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Abstract: Two commercial multisport activity trackers (Garmin Forerunner 945 and Polar Ignite)
and the accelerometer ActiGraph GT9X were evaluated in measuring vital data, sleep stages and
sleep/wake patterns against polysomnography (PSG). Forty-nine adult patients with suspected sleep
disorders (30 males/19 females) completed a one-night PSG sleep examination followed by a multiple
sleep latency test (MSLT). Sleep parameters, time in bed (TIB), total sleep time (TST), wake after
sleep onset (WASO), sleep onset latency (SOL), awake time (WASO + SOL), sleep stages (light, deep,
REM sleep) and the number of sleep cycles were compared. Both commercial trackers showed high
accuracy in measuring vital data (HR, HRV, SpO2, respiratory rate), r > 0.92. For TIB and TST, all
three trackers showed medium to high correlation, r > 0.42. Garmin had significant overestimation
of TST, with MAE of 84.63 min and MAPE of 25.32%. Polar also had an overestimation of TST,
with MAE of 45.08 min and MAPE of 13.80%. ActiGraph GT9X results were inconspicuous. The
trackers significantly underestimated awake times (WASO + SOL) with weak correlation, r = 0.11–0.57.
The highest MAE was 50.35 min and the highest MAPE was 83.02% for WASO for Garmin and
ActiGraph GT9X; Polar had the highest MAE of 21.17 min and the highest MAPE of 141.61% for
SOL. Garmin showed significant deviations for sleep stages (p < 0.045), while Polar only showed
significant deviations for sleep cycle (p = 0.000), r < 0.50. Garmin and Polar overestimated light
sleep and underestimated deep sleep, Garmin significantly, with MAE up to 64.94 min and MAPE
up to 116.50%. Both commercial trackers Garmin and Polar did not detect any daytime sleep at
all during the MSLT test. The use of the multisport activity trackers for sleep analysis can only
be recommended for general daily use and for research purposes. If precise data on sleep stages
and parameters are required, their use is limited. The accuracy of the vital data measurement was
adequate. Further studies are needed to evaluate their use for medical purposes, inside and outside
of the sleep laboratory. The accelerometer ActiGraph GT9X showed overall suitable accuracy in
detecting sleep/wake patterns.

Keywords: wearables; actigraphy; polysomnography; validity; sleep; self-tracking; mHealth

1. Introduction

Options for monitoring daily human activity have been continuously developed by
using activity trackers to determine almost all vital and movement parameters during the
day and at night. These analyses became possible with relatively few and very small sensors
integrated into wristwatch-sized components, such as photodiodes, triaxial accelerometers,
Global Navigation Satellite System (GNSS) sensors, and temperature and barometric
pressure sensors. Activities, sporting movements, heart rate, rest and even stress can
be recognized, measured and analyzed [1,2]. This integration and the use of algorithms for
calculation and evaluation developed quickly with cloud-based data evaluation systems.
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The steadily increasing number of commercial wearable devices [3] and the resulting
increase in available and relevant measurement data are having a lasting and increasingly
rapid impact on accuracy [4]. Unfortunately, the scientific study of activity trackers has
some limitations, as the commercial systems do not fully disclose all analysis methods.
Most devices are essentially a “black box” in relation to data acquisition and processing
using proprietary algorithms and artificial intelligence [5]. Nevertheless, the ability to
record and assess rest periods, such as night sleep, has been greatly improved in recent
years by wearables and activity trackers [6].

Human sleep as a reversible physiological state is essential for health and performance
in everyday life [7]. Its functions are not fully understood, despite extensive studies on its
influence on energy homeostasis, immune function, cognitive performance and behavior,
and the influence on various clinical pictures [8–11]. Sleep can be measured in multiple
dimensions such as quantity, continuity, timing and quality [12–15]. Sensors have been used
to study sleep for decades since the early 1950s. In laboratory settings, polysomnography
(PSG) paired with clinical evaluation has been the gold standard to study sleep as well as
to diagnose a variety of sleep disorders [16]. In recent years, industry and academia have
invested heavily in the development of smaller, less obtrusive and more portable devices
for the continuous monitoring of sleep, such as accelerometers or different multi-sensor
devices such as activity trackers with heart rate and movement sensors [17]. The goal is to
enable data collection in larger groups over longer periods of time and in a more natural
environment outside the lab, with lower costs and more readily available participants.
However, challenges remain with respect to data acquisition and long-term data evaluation,
which may mislead the estimations of health markers due to possible interruptions and
missing periods [16]. Accelerometers and commercial activity trackers for monitoring sleep
have received increased scientific attention in recent years. Accelerometers for actigraphy
use have been developed to such an extent that the accuracy of measuring sleep epochs was
87–99% in relation to the gold standard PSG, but with a specification of sleep of only 28%
and 67% [18–21]. The actigraphy tends to overestimate TST and SE and underestimate SOL
and WASO in sleep disorders [22–24]. It should also be noted that actigraphy can generally
only be used to determine sleep/wake patterns. The detection and further analysis of sleep
stages (light, deep or REM sleep) is not possible [25,26].

The scientific investigation of commercial low-cost activity trackers started to increase
exponentially about 10 years ago [27]. Fitbit Ultra and Jawbone UP were among the first
wrist-worn fitness trackers to be scientifically studied, with moderate accuracy scores
compared to the PSG measurement [28–30]. Various wearable sleep trackers are currently
on the market, such as bracelets, smartwatches and wrist-worn activity trackers, headbands,
rings, sensor clips and others [27]. These devices are easy to use and ready to purchase
in the consumer market. Most of the consumer wrist-worn activity trackers rely on a
similar mechanism of clinical actigraphy that infers wake and sleep patterns from limb
movement [31,32]. The newly launched models also incorporate, besides the triaxial
accelerometer, other streams of bio signals such as photoplethysmographic (PPG) sensors to
measure heart rate (HR) and heart rate variability (HRV) for further vital data (respiratory
rate and SpO2) and sleep stage analysis [33]. Normal resting HRV is an indication of
cardiovascular and autonomic health as well as general fitness. Greater HRV at night has
been linked with better sleep quality and reacts to sleep phases [34–36]. HRV is also a
biofeedback tool for improved relaxation—when a person is under physical or mental
stress, parasympathetic activity decreases and sympathetic activity increases, resulting in
HR increase and HRV decrease [37,38]. This systematic fact is the basis for determining
the respiratory rate, which can be calculated by algorithms depending on the changes in
the autonomic nervous system (ANS) using HRV and HF data [39–41]. This phenomenon
is called respiratory sinus arrhythmia (RSA) [42]. Thus, the respiratory rate is another
building block for the assessment of sleep and sleep quality [43]. More recently, it is
possible to visualize a sleep hypnogram of a whole night via the evaluation app of the
activity tracker manufacturer and to analyze the aggregated sleep parameters such as the
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total sleep time (TST), wake times and the ratio of the individual sleep stages [44]. The
latest validity studies of wrist-worn activity trackers showed clear improvements in the
accuracy of the sleep analyses compared to the first studies from 2015 [29,30,44]. However,
differences in the degree of accuracy can be seen depending on the brand, the sensors and
algorithms used [2,45,46], with accuracies to the gold standard between moderate and good
in measuring sleep phases such as TST, WASO, SOL and SE [47].

