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Abstract: The problem of vehicle re-identification in surveillance scenarios has grown in popularity
as a research topic. Deep learning has been successfully applied in re-identification tasks in the
last few years due to its superior performance. However, deep learning approaches require a large
volume of training data, and it is particularly crucial in vehicle re-identification tasks to have a
sufficient amount of varying image samples for each vehicle. To collect and construct such a large and
diverse dataset from natural environments is labor intensive. We offer a novel image sample synthesis
framework to automatically generate new variants of training data by augmentation. First, we use an
attention module to locate a local salient projection region in an image sample. Then, a lightweight
convolutional neural network, the parameter agent network, is responsible for generating further
image transformation states. Finally, an adversarial module is employed to ensure that the images in
the dataset are distorted, while retaining their structural identities. This adversarial module helps
to generate more appropriate and difficult training samples for vehicle re-identification. Moreover,
we select the most difficult sample and update the parameter agent network accordingly to improve
the performance. Our method draws on the adversarial networks strategy and the self-attention
mechanism, which can dynamically decide the region selection and transformation degree of the
synthesis images. Extensive experiments on the VeRi-776, VehicleID, and VERI-Wild datasets achieve
good performance. Specifically, our method outperforms the state-of-the-art in MAP accuracy on
VeRi-776 by 2.15%. Moreover, on VERI-Wil, a significant improvement of 7.15% is achieved.

Keywords: vehicle re-identification; sample synthesis; adversarial module; parameter agent network;
convolutional neural network; self-attention mechanism

1. Introduction

Vehicle re-identification (ReID) [1], including cross-camera recognition and vehicle
placement and tracking, is critical for road safety and intelligent transportation [2]. Re-
identification refers to recognizing the same vehicles in non-overlapping view domains
and across camera networks [3]. It is also defined as the process of identifying a destination
vehicle from images or videos captured by video angles without using the license plate [4].
Deep learning has become popular over the last decade, and the best performing vehicle
ReID algorithms based on appearance information are now mostly created using these
methods [5]. However, deep learning networks need a large amount of training data. The
lack of data is an obvious stumbling block, and it leads to overfitting and poor general-
ization. Unfortunately, data annotation and collection are quite expensive. One effective
technique to obtain more training images is data augmentation. In fact, data augmenta-
tion has always been an important method in vehicle ReID due to the emergence of deep
learning [6]. Regular methods create additional augmented samples through data warp-
ing, such as geometric and color transformations. In contrast to the previous traditional
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techniques [7], our novel method increases the complexity rather than the size of dataset.
This framework not only combines geometric augmentation and deep learning technology
but also utilizes an attention mechanism. One of the most important basic functions of a
framework is to locate the salient region of a sample. However, many existing methods,
e.g., Zhou et al. [8], Grad-CAM [9], and Grad-CAM++ [10], focus on the classification tasks.
In terms of vehicle ReID, the commonly used methods of RAM [11,12] are only applied
to certain model layers. As a result, this paper proposes a unique method for locating
the salient region for vehicle ReID, dubbed self-attention. To select a salient region of the
image, the region must first be identified, which is crucial for the feature extraction phase.
To obtain salient maps, the Spatial Relation-Aware Attention [13] uses the gradients of
the confidence score. In turn, the salient region of the image is selected to learn more.
First is a geometric augmentation. A neural network is employed to learn the weights for
transformation. Next, the transformation states are generated from these weights. To make
the network learning more challenging, an adversarial module is created, which consists
of the recognizer and parameter agent network mentioned above. This module maintains
a balance between the complexity and identity of a vehicle image. Figure 1 depicts the
changes from an original to an augmented image.

original augmented

Figure 1. Image augmentation results from an original to an augmented sample.

As a validation, an ablation test was designed on the VeRi-776 [14], VehicleID [15], and
VERI-Wild [16] datasets. Our contribution can be summarized by the following key points.

1. Incorporation of an attention mechanism to locate the perspective region and the
intensity of the perspective.

2. Data augmentation by increasing the difficulty rather than adding more images,
without losing the original structure of a dataset.

