity
and are easily misidentified as an impurity. The impurity-detection method proposed
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based on Mask R-CNN has better adaptability when the color features are close to the
background and the distribution area adheres to the background.

3.4. Pixel Density Calibration

The least squares was used to linearly fit the relationship between pixel number and
mass of rice and impurity. The intercept was set to 0 to avoid lack of fit when the impurity
mass was small. The relationships between pixel number and mass of rice and impurity
are shown in Figure 17.
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The regression equations are:

y1 = 2.4401 × 10−5 x1 (13)

y2 = 0.5867 × 10−5 x2 (14)

where x1 is pixel number of rice; x2 is pixel number of impurity, g; y1 is mass of rice, g; y2 is
mass of impurity, g.

R-square (coefficient of determination) and RMSE (root mean squared error) were
used to evaluate the fitting results. The R-square and RMSE of regression Equation (13)
are 0.9949 and 0.1626, and regression Equation (14) is 0.8604 and 0.1013, respectively.
Therefore, the rice pixel density ρr and impurity pixel density ρi are 2.4401 × 10−5 g/Pixel,
0.5867 × 10−5 g/Pixel, respectively. The accuracy for the rice pixel density is higher than
that of impurities. It is because the proportion of different types of impurities affects the
pixel density.

3.5. Bench Test

The bench test result is shown in Table 5, from which the designed system has a
mean detection accuracy of 91.15~97.26% for the five varieties and, therefore, has good
applicability to the rice of different varieties. The correction factor of impurity rate k
varied from 0.912 to 1.075 due to the rice variety and moisture. After compensation by
the correction factor of impurity rate k, the system could successfully calculate the actual
impurity for different rice varieties. In a stable indoor environment, the average recognition
accuracy of the system was 94.47%. The source of error may be the material’s irregular
three-dimensional morphology. The calculated mass using surface density varies from the
actual mass. During manual detection, despite the multi-point sampling method being
used, the samples collected manually cannot be identical to those taken by the sampling
device. This inevitably leads to errors in manual detection and system detection.
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Table 5. Bench test result.

Varieties Rice Mass
(kg)

Moisture
(%)

Impurity
Mass (kg)

Correction
Factor of

Impurity Rate k

Actual
Impurity
Rate (%)

Detection
Impurity
Rate (%)

Detection
Accuracy (%)

Lindao 20 11.55 22.7 0.32 0.968 2.8 2.64 94.33
Nanjing 40 9.83 28.7 0.41 0.912 4.2 4.34 96.72
Taijing 1105 12.21 25.5 0.41 0.936 3.3 3.53 92.91
Ningjing 5 10.98 26.9 0.31 0.950 2.8 2.88 97.26

Liangyou 106 11.58 24.8 0.42 1.075 3.6 3.28 91.15

3.6. Field Test

The field test result is shown in Table 6. It can be seen that the results’ relative error
was in a range of 5.71~11.72% and average relative error was 8.39% between the impurity-
detection system and the manual method. Compared with the bench test, the average
identification accuracy in the field test was reduced by 2.86%. The main reason may be the
variability in the material state in the field. Despite the impurity correction coefficient k
being used to compensate for the material variation and moisture content on pixel density,
there were still differences in materials between different areas in the field. The working
vibration of the harvester also affect the test results. In the field environment, the system
recognition accuracy had little to do with the forward speed. Generally, the impurity
identification accuracy in the field was not far from the bench test, which indicates that the
designed infusion-type sampling device and impurity recognition algorithm are able to
adapt to the field conditions.

Table 6. Field test result.

Test No. Forward
Speed (m/s)

Grain Mass m1
(kg)

Grain Mass without
Impurity m2 (kg)

Impurity Rate
of Manual

Detection (%)

Impurity Rate
of System

Detection (%)

Detection Error
(%)

1 0.53 3.079 3.01 2.25 2.40 8.13
2 0.71 3.293 3.22 2.44 2.24 −9.46
3 0.89 2.606 2.55 1.96 2.08 6.95
4 1.15 3.279 3.23 1.57 1.50 −5.71
5 1.33 2.797 2.74 2.11 1.88 −11.72

4. Conclusions

In this paper, an infusion-type sampling device and impurity recognition algorithm
based on Mask R-CNN were developed to monitor tracked rice combine harvester impurity
rate in real time. Obscured contaminants can be reduced by the infusion-type sampling
device. Impurity in grains could be efficiently identified and converted to the actual
impurity rate by pixel density. The specific work is summarized as:

(1) To reduce the obstruction of impurity, an infusion-type sampling device was de-
veloped. The image lightness distribution under different light irradiations was
investigated. The results show that the image under the central-ring LED had the
smallest most uniform brightness distribution and is the superior light source. The
variation coefficient of brightness was 0.271. According to the DEM simulation of the
grain transportation process, the effect of the deflector gap on impurity visualization,
grain passibility, and mass flow rate was analyzed. The deflector gap is determined to
be 12.5~15.0 mm, which reduces the impurity obscuration and ensures the passibility
of the grain.

(2) To overcome the misidentification caused by color and morphology proximity, the
impurity recognition algorithm based on Mask R-CNN was proposed. The test
set experiment showed that the precision rate, recall rate, average precision, and
comprehensive evaluation indicator were 92.49%, 88.63%, 81.47%, and 90.52%. The
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pixel densities of rice and impurities were obtained by calibration tests and least-
squares fitting. The fitting equation R-square for rice and impurity was 0.9949 and
0.8604, respectively. The correction factor of impurity rate was used to correct pixel
density variation caused by variety and moisture content.

(3) The bench test results show that the designed system has a good detection accuracy of
91.15~97.26% for the five varieties. The results’ relative error was in a range of 5.71~11.72%
between the impurity-detection system and manual method in field conditions.

The accuracy of impurity rate detection is related to the training sample size. In
future research, the number of learning samples will be increased and the model structure
will be further optimized to improve the ability of impurity recognition. A lightweight
neural network will be used for feature extraction to improve the real-time performance of
impurity detection and reduce calculation capacity to utilize the embedded systems.
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