The analysis of sleep in stages of NREM (light, NREM stages 1 and 2; deep sleep,
NREM stage 3) as well as REM sleep is rather underrepresented in the current study
situation. Most of the studies show problems with the fragmentation and discrimination
of the individual sleep stages during sleep. Liang and Chapa Martell [12] and Liang and
Martell [31] showed difficulties of the trackers in the transition phase between the stages of
light to REM and deep to awake with a bias of 0–60%, as well as significant deviations in
the total time of the measured stages REM and light sleep. It has been found that trackers
for sleep patients with sleep disorders are not yet sufficiently developed. Another study
showed that the accuracy of determining deep sleep with the tracker was limited, with
a medium accuracy of 0.49 [47]. Moreno-Pino et al. [48] found that the tracker recorded
significant differences in all sleep stages except in REM. In most studies, light sleep was
overestimated and deep sleep was underestimated [12,31,47,48]. Results in the literature
show a variable accuracy (moderate to good) of the wrist-worn activity trackers. Most of the
research has been carried out on healthy young subjects [6,48,49]. A study of middle-aged
to older sleep patients, patients with an average BMI in the obesity range, and patients with
sleep disorders or sleep apnea and the isolated usage of nocturnal breathing aids, such as
Continuous Positive Airway Pressure (CPAP) devices, can provide an extended view of the
accuracy under these conditions.

Only a few sleep validation studies have been conducted with the latest Garmin
Forerunner or Fenix models and Polar models with moderate to high accuracy in mea-
suring sleep stages and sleep parameters, with r = 0.60–0.88 for Garmin [2,45,46,50] and
r = 0.54–0.90 for Polar [51–54]. The accelerometer ActiGraph GT9X has been validated
several times in the recent past for sleep wake/pattern measurement against PSG with
high accuracy of r = 0.85–0.89 [55–60], and it is listed as a Food and Drug Administration
(FDA)-approved device for clinical use with an AASM recommendation for clinical use in
sleep disorders and circadian rhythm sleep–wake disorders [55–60].

The aim of this study was to validate sleep stages and parameters as well as vital
data measurements of two multisport activity trackers (Garmin Forerunner 945 and Polar
Ignite) and one accelerometer (ActiGraph GT9X) against PSG in a laboratory setting. Forty-
nine adult sleep patients (30 males/19 females) completed a standardized one-night sleep
examination followed by a multiple sleep latency test (MSLT) the following day.

2. Materials and Methods
2.1. Participants

Forty-nine (30 males/19 females) adult sleep laboratory patients volunteered to par-
ticipate in the study at the sleep laboratory, Somnolab Dortmund (Dortmund, Germany),
between 23 April 2020 and 10 December 2020. The participants were consecutively re-
cruited based on the examination combination of one night’s sleep followed by the MSLT
the following day. Descriptive characteristics as well as additional information about the
skin and activity scales are shown in Table 1. Twelve participants (9 males/3 females)
wore a CPAP during their nocturnal sleep examination. The study population was entirely
Caucasian. All participants provided written informed consent to participate in this study.
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Table 1. Descriptive characteristics of participants (n = 49).

Descriptive
Characteristic Male (n = 30) Female (n = 19) Total (n = 49)

Age (year) Mean +/− SD 52.10 +/− 9.63 59.58 +/− 9.56 55.01 +/− 10.19
Range 27–66 37–74 27–74

Height (meter) Mean +/− SD 182.7 +/− 6.38 165.8 +/− 5.50 176.2 +/− 10.24
Range 171–198 158–178 158–198

Weight (Kg) Mean +/− SD 98.10 +/− 13.77 89.37 +/− 25.40 94.71 +/− 19.36
Range 75.20–125.00 60.60–150.40 60.60–150.40

BMI (kg × m−2) Mean +/− SD 29.43 +/− 4.23 32.37 +/− 8.49 30.57 +/− 6.32
Range 21.63–41.04 22.61–52.04 21.36–52.04

Underweight
(BMI < 18.5) 0 0 0

Normal
(BMI 18.5–24.9) 4 4 8

Pre-obesity
(BMI 25.0–29,9) 11 5 16

Obesity
(BMI > 29.9) 15 10 25

Skin color type Mean +/− SD 2.60 +/− 0.62 2.37 +/− 0.76 2.51 +/− 0.68
Range 1.0–4.0 1.0–4.0 1.0–4.0

Activity level Mean +/− SD 4.9 +/− 2.59 4.63 +/− 2.71 4.80 +/− 2.61
Range 0.0–9.0 1.0–9.0 0.0–9.0

BMI = Body Mass Index, scale acc. [61], skin color type = Fitzpatrick scale with 6 stages [62], activity level =
classification according to Ross and Jackson extended by the NASA scale with 10 stages [63,64].

The study was approved by the Medical Association of Westphalia-Lippe, which
is connected to the Westfälische-Wilhelms-University Münster, Germany (file number
2019-611-f-S). Furthermore, the Ethics Committee of the German University for Health
and Sport (DHGS) checked and approved the study design (reference number 08/2019.1).
In addition, the study was included as a medical trial in the World Health Organization
(WHO) Primary Register via the German Clinical Trials Register (DRKS) with the reference
number DRKS00021701 and conducted according to the guidelines of the Declaration
of Helsinki.

2.2. Design and Laboratory Procedures

The study was designed as a laboratory study with various patient complaints relating
to their sleep. All participants received a standardized polysomnography to measure sleep
over one night and a standardized test assessing daytime sleep propensity, the MSLT, the
following day [65–67].