3. An innovative framework that combines an attention mechanism, geometric data
augmentation, and deep learning.

4. An innovative adversarial strategy that integrates the salient projection region location
and the local region projection transformation.

The paper proceeds as follows. Section 2 discusses the related work. The research
is presented detail in Section 3. Section 4 presents the experiments and discussion. In
Section 5, we conclude our work and provide an outlook on future work.
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2. Related Work
2.1. Vehicle ReID

Vehicle ReID recognizes a target vehicle across multiple cameras with non-overlapping
views. Generally speaking, ReID requires robust and discriminative representations [17].
In the past few years, Liu et al. [14] researched large-scale bounding boxes. They merged
color, texture, and deep learning to elevate the semantic relations. Li et al. [18] proposed
a DJDL model to extract discriminative representations. Shen et al. [19] suggested a
two-step structure to effectively incorporate complex spatial–temporal vehicle data for
generalization. The MGN [20] model extracted global and local features from an object
using a multi-branch network from a multiscale perspective. Stevenson et al. [21], on the
other hand, proposed an effective part-regularized discriminative model. This method
expanded the ability to sense differences to good effect. GSANet is based on the idea of
SCAN [22], and it solved the problem of information imbalance by using channel attention
mechanisms and spatial attention mechanisms.

2.2. Generative Adversarial Networks

In recent years, the most advanced image generators [23–26] have been the generative
adversarial networks (GAN) [27]. GAN has achieved success in image generation, relying
on the continuous improvement of the GAN modeling ability under gaming to finally
achieve fake-like image generation. It is a contest in which a generator and a discriminator
compete. The generator creates new samples, and the discriminator determines determine
whether the synthesized sample should be retained or discarded. GAN is a powerful data
augmentation technology in fields with a lack of image samples. It can help to generate
artificial scenarios while preserving features similar to the original dataset. GAN has
been described by Bowles et al. [28] as a method for “unlocking” additional information.
DCGAN [29], CycleGAN [30], and Conditional GAN are a few of improvements proposed
to expand the GAN concept. The quality of the samples generated has been significantly
improved as a result of these advancements.

2.3. Data Augmentation

Data augmentation [6] in deep neural network training is conducted to avoid overfit-
ting [31]. As we know, differing views, illumination, low contrast, background, and scales
present a challenge for vehicle ReID. Nevertheless, there are not many good solutions to
address the challenges. The aim of data augmentation is to incorporate these translational
inconsistencies. It is clear that larger datasets result in better performance [32]. Manually
collecting and tagging the data, however, is a difficult process. Many surveys evaluat-
ing the effectiveness of data augmentation employ common academic image datasets as
the benchmark. Many augmentation techniques, such as swapping, inversion, resizing,
and perspective transformation [6], are strictly outlined as basic methods. Our proposed
method is to mix those methods with neural networks to machine-learn instead of manually
adjusting the parameters.

2.4. Salient Region Locating

A salient region locating method should indicate which pixels of the image are more
vital. It can significantly support the evaluation of the model and optimization of its
performance. Methods including CAM [8], GCAM [9], and GCAM++ [10] are intended
for classification tasks. GCAM and GCAM++ generate a location outline that emphasizes
the important areas in the image, while being influenced by transmission line losses using
the gradients of the target label. There are two main methods for locating salient regions
in vehicle ReID tasks. The first is RAM [11], which requires a GAP between the very last
prediction model and the set of inputs bounding the salient areas. Another method [12]
converts a recall task into a classification task using the siamese network, so it can only be
employed in the siamese network [33].
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3. Methodology

An adversarial strategy is proposed to use projection transformation to generate
samples for vehicle ReID. Section 3.1 explains the overall structure. Then, we present the
salient projection region location (Section 3.2) and the local region projection transformation
(Section 3.3). Finally, Section 3.4 describes the transformation state adversarial module.

3.1. Overall Framework

As shown in Figure 2, our model has three parts: salient projection region location
(SPRL), local region projection transformation (LRPT), and transformation state adversarial
module (TSAM). First of all, we enter an original vehicle image, denoted as P. Then,
the SPRL takes the input image P to locate the salient region. Next, the LRPT produces
11 transformed images x1, . . . , x11. Finally, given the transformed images, TSAM selects
the most difficult sample among them from the input image P. The recognizer and the
parameter agent network (PAN) are the two major components of the TSAM. When the
augmented images x1, . . . , x11 pass through the recognizer, each augmented image xi will
be judged on whether it retains the same identity as P. The generated images will be
discarded if they belong to a different identity. Note that PAN is present in both the
LRPT and TSAM modules. It is utilized in the LRPT to create the weights needed for the
projection transformation. The PAN, as part of the TSAM, is intended to create the most
difficult generated sample. Finally, the most difficult sample selected by TSAM will replace
the input image.

ID Loss

Local Region Projection Transformation

Transformation State Adversarial

Salient Projection Region Location

Figure 2. Overall framework. This framework has three parts: Salient Projection Region Location
(blue part). Local Region Projection Transformation (red part). Transformation State Adversarial
Module (green part).

3.2. Salient Projection Region Location

The salient projection region location (SPRL) is used to extract a region of interest. It
projects the local region of an image for further processing. SPRL combines the random
rectangle selection and Spatial Relation-Aware Attention [13] to locate the local region
of the input image. The obtained local region is then fed into the LRPT to transform the
image. We want to focus attention on those image regions with relatively larger weights;
thus, after the perspective transformation on the subsequent focused regions, the noise of
the image is significantly increased. By increasing the complexity of the training images,
the robustness of the network improves. Naturally, because the Spatial Relation-Aware
Attention Network can obtain the salient region, it is regarded as a method in the test stage.
Figure 3, Column 2, depicts some of the visualization results.
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original CAM

Figure 3. Images results from an original to Spatial Relation-Aware samples.

Furthermore, because vehicle ReID is a zero-shot learning problem [34], which means
that recognition in the analysis stage does not take place in the training stage, many existing
methods [8–10] intended for classification that need identities to find the salient regions
cannot be applied in the test stage. However, our method does not have this issue. The
algorithm of the SPRL is shown in Algorithm 1. In our study, we assume the area ratio
as At and the aspect ratio as Rt; then, we obtain the width Wt and height Ht from At and
Rt. The salient region is partly determined by the top-left corner P. In addition, the salient
region is obtained by (P, Wt, Ht).

Algorithm 1 Salient Projection Region Location Procedure

Input: image P, area A, ratio of width and height R, area ratio ranging from A1 to A2,
aspect ratio ranging from R1 to R2;

Output: selected region
1: W ← P.width
2: H ← P.height
3: At ← rand(A1, A2)× A
4: Rt ← rand(R1, R2)
5: Ht ←

√
At × Rt

6: Wt ←
√

At ÷ Rt
7: Weight← SRA(P)
8: SRA is Spatial Relation-Aware Attention [13]. The weight matrix W with WeightP rows

and HeightP columns can be obtained from the SRA [13]. Obtain the weights.
9: for i In Wt do

10: for j In Ht do
11:
12: if i + Wt ≤W ∧ j + Ht ≤ H then

13: S←
i+Wt

∑
i

j+Ht

∑
j

Weight

14: end if
15: end for
16: end for
17: Use the loop to find the max S and its P(x, y)
18: return region (P, Wt, Ht)
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3.3. Local Region Projection Transformation

The local region projection transformation (LRPT) produces 11 augmented images.
This module involves two major processes: the parameter agent network (PAN) and the
projection transformation. The transformation parameters are generated by the PAN.
Combining the salient rectangle region and the parameters mentioned above, we then
employ the projection transformation process to generate the augmented images.

3.3.1. Parameter Agent Network

The image is supplied to PAN once the local area has been traced out from the original
image. PAN constructs the parameters for the projection transformation.

Table 1 shows that PAN has six convolutional and one fully connected layer. MP
denotes the maximum pooling, while BN represents the batch normalization. Finally, the
FC layer generates 10× 2 parameters. The 10 pairs of parameters are shown in the red part
of Figure 4, and each pair is written as (x′, y′). The remaining points are obtained from the
rectanglular interest region of the image using the 10 pairs of parameters, see Section 3.3.2
for more details. A transformation state is made up of the 10 pairs of parameters and their
weights, and the augmented images can be generated with these transformation states.

parameter 

generator

Figure 4. Overview of the Parameter Agent Network.