On the recording night, participants reported to the laboratory around 2.5 to 3.0 h
prior to their typical lights-off time. They underwent in-processing with some vital data
measurements such as reaction times, weight, blood pressure and HR, later followed by the
application of the PSG electrodes and sensors by the sleep technician. Both multisport activ-
ity trackers and the accelerometer were randomly fitted tightly, alternately on the left and
right forearm behind the processus styloideus ulnae, according to each device company’s
guidelines [68,69]. The beginning and the end of the PSG and activity tracker device data
collection periods coincided with the lights-off time and the end of the MSLT. To ensure
time synchronization, all devices were connected to the computer or a cellphone app once a
day during data upload, using the Network Time Protocol (NTP), which continuously syn-
chronizes to the atomic time of the Physikalisch-Technische Bundesanstalt (Braunschweig,
Germany). All recordings were performed in sound-attenuated and temperature-controlled
sleeping rooms.
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2.3. Devices and Sleep Parameters

Laboratory PSG assessments were performed using Embla Somnologica—PSG unit
(Embla Somnologica System, Amsterdam, Netherlands; Resmed Inc., Martinsried, Ger-
many), with data sampled and stored at 256 Hz. Electroencephalographic (EEG) (including
F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, O2-M1), electrooculographic (EOG), electromyo-
graphic (chin EMG) and two-lead electrocardiographic (ECG) measurements were per-
formed. PSG sleep stages were scored in 30 s epochs by an experienced medical technician
according to the standards of the American Academy of Sleep Medicine (AASM) rules [70].
Further vital measurements of oxygen saturation (SpO2), respiration (respiratory rate)
and leg movements were collected to recognize potential sleep disorders according to the
guidelines of the AASM [70]. The following PSG measurements were calculated: time in
bed (TIB, minutes), total sleep time (TST, minutes), sleep efficiency TST/TIB*100 (SE, %),
sleep onset latency (SOL, minutes), wake after sleep onset (WASO, minutes) and time spent
in N1, N2, N3 and REM sleep (all in min) according to the AASM [70]. The definitions of
the sleep parameters, sleep stages and the vital parameter measurements are summarized
in Table 2.

Table 2. Definitions of sleep parameters, sleep stages and vital parameters.

Sleep Parameters Definition

TIB Time in bed in minutes from lights off to lights on.

TST Total sleep time in minutes of NREM (N1, N2 and N3) + REM from lights
off to lights on in the morning.

Awake Total time in minutes in absence of any NREM stage and REM from lights
off to lights on (WASO + SOL).

WASO Time in minutes of wakefulness after sleep onset.
SOL Time in minutes from lights off to the first epoch of sleep scored.
SE Percentage of sleep time from lights off to lights on (TST/TIB × 100).

Sleep cycle One sleep cycle consists of an individual sequence of NREM and REM
sleep, expressed in total numbers.

Sleep Stages Definition

Light sleep Sleep stages NREM1 + NREM2, expressed in minutes.

Deep sleep Sleep stage NREM3 (also termed slow-wave sleep; SWS), expressed
in minutes.

REM sleep Characterized by rapid eye movements and EMG decrement, expressed
in minutes.

Vital Parameters Definition

HR Heart rate, measured in beats per minute.

HRV Heart rate variability, RMSSD (root mean square of successive differences)
measured in 5 min intervals, expressed in milliseconds.

Beat to beat Average delta of R–R intervals in milliseconds.
SpO2 Measurement of arterial oxygen saturation in percent %.
Respiratory rate Defined as respiratory cycles per minute.

2.3.1. Accelerometer ActiGraph GT9X

The accelerometer ActiGraph GT9X (ActiGraph, Pensacola, FL, USA) (serial number
TAS1F28170667) is a wrist-worn triaxial accelerometer on a research-grade level. Depending
on its version, it can also be worn on the waist or ankle. Accelerometers are able to detect
movement by acceleration of the human body using internal sensors such as an inertial
measurement unit (IMU) and wear time sensors [68,69]. The measured raw data were
downloaded in the lab using ActiLife software (version 6.13.4, ActiGraph, Pensacola, FL,
USA). ActiLife software uses the Cole–Kripke sleep algorithm to calculate sleep parameters.
In and out of bed times, TIB, TST, WASO, SOL, SE, Awake time and number of awakenings
were calculated [68,69]. Due to the lack of appropriate internal sensors, HR, HRV, SpO2
oxygen saturation and respiratory rate could not be determined.
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2.3.2. Garmin Forerunner 945

The multisport activity tracker Garmin Forerunner 945 (Garmin Ltd., 2022; Olathe,
KS, USA) (ID 3996687672. firmware 5.50, e6bbb98) is able to detect activity and sleep
as well as vital data with several sensors, including a triaxial accelerometer, a Global
Navigation Satellite System (GNSS) sensor for GPS or GLONASS and a photodiode sensor
for photoplethysmographical measurements of HR, HRV, SpO2 and respiratory rate. The
Garmin device allows tracking of sleep stages (light, deep and REM sleep time) in addition
to the sleep parameters (TIB, TST, Awake, SOL and WASO) [71]. The measured raw data
were transmitted to the Garmin Connect cloud via Bluetooth and the Internet and analyzed
by Garmin using a proprietary sleep assessment algorithm. The scientific investigator could
not influence this process and was blind to it. The sleep stages and sleep parameters as well
as a hypnogram were displayed in the Garmin Connect app and stored in the Garmin data
cloud. In addition, SpO2 and respiratory rate data were provided. Respiratory rate can be
calculated depending on the changes in the autonomic nervous system (ANS) using HRV
and HF data [39–41]. Unfortunately, HRV and beat to beat data were not directly provided
in the spreadsheet report by the Garmin app [71].

2.3.3. Polar Ignite

The Polar Ignite, the second multisport activity tracker (Polar Electro Oy, 2022; Kem-
pele, Finland) (ID 5D935A29, firmware 2.0.25), uses similar sensors to the Garmin device.
The tracker is also able to detect sleep stages such as awake time and light, deep and REM
sleep time, as well as the normal sleep/wake patterns TIB, TST, Awake, SOL and WASO.
For further detailed sleep analysis, the raw data were automatically transferred to the
Polar data cloud. Polar uses the “Nightly Recharge System” as a proprietary algorithm.
All analyzed data were displayed in the Polar Flow app. In addition to the hypnogram,
three further diagrams were displayed, HRV (RMSSD), beat to beat measurement and the
respiratory rate data. The respiratory rate was calculated according to the same principle
as the Garmin device, explained in Section 1. The measurement detection was restricted to
the first four consecutive hours of sleep detection during sleep. In addition, no SpO2 data
were calculated or reported in the spreadsheet report of the Polar Flow app [72].