In order to generate the 11 augmented samples, 10 other transformation states are
obtained ranging from s2 to s11. Other states are generated from state s1 by choosing one
point in s1 and switching its coordinate in state s1 to the opposite direction. Specifically,
as shown in Figure 5, each of the 10 points in state s1 is selected. Then, we switch it to
the opposite direction by using the nearest vertical edge of the rectangle as the axis. Thus,
the direction of this point is flipped to update the x-coordinate of the point, while the
y-coordinate remains unchanged. Since s1 has 10 coordinates, we can generate in total
10 other states, s2, . . . , s11, by this method. Finally, we apply the projection transformation
process to the 11 states, s1, . . . , s11, and combine the original image P and the states to
generate 11 augmented images, x1, . . . , x11, as the result of the LRPT.

Figure 5. Overview of the transformation state generation process from s1 to s2, ...s11.
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Table 1. Architecture of the Parameter Agent Network.

Module Type

Initial 1× h× w
Conv16, ReLU, MP 16× 16× 50
Conv64, ReLU, MP 64× 8× 25
Conv128, BN, ReLU 128× 8× 25
Conv128, ReLU, MP 128× 4× 12
Conv64, BN, ReLU 64× 4× 12
Conv16, BN, ReLU, MP 16× 2× 6
FC Layer 10× 2

3.3.2. Projection Transformation

After achieving the 11 transformation states, the projection transformation can be
used to convert the input image P into the augmented samples. As shown in Figure 4, the
projection transformation will project the image onto a new coordinate screen. The original
points are transformed to other points on the projected screen, and the image is transferred
as a result of the projection transformation, but the image pixel information is preserved.
The details are as follows. All pixels should be relocated in accordance with the projection
mapping rule shown below once the anchor points have been established. To generate an
augmented image, it applies similarity deformation based on moving the least squares [35]
in the input image. Suppose the pixel to be moved is u = (x, y), and the target moved
position is t = (x′, y′). t can be obtained from u by

t← (u− p∗)×M + q∗. (1)

In Equation (1), M ∈ R2×2 is a matrix [36] having the property MT × M = λ2 I,
where λ takes values within a range depending on the specific situation. p∗ and q∗ are
the weights developed from the 10 anchor points pi = (xi, yi) from the input image and
the 10 transformed anchor points qi = (x′i , y′i) in the transferred image, respectively. To
summarize, the values of i in Equation (1) are within 1, . . . , 10. Our algorithm also needs to
obtain the weighted values corresponding to these points,

W ← SRA(P), (2)

where SRA stands for the Spatial Relation-Aware Attention [13], which consists of the
values representing the weights. The weight matrix W with WeightP rows and HeightP
columns can be obtained from the SRA; then, the specific weighted values are obtained by
coordinate correspondence. The variable P in (2) represents the original image. Formally,
we have

p∗ ←
(

∑ xiWxi ,yi

∑ Wxi ,yi

,
∑ yiWxi ,yi

∑ Wxi ,yi

)
, (3)

q∗ ←
(

∑ x′iWxi ,yi

∑ Wxi ,yi

,
∑ y′iWxi ,yi

∑ Wxi ,yi

)
. (4)

As shown in Table A1, the inclusion of a table defining the variables enables a more
specific understanding of the variables. The augmented image can be obtained after the
appropriate coordinates of all the pixel points have been generated.

3.4. Transformation State Adversarial Module

TSAM transfers a sample that is as near to the original as is practical while maintaining
quality. The recognizer, the learning target selection, and the parameter agent are the three
components of the TSAM framework. The structure of the TSAM is depicted in the green
section of Figure 2. Unlike other methods that use deep learning to find the best policies,
this adversarial module uses adversarial processing to generate a properly transformed
image. Algorithm 2 describes the entire TSAM process. This module is made up of the
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PAN and the recognizer. The PAN produces the transformation states, which are then used
to generate the augmented images. The recognizer confirms that the augmented image
label has not lost its identity and chooses the most difficult image.