2.3.4. Data Extraction and Scoring

After the MSLT measurement, both multisport activity trackers Garmin and Polar
were synchronized with the respective companies’ data cloud app via computer and
Internet. After the calculation of sleep parameters, sleep stages and vital data by proprietary
algorithms, these data were available as a report for further scientific analysis via the apps
Garmin Connect (Garmin Ltd., Olathe, KS, USA, version: 4.37.2.0) and Polar Flow (Polar
Electro Oy, Kempele, Finland, version 4.8.0). Garmin and Polar did not provide any raw
data due to their company restrictions. It was not possible to extract data directly from
the activity trackers. The accelerometer ActiGraph GT9X data were uploaded to the local
lab computer software ActiLife with the respective sleep parameter calculation function.
ActiGraph GT9X and PSG laboratory software (Somnologica version 3.1), in combination
with scoring of an experienced sleep laboratory technician, provided a detailed sleep-
related written data report, standardized in accordance with AASM guidelines [72]. All
data were extracted from each spreadsheet report and summarized in MS Excel sheets
(Microsoft, Redmond, WA, USA, version 2016) for further statistical analysis.

2.4. Statistical Analysis

All statistical analyses were performed using MS Excel 2016 and IBM SPSS (version
26.0 Armonk, NY, USA). The significance level was set at p < 0.05. Descriptive data analyses
of each subject’s physical data were performed, and the normal distribution of all data was
assessed using the Kolmogorov–Smirnov test. After all t-test analyses, false discovery rate
(FDR) corrections were performed to counteract the alpha error summation by multiple
testing [73]. The following statistical tests were based on the recommendations for wearable
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and actigraphy monitoring, validation and assessment selected by [74–79]. They were also
used in other previous wearable validation studies [28,80,81].

Correlations of sleep parameters and vital data measurements between the gold
standard PSG and Garmin, Polar and the accelerometer ActiGraph GT9X results were
calculated (two-way random, absolute agreement). Agreement was considered high >0.79,
moderate 0.40–0.79 or low <0.40. Difference analyses for sleep parameters and vital data
measurements were calculated using the mean absolute error (MAE) and mean absolute
percentage error (MAPE) (|[mean difference activity tracker − criterion measurement] ×
mean criterion measurement −1| × 100). The total deviation from the PSG measurement
was calculated and expressed in a boxplot diagram. T-tests followed by FDR correction,
one-way ANOVA followed by the Scheffé post hoc test, and effect size calculations in
accordance with Cohen [82] were calculated. The interpretation of the effect size was based
on Cohen’s d classification: there is a small effect from a value of d = 0.20, a medium effect
from d = 0.50 and a large effect from d = 0.80, and Eta2 (ή2) with >0.01 is a small effect,
>0.06 a medium effect and >0.14 a large effect [82]. The level of agreement (LoA) was
calculated for sleep parameter measurements between the wearable devices’ results and
PSG measurements. LoA was assessed as described by Bland–Altman and was expressed
using a Bland–Altman diagram [83].

Statistical power (1-ß error probability) was determined post hoc using G*Power
(University Düsseldorf, Düsseldorf, Germany) for correlation, t-test and ANOVA analy-
sis [84,85].

3. Results
3.1. Vital Data Measurement

HR measurements (HR, HRV and beat to beat) showed strong correlations with r > 0.92
(p = 0.000) in general between each multisport activity tracker and the PSG-derived two-
lead ECG. The difference analysis of all HR measurements showed a small MAE <12.67
beats per minute/MAPE <1.93%. HRV and beat-to-beat measurements could only be
calculated for Polar Ignite; Garmin did not present these data even though it is used to
calculate sleep data. The Garmin oxygen saturation measurement showed low to moderate
correlations with r < 0.52; the SpO2 minimum analysis was particularly noticeable with
r = 0.27 (p = 0.057) and MAE of 4.58/MAPE of 5.38%. Statistical power for correlation
analysis was determined post hoc with 47–99%. The respiratory rate measurements of both
devices were unobtrusive. Paired t-test analysis showed for all vital data measurements no
significant differences (p = 0.051–0.992). Further boxplot analysis of all vital data confirmed
the calculated results.

3.2. Sleep Parameters

The measurement of the sleep parameters showed different results than the vital
data analysis. Overall, the calculated correlations were low to moderate with r = 0.11–0.63
(p = 0.000–0.569). The TST and the awake phases (Awake, WASO and SOL) were partic-
ularly noticeable. The accelerometer calculation showed the highest values with r > 0.52
(p < 0.009). The difference analysis of all sleep parameters showed, especially for the
awake phases for both activity trackers and the TST for Garmin, high values of MAE up
to 84.63 min/MAPE up to 141.61%. The accelerometer again showed lower values for all
measurements (Table 3).
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Table 3. Sleep parameters deviation calculation of mean absolute error (MAE) and mean absolute
percentage error (MAPE) (n = 49).

Sleep Parameters MAE MAPE % Min Max SD +/−

TIB
(in minutes)

Garmin vs. PSG 26.94 6.32 0.00 110.00 29.67
Polar vs. PSG 34.00 7.53 0.00 201.00 45.39

ActiGraph GT9X vs. PSG 0.92 0.21 0.00 18.00 2.70
Garmin vs. Polar 49.22 13.48 0.00 197.00 51.82

TST
(in minutes)

Garmin vs. PSG 84.63 25.32 0.00 252.00 52.28
Polar vs. PSG 45.08 13.80 1.00 172.00 45.60

ActiGraph GT9X vs. PSG 31.39 9.33 1.00 139.00 29.17
Garmin vs. Polar 60.29 17.43 2.00 200.00 53.29

Awake
(in minutes)

Garmin vs. PSG 60.53 76.03 3.00 176.00 47.55
Polar vs. PSG 50.04 41.06 14.00 188.00 39.77

ActiGraph GT9X vs. PSG 31.24 64.89 0.00 140.00 29.43
Garmin vs. Polar 37.84 70.81 1.00 177.00 37.76

WASO
(in minutes)