Algorithm 2 Adversarial Process of Parameter Agent Network (PAN) and Recognizer

Input: input image P, selected region A
Output: optimized PAN′

1: sample transformation state s1
from predicted distribution:
s1 ← PAN(A)

2: generate random transformation states from s2 to state s11, based on state s1
3: all states including s1 − s11 contain anchor points
4: obtain augmented images from x1 and x11 based on states s1 to state s11:
5: The following i all represent 1 to 11
6: xi ← PT(P, si)
7: identify images:

Reg← Recognizer(P)
Regi ← Recognizer(xi)

8: if ID[Regi] = ID[Reg] then
9: test distance ∆ between Regi and Reg

10: if max ∆(Regi, Reg) then
11: PAN′ = update PAN with si
12: end if
13: else
14: PAN′ = PAN
15: end if

3.4.1. Recognizer

The recognizer verifies that the generated and input samples have the same identity.
The recognizer basis network framework is ResNet50 [37]. It is a classification network that
has been proven to be extremely efficient. It is used as a recognizer for our network with
some adaptation. ImageNet [38] is a database with over 20 thousand different categories.
After pretraining on ImageNet [39], it is finetuned to form the recognizer. Then, this
recognizer is used to determine the input image. Following that, the recognizer indicates
which classification each image belongs to. A transformed sample is compared to the
original image to determine whether or not they share the same identity. If the image
identity differs from the initial, it is removed from the workflow. If not, it is saved for
later use.

3.4.2. Learning Target Selection

During this step, the most difficult augmented image is selected to replace the original
image. Meanwhile, the selected state updates the PAN parameters by minimizing the
corresponding transformation loss. It is assumed that an augmented image differs from
the initial as much as possible. The augmented sample, on the other hand, cannot be
so dissimilar to the original that it loses its identity. We calculate the distances between
x1, . . . , x11 and P, as shown in Figure 6.

The most difficult augmented image is chosen. If only one augmented sample passes,
this one is directly adopted. An augmented image with the longest difference is selected
and optimized by PAN using the corresponding transformation state with this strategy.
Finally, the most difficult image x′ is chosen and will replace P in the dataset.
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Features

extract

extract

FeaturesP

x
i

Figure 6. Distance of different images. The augmented samples xi are matched with the input image
one by one.

The loss is described as in Equation (5), and α is a hyperparameter that controls the loss
in a flexible manner.

Loss← f unc(x′, x, α) (5)

Using this strategy, the most difficult augmented image is chosen, and the PAN is optimized.

4. Experiments and Discussion

Ablation experiments were designed and compared to the state-of-the-art vehicle
ReID models.

4.1. Datasets

The datasets for the experiment included the following three well-known datasets.

4.1.1. VehicleID

This dataset has 111,585 photographs of 13,113 automobiles, while the training data
have 10,178 images of 13,134 different objects. Three separate sets of varying sizes make up
the test set (i.e., Small, Medium, and Large).

4.1.2. VeRi-776

Actual surveillance scenarios collected over 50,000 images. One square kilometer was
captured over 24 hours. The images were shot in a free-form monitoring scene and marked
with aspects such as type, color, and brand. In summary, this dataset has 776 different
vehicles.

4.1.3. VERI-Wild

This dataset was collected in the wild. These samples were captured by 174 cameras
over the course of one month (30× 24 h) in unconstrained scenarios. The differentiation
of this dataset is reflected in the illumination and weather changes due to the time span,
which can be used for research in areas such as target detection.

4.2. Implementation

All the images were resized to 320 px × 320 px at the beginning. ResNet50 [40] served
as the backbone network, and the optimizer was the SGD [41]. The loss of network was
Soft margin triplet loss [42]. To test the efficacy of our framework, the same settings were
retained as the baseline [43]. A value was initialized for the learning rate at the beginning.
After the first ten epochs, the learning rate steadily dropped to 10−3, after starting at 10−2.
The learning rate then changed further as the training progressed. There were 120 training
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epochs. The experiment contained our strategy in the baseline preprocessing as a data
augmentation module, as shown in Figure 7. For further information on the baseline [43],
see [44,45].