Garmin vs. PSG 50.35 83.02 5.00 154.00 41.94
Polar vs. PSG 38.24 62.38 0.00 145.00 36.43

ActiGraph GT9X vs. PSG 28.51 84.79 0.00 130.00 26.47
Garmin vs. Polar 18.18 74.83 2.00 44.00 10.38

SOL
(in minutes)

Garmin vs. PSG 12.16 72.09 0.00 50.00 11.41
Polar vs. PSG 21.71 141.61 1.00 161.00 28.40

ActiGraph GT9X vs. PSG 11.67 70.41 0.00 53.00 11.67
Garmin vs. Polar 24.02 105.31 0.00 163.00 34.62

SE
(in %)

Garmin vs. PSG 11.67 15.30 0.15 40.06 10.05
Polar vs. PSG 8.68 11.56 0.22 37.81 8.60

ActiGraph GT9X vs. PSG 6.99 8.65 0.03 32.22 5.94
Garmin vs. Polar 4.44 4.78 0.12 11.26 2.61

MAE = mean absolute error (respective unit), MAPE = mean absolute percentage error (in %), min = minimum
(absolute in respective unit), max = maximum (absolute in respective unit), SD = standard deviation (respective
unit), TIB = time in bed, TST = total sleep time, Awake = awake time (WASO + SOL), WASO = wake after sleep
onset, SOL = sleep onset latency (all expressed in minutes), SE = sleep efficiency (in %).

The calculated ANOVA values showed a similar picture. Garmin and Polar showed
significant differences in all awake phases (p = 0.000) with medium to large effect up to
ή2 = 0.429 except SOL on the Polar watch. Garmin also showed significant differences
in TST (p = 0.000) with large effect ή2 = 0.281. ActiGraph GT9X was unremarkable in
all calculations, with the exception of SOL (p = 0.000) with medium effect ή2 = 0.131.
The differences between the multisport activity trackers in these measurements were also
significant for TIB, TST, Awake and SOL (p = 0.000) with medium to large effect (Table 4).
Statistical power for ANOVA calculations was determined post hoc with 49–100%.



Sensors 2022, 22, 9540 9 of 23

Table 4. Sleep parameters of Garmin Forerunner 945, Polar Ignite and ActiGraph GT9X and their
comparison with the gold standard PSG using one-way ANOVA (n = 49).

Sleep
Parameters

F-Value
(p-Value)/
ή2-Value

Devices
Mean
Diff.

SD+/− p-Value

95% CI

Lower Upper

TIB
(in minutes)

F = 6.758
(p = 0.000)/
ή2 = 0.096

Garmin vs. PSG 17.27 36.29 0.367 −10.04 44.58
Polar vs. PSG −25.84 50.58 0.072 −53.15 1.47

ActiGraph GT9X vs. PSG 0.67 2.77 1.000 −26.64 27.98
Garmin vs. Polar 43.11 57.12 0.000 15.79 70.41

TST
(in minutes)

F = 25.021
(p = 0.000)/
ή2 = 0.281

Garmin vs. PSG 83 54.76 0.000 53.49 112.67
Polar vs. PSG 24.43 59.54 0.147 −5.16 54.02

ActiGraph GT9X vs. PSG 10.41 41.78 0.805 −19.18 40.00
Garmin vs. Polar 59 55.12 0.000 29.06 88.24

Awake
(in minutes)

F = 48.024
(p = 0.000)/
ή2 = 0.429

Garmin vs. PSG −60.25 47.92 0.000 −81.73 −38.76
Polar vs. PSG −26.04 52.57 0.010 −47.53 −4.55

ActiGraph GT9X vs. PSG −11.00 41.70 0.556 −32.49 10.49
Garmin vs. Polar −34.20 41.14 0.000 −55.69 −12.72

WASO
(in minutes)

F = 36.138
(p = 0.000)/
ή2 = 0.361

Garmin vs. PSG −49.86 42.53 0.000 −66.50 −33.22
Polar vs. PSG −34.16 40.36 0.000 −50.80 −17.52

ActiGraph GT9X vs. PSG −0.02 39.12 1.000 −16.66 16.62
Garmin vs. Polar −15.69 13.92 0.073 −32.34 0.95

SOL
(in minutes)

F = 9.612
(p = 0.000)/
ή2 = 0.131

Garmin vs. PSG −10.39 13.10 0.000 −14.15 −6.63
Polar vs. PSG 8.12 34.81 0.292 −3.69 19.93

ActiGraph GT9X vs. PSG −10.98 12.34 0.000 −14.52 −7.43
Garmin vs. Polar −18.51 37.85 0.000 −30.32 −6.70

SE
(in %)

F = 39.407
(p = 0.000)/
ή2 = 0.381

Garmin vs. PSG 14.86 10.05 0.000 10.81 18.91
Polar vs. PSG 10.83 9.56 0.000 6.78 14.88

ActiGraph GT9X vs. PSG 2.31 9.19 0.461 −1.74 6.36
Garmin vs. Polar 4.03 3.21 0.052 −0.02 8.08

TIB = time in bed, TST = total sleep time, Awake = awake time (WASO + SOL), WASO = wake after sleep onset,
SOL = sleep onset latency (all expressed in minutes), SE = sleep efficiency (in %), mean Diff. = mean difference,
SD = standard deviation, 95% CI = confidence interval with lower and upper limit.

The Bland–Altman and boxplot diagrams show the greater fluctuation range of activity
trackers Garmin and Polar for TST, awake parameters and SE (Figures 1 and 2). In particular,
the LoA differences between the diagrams showed deviations up to 190 min for Garmin
and Polar. The accelerometer analysis was comparatively lower for all measurements. This
supports the previous calculations.
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Figure 1. Bland–Altman plots of sleep parameters (n = 49). TIB = time in bed, TST = total sleep time,
Awake = awake time (WASO + SOL), WASO = wake after sleep onset, SOL = sleep onset latency
(all expressed in minutes), SE = sleep efficiency (in %). x-axis represents the mean values of the
device and PSG; y-axis represents the differences between the PSG and the device; dashed black line
represents the upper and lower limit of agreement (mean +/− 1.96 SD); solid red line represents the
mean value of difference; solid blue line represents the trend; shaded green area represents 95% CI
(confidence interval) of mean difference.
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Figure 2. Boxplot analysis of calculated deviation in sleep parameters, Garmin, Polar and ActiGraph
GT9X against the gold standard PSG (n = 49), TIB = time in bed, TST = total sleep time, Awake = awake
time (WASO + SOL), WASO = wake after sleep onset, SOL = sleep onset latency (all expressed in
minutes); the x represents the mean value of deviation.