Original Images Augmentation Module

CPS

Features FtAugmented Images ResNet50

CPS

Features Fi FC

soft margin triple loss ID loss

BN

Figure 7. Framework of the Baseline.

4.3. Ablation Study

This framework included three modules: the SPRL, LRPT, and TSAM. All these
modules are related, but they can be selectively applied. Our framework can contain
only the SPRL and LRPT modules, or it can contain all modules. The results are shown in
Table 2. To assess how well each module performed, a series of successive ablation tests was
planned. The tests were run on the three datasets using two combinations: SPRL+LRPT
and SPRL+LRPT+TSAM. The various modules produced different results as shown in
Figure 8.

Table 2. Results from the VeRi-776, VehicleID, and VERI-Wild datasets (%).

Models VeRi-776
VehicleID VERI-Wild

Small Medium Large Small Medium Large
Rank1 MAP Rank1 MAP Rank1 MAP Rank1 MAP Rank1 MAP Rank1 MAP Rank1 MAP

Baseline 95.71 76.59 83.02 77.02 80.74 75.04 79.24 73.98 93.11 72.60 90.54 66.51 86.40 58.52

SPRL + LRPT (Ours) 96.66 80.5 84.26 77.8 83.38 77.9 79.91 74.44 91.81 72.73 90.38 66.64 87.66 58.73

SPRL + LRPT + TSAM (Ours) 96.84 81.55 84.34 77.85 83.42 77.96 79.96 74.52 93.31 72.75 91.03 66.68 87.7 58.78

original CAM SPRL + LRPT SPRL + LRPT + TSAM

Figure 8. Augmented results with various modules. Col 1: Input images. Col 2: Heatmap using
Relation-Aware Attention. Col 3: Augmented results using SPRL + LRPT. Col 4: Augmented results
using SPRL + LRPT + TSAM.

4.3.1. Our Model vs. Baseline Model

On the VeRi-776 dataset, Rank1 and MAP outperformed by 0.95% and 3.91%, respec-
tively, when only SPRL + LRPT was used. In other words, relative to the baseline, there
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was a 1.0% and 5.1% improvement in Rank1 and MAP, respectively. On the VehicleID
and VERI-Wild datasets, we designed different experiments for the small, medium, and
large sets. On the small VehicleID group, the Rank1 and MAP increased by 1.24% and
0.78%. That means the performance was improved by 1.5% and 1.01% above the baseline.
Table 2 also shows an improvement of 2.64% and 2.86% on the medium VehicleID group
and 0.67% and 0.64% on the large VehicleID group. On the medium VehicleID group
compared to the baseline, the improvement was 3.27% and 3.81%, respectively. Then,
on the large VehicleID group compared to the baseline, the improvement was 0.85% and
0.87%, respectively. Our system was more advanced for each result. This showed that
the SPRL + LRPT and SRPL + LRPT + TSAM improved the MAP by 3.91%, 4.96% on the
VeRi-776 dataset, respectively; while on the small VehicleID group, there were performance
gains of 0.78% and 0.83%, respectively. On the medium VehicleID group, the performance
improvement was 2.86% and 2.92%, respectively. Finally, on the large VehicleID group, the
improvement was 0.46% and 0.54%, respectively. As shown in Table 2, the main component
was the LRPT, when combined with the SPRL+TSAM, the performance was significantly
improved.

4.3.2. Internal Comparison

When we only used the SPRL + LRPT, Table 2 shows that our work outperformed the
baseline. Then, when combined with the TSAM modules, compared to the SPRL + LRPT
module only, it improved the MAP by 1.05% on the VeRi-776 dataset and 0.05%, 0.06%,
and 0.08% on the VehicleID groups, respectively. The experiments showed that there was
also clear improvement on the VERI-Wild datasets. So, the SPRL + LRPT module played a
crucial role. The gradual improvement in the modules’ internal performance justified the
design of our framework and the need for it.

4.4. Comparison with the SOTA

As shown in Tables 3–5, our work clearly excelled and achieved the best results. In
addition, on VeRi-776, our model outperformed the second best model in MAP by 2.15%
and was improved by 22.9% over the original baseline. It performed well, especially on the
VehicleID and VERI-Wild datasets. It outperformed the