3.3. Sleep Stages

The analysis of the sleep stages yielded logical results based on the sleep measurement
analysis. Due to device and sensor limitations, the accelerometer ActiGraph GT9X did
not calculate any sleep stage. Overall, the differences in sleep stages between the two
activity trackers and the PSG are slightly lower than in the sleep parameter analysis. With
the exception of deep sleep, higher values were calculated here, with MAE up to 47.33
min/MAPE up to 116.50% for both (Table 5).

The correlation calculation shows similar results, especially with the deep sleep values
of r = 0.11–037 (p = 0.008–0.432). With the paired t-test analysis, Garmin showed for all
stages significant values (p < 0.045) with medium to large effect sizes up to d = 1.840,
except for REM sleep, against the PSG. Polar showed significant results in sleep cycle only
(p = 0.000) with large effect size, d = 1.036 (Table 6). Statistical power for t-test calculations
was determined post hoc with 42–100%.
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Table 5. Sleep stage deviation calculation of mean absolute error (MAE) and mean absolute percentage
error (MAPE) (n = 49).

Sleep Stages MAE MAPE % Min Max SD +/−

Light sleep
(in minutes)

Garmin vs. PSG 64.94 30.08 0.00 197.00 42.01
Polar vs. PSG 40.14 18.24 1.00 116.00 27.69

Garmin vs. Polar 57.98 26.75 1.00 239.00 49.89

Deep sleep
(in minutes)

Garmin vs. PSG 47.33 116.50 0.00 179.00 38.55
Polar vs. PSG 28.06 87.36 2.00 78.00 19.09

Garmin vs. Polar 54.04 91.66 1.00 189.00 40.89

REM sleep
(in minutes)

Garmin vs. PSG 53.10 97.54 4.00 180.00 35.29
Polar vs. PSG 24.80 49.13 0.00 88.00 21.37

Garmin vs. Polar 45.69 61.64 1.00 145.00 33.33

Sleep cycle
(total number)

Garmin vs. PSG 1.14 32.66 0.00 4.00 1.00
Polar vs. PSG 1.12 33.25 0.00 4.00 0.99

Garmin vs. Polar 1.04 22.41 0.00 3.00 0.93

MAE = mean absolute error (respective unit), MAPE = mean absolute percentage error (in %), min = minimum
(absolute in respective unit), max = maximum (absolute in respective unit), SD = standard deviation (respective
unit), Light = light sleep, Deep = slow-wave sleep (SWS), REM = rapid eye movement sleep (all expressed in
minutes), sleep cycle = total number of sleep cycles.

Table 6. Sleep stages of Garmin Forerunner 945, Polar Ignite and ActiGraph GT9X and their compari-
son with the gold standard PSG (n = 49).

Sleep Stages Mean
Diff.

SD+/− t-Value
z-Value

p-Value d-Value
95% CI

Lower Upper

Light sleep
(in minutes)

Garmin vs. PSG 52.20 57.34 6.374 0.000 1.840 26.91 77.50
Polar vs. PSG 9.73 48.12 1.416 0.637 0.409 −15.56 35.03

Garmin vs. Polar 42.47 63.87 4.654 0.000 1.343 17.18 67.76

Deep sleep
(in minutes)

Garmin vs. PSG 17.29 58.88 2.055 0.045 0.593 0.37 34.20
Polar vs. PSG 7.92 33.26 1.667 0.632 0.481 −12.51 28.34

Garmin vs. Polar 9.37 67.57 0.970 0.337 0.280 −10.04 28.78

REM sleep
(in minutes)

Garmin vs. PSG 11.84 63.10 1.313 0.351 0.379 −8.31 31.98
Polar vs. PSG 4.71 32.58 1.013 0.846 0.292 −15.43 24.86

Garmin vs. Polar 7.12 56.48 0.883 0.683 0.255 −13.02 27.27

Sleep cycle
(total numbers)

Garmin vs. PSG 0.76 1.63 −2.981z 0.003 0.658 0.20 1.31
Polar vs. PSG 1.10 1.37 −4.572z 0.000 1.036 0.55 1.65

Garmin vs. Polar −0.35 1.36 −1.797z 0.072 0.318 −0.90 0.20

Light = light sleep (NREM1 + NREM2), Deep = slow-wave sleep (SWS, NREM3), REM = rapid eye movement
sleep (all expressed in minutes), sleep cycle = total number of sleep cycle, z represents the z-value according to
Wilcoxon test, mean Diff. = mean difference, SD = standard deviation, 95% CI = confidence interval with lower
and upper limit.

The Bland–Altman diagrams and the boxplot analysis show differences between the
two activity trackers Garmin and Polar, as well as the larger differences measured in light
and deep sleep with Garmin (Figures 3 and 4a,b).
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Figure 3. Bland–Altman plots of sleep stages (n = 49). NREM, light sleep (NREM1 + NREM2), deep
sleep (SWS, NREM3) and REM sleep = rapid eye movement sleep (all expressed in minutes). x-axis
represents the mean values of the device and PSG; y-axis represents the differences between the PSG
and the device; dashed black line represents the upper and lower limit of agreement (mean +/− 1.96
SD); solid red line represents the mean value of difference; solid blue line represents the trend line;
shaded green area represents 95% CI (confidence interval) of mean difference.
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Figure 4. Boxplot analysis of calculated deviation (a) in sleep stages, Garmin and Polar against the
gold standard PSG (n = 49), Light = light sleep, Deep = slow-wave sleep (SWS), REM = rapid eye
movement sleep (all expressed in minutes) and (b) in sleep onset time = start of sleep and wake-up
time = end of sleep (deviation expressed in minutes), Garmin, Polar and accelerometer (ActiGraph
GT9X) against the gold standard PSG (n = 49); the x represents the mean value of deviation.

3.4. Hypnogram Analysis

Both commercial activity trackers have problems recognizing the exact distribution in
time of the sleep stages. Two hypnogram triads (Garmin, PSG and Polar) were put together
as an example (Figure 5a,b). The diagrams show that neither could adequately represent
the transitions from light to deep sleep or light sleep to REM sleep and back to the awake
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state. The exact lengths and actual times of the start and end of the individual stages were
mostly not reproduced correctly. Garmin had bigger problems than Polar, especially in
detecting and distinguishing between light sleep and awake, as well as REM sleep and
light sleep. Both had significant problems recognizing deep sleep. Comparing the rest of
the hypnograms, similar results were seen, regardless of the use of CPAP. However, the
more restless the patient’s sleep with regard to movement in bed, the number of arousals
and the frequent change from awake to light sleep, the more mismatches were recognizable
(Figure 5b).
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Figure 5. Night sleep hypnograms (Garmin, PSG, Polar); (a) CPAP patient (male); (b) sleep patient
(female). Arousal = partial, temporary or complete wake-up reaction with sleep-disrupting effect [66];
MT = movement time; Wake = awake time; REM = rapid eye movement sleep; S1–S3 represent
NREM1–NREM3 (N1 + 2 = light sleep; N3 = deep sleep [70]). x-axis represents the time in hours;
y-axis represents the respective sleep stage.
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3.5. MSLT Measurement

Unfortunately, the statistical evaluation of the MSLT measurement was not possible
because the activity trackers Garmin and Polar did not calculate any data during this time
period. Only a visual, schematic, imprecise analysis of the Garmin hypnogram would
be possible, since Garmin provides additional visual data via the manual adjustment of
the wake-up time function. With Polar, this was not yet possible at the time of the study;
currently, it is possible due to further software updates. Due to the lack of data from the
multisport activity trackers, it was decided not to further investigate the existing ActiGraph
data. The main result is therefore that the multisport activity trackers Garmin and Polar
currently do not indicate daytime sleep, although the sensors for it are available.

4. Discussion

The aim of this study was to assess and validate the accuracy of two multisport activity
trackers (Garmin and Polar) and one accelerometer (ActiGraph GT9X) in measuring sleep
stages, sleep-related measurements and vital parameters of sleep patients in a laboratory
setting. As the main findings, the study showed accurate measurement of the vital data,
such as HR, HRV, respiratory rate and SpO2, with the exception of the SpO2 minimum
measurement by the Garmin device. In contrast, the sleep-related measurements were
far less accurate for the two multisport activity trackers Garmin and Polar. Both trackers
tending to overestimate TST and underestimate awake (SOL and WASO). In the further
analysis of the sleep stages, this resulted in larger deviations of both trackers in light and
deep sleep, mainly in the overestimation of light sleep and underestimation of deep sleep,
less in REM sleep. Garmin presented a larger and more significant deviation than Polar.
The accuracy of the accelerometer to detect sleep/wake patterns was adequate with the
only restrictions of the significant deviation and underestimation in SOL.

Sleep stages differ from each other in physiological terms, such as breathing, auto-
nomic nervous system (ANS) reaction and body movement. These behavioral differences
and their physiological responses are driven by a coupling between central nervous system
activity and ANS activity that can provide the theoretical framework for sleep calculations
without EEG-based systems [86]. The examination of the vital data measurement was the
logical prerequisite for further validation of the sleep data calculations. Unfortunately,
only HRV data were provided by Polar and SpO2 data by Garmin. The measured vital
data HR, HRV and the respiratory rate showed high agreement with the PSG for both
activity trackers, r > 0.92. The differentiation calculation analysis showed similar results
with MAE of 5.82 and MAPE up to 8.72% of Polar HRV, but with a small mean of −1.93 min.
The boxplot analysis supports these results and shows the greatest variance in HRV and
beat to beat, which could have a negative impact on the calculation of the sleep-related
measurements and the calculation of the sequence algorithm in the sleep stages. The less
accurate agreement r = 0.27 (p = 0.057) of the SpO2 minimum measurement of the Garmin
device has no direct influence on the sleep stage calculation. Recent studies have shown
mostly similar results with a high level of agreement between the measured vital data (HR,
HRV and respiratory rate) against the PSG and ECG measurements [1,37,87–89].

The TIB and TST measurements showed medium to high correlation values with
r > 0.42 (p > 0.003). TIB results showed no significant differences, with the highest values of
MAE 34.00 min and MAPE of 7.53% for Polar. Garmin generally overestimated the time
by 17.27 min, and Polar underestimated it by −25.84 min. In the TST measurement, the
differences between the Garmin device and the PSG were significantly noticeable (p = 0.000;
d = 0.3). The more detailed difference calculation yielded MAE 84.63 min with MAPE of
25.32% for Garmin, MAE 45.08 min and MAPE of 13.80% for Polar, and MAE of 31.39 min
and MAPE of 9.33% for the accelerometer (ActiGraph GT9X). The Bland–Altman and
boxplot analysis showed clear overestimations by Garmin with 83.03 min and Polar with
24.03 min, and the accelerometer (ActiGraph GT9X) was negligible. This is in line with the
findings of studies with an overestimation of up to 37 min for TST [2,22,23,47,90–92].
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For the Awake measurements, all devices showed weaker correlation values r = 0.11–0.57
(p = 0.000–0.098). Garmin and the accelerometer (ActiGraph GT9X) showed the highest
deviations for the WASO with MAE of 50.35 min and MAPE of up to 83.02%. Polar showed
the highest deviations for SOL with MAE of 21.71 min and MAPE of up to 141.61%. Garmin
had the highest differences and the accelerometer (ActiGraph GT9X) had differences in
SOL only. All results were significantly different (p < 0.010) and with medium to large effect
sizes of up to ή2 = 0.429, except the accelerometer (ActiGraph GT9X) for WASO and Polar
for SOL. All trackers mostly underestimated the awake times. The large effect size under-
lines the underestimation of the mentioned awake phases and supports the MAE/MAPE
difference analysis. The results for the activity trackers are in agreement with the current
study situation with significant underestimation of WASO and SOL [2,20,22,58,90–93]. The
current accelerometer studies differ only slightly in the SOL measurements; the deviations
were significantly less than in this study [22,23]. This led to longer TST times with the
two multisport activity trackers, since the TIB did not show any major deviations. Fur-
thermore, this affected sleep efficiency, since less awake time leads to higher SE results.
However, in this study, the differences were mostly significant and the mean deviations
were significantly larger, especially in awake time measurements [91,92].

The sleep phase calculation showed significant differences for the Garmin measure-
ment (p < 0.045) with medium to large effect sizes, d = 0.658–1.840. Polar was not signifi-
cantly different here. The correlation values for all sleep stages (light, deep, REM sleep)
and the sleep cycles were low to moderate (r = 0.02–0.50) for both activity trackers. Garmin
had the highest deviation in all three sleep stages, with MAE up to 64.94 min and MAPE up
to 116.50%; Polar showed smaller values, with MAE up to 40.14 min and MAPE up to 87%
for light and deep sleep. Light sleep was overestimated and deep sleep underestimated by
both trackers. The large effect size results for Garmin underline these significant difference
results. The results are in line with existing studies by [12,27,33]. Specifically, [48] showed
congruent results, with significant differences and overestimation of light sleep and under-
estimation of deep sleep. Garmin had problems in acquiring and calculating the exact sleep
stages with significant deviations. The deviations from Polar, on the other hand, were not
quite as large. The overestimation of light sleep is directly related to Garmin’s measured
earlier time of falling asleep in combination with the underestimation of awake times. A
possible pre-rest phase could have been rated as sleep and thus led to higher TST and light
sleep times. Polar showed a slightly larger error range for all stages, which, however, did
not lead to tendencies in one direction due to the distribution. The relatively small mean
deviations from the PSG can therefore easily be explained by the arithmetic mean.

Neither multisport activity trackers recorded the multiple sleep latency test (MSLT)
on the following day after night sleep measurement. Neither tracker recognized daytime
sleep times after rise time from bed. The night sleep time window had to be set for both
trackers (Garmin and Polar) before use, usually between 10:00 p.m. and 08:00 a.m. Sleep
times on the following day past 08:00 a.m. or after wake-up time were not included in the
sleep calculation by the tracker. During the study, it was possible to adjust the sleep onset
and wake-up time after the night sleep with the Garmin device only. This lengthened the
hypnogram and added to the night sleep calculation. There was no defined calculation,
delineation or interpretation of sleep stages for the MSLT test at all. No distinction was
made in the calculation between night and day sleep, so it was not useable. Polar did not
provide any data at all. The accelerometer (ActiGraph GT9X) recorded MSLT data, which
were not further statistically evaluated. So far, no current studies on MSLT testing with
commercial activity trackers are known.

Possible influence on measurement or calculation inaccuracies can arise from the
composition of the sample. Mostly older normal sleep patients (55.01 +/− 10.19 years) with
and without sleep disorders and sleep apnea (including twelve CPAP patients) were chosen.
The high BMI (30.57 +/− 6.32 kg*m−2) was particularly noticeable. The quantity and
quality of sleep can change profoundly across the lifespan [49,94]. Older people commonly
have difficulty falling asleep and staying asleep. The sleep architecture and depth may
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change with ageing. Behavioral changes and daytime napping can impact nocturnal sleep.
Older people spend more time in stages N1 and N2 (light sleep). This leads to multiple
awakenings during the night, which is described as sleep fragmentation with ageing. With
increasing age, the percentage of REM sleep decreases in elderly women; in contrast, the
slow-wave sleep significantly decreases in elderly men [95–97]. The fragmentation of sleep
in the elderly and the longer periods of wakefulness may affect the calculation, since studies
involving healthy young subjects had much smaller deviations [33,47] than this study. The
assumption is that the sleep algorithm has possible problems with the calculation. It should
also be noted that self-learning functions within the sleep algorithms could achieve better
measurement results in the long term for vital data such as HR and HRV and also for sleep
parameters and sleep stages. Because of the usable number of devices during the study,
only two trackers were used once per sleep patient. If each participant uses their own
device and wears it for a longer time, a self-learning effect could occur and could lead to
measurement improvements [16,98,99].

As a limitation of this study, only two multisport activity trackers and one accelerom-
eter were included. Therefore, a general statement about all wearable activity trackers
and accelerometers for actigraphy use is not intended. The sleep data used were extracted
directly from the spreadsheet reports of the manufacturers’ apps (Garmin Connect and
Polar Flow). Even when asked, Garmin and Polar were not able to provide the raw data.
Therefore, it was not known exactly which formulas and algorithms or artificial intel-
ligence were used in the calculation. Furthermore, the epoch-by-epoch analysis of the
sleep measurements could possibly vary, since changes in the manufacturers’ cloud-based
calculations are not communicated directly to the user. It should be noted that only one
night’s sleep with MSLT was conducted in a laboratory setting. With multiple-night stud-
ies including also non-laboratory settings, a larger dataset could contribute to an even
more accurate validation analysis. Finally, an ad hoc sample was analyzed in this study.
Therefore, an a priori sample size estimation via G*Power was not possible. Therefore,
the results must be considered with a certain degree of caution. Still, based on the post
hoc G*Power analysis, the sample size is sufficient to allow a solid (Power [1-β err prob]
42–100%) evaluation; additionally, comparable studies have used a similar number of
subjects (n = 26–56) [22,47,50,56,90].

5. Conclusions

In summary, this study showed high accuracy in measurements of vital data (HR,
HRV, SpO2 and respiratory rate) during one night of sleep examination. When measuring
the sleep-relevant parameters (TIB, TST, Awake (SOL and WASO) and SE), the multisport
activity trackers showed significant differences from the PSG measurement with medium
to large effect sizes, with the exception of the TIB measurement. TST was overestimated
and awake times underestimated; Garmin deviated significantly more than Polar. The
accelerometer ActiGraph GT9X showed significant deviations in the SOL measurement
only with medium effect size. In the sleep stage measurement (light, deep, REM sleep),
the detection and measurement of time spent in individual sleep stages and states were
particularly problematic for both commercial trackers. Again, Garmin deviated more than
Polar, with significant differences and medium to large effect sizes by underestimating
deep sleep und overestimating light sleep. Neither multisport activity tracker detected
or calculated the multiple sleep latency test (MSLT). The accelerometer ActiGraph GT9X
confirmed the known accuracies to determine sleep/wake patterns and could be used as a
possible reference for further scientific studies under free-living conditions.

The use of the multisport activity trackers (Garmin Forerunner 945 and Polar Ignite)
for sleep analysis can only be recommended for everyday use and general purposes to give
important feedback to active populations and for research purposes where large sample
sizes are needed. If precise data on sleep stages and parameters are required, their use is
limited. Further studies are needed to evaluate their use for medical purposes, both inside
and outside of the sleep laboratory. Follow-up studies are recommended with the newest
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devices, including elderly sleep patients with sleep disorders and other physical limitations
such as obesity BMI status.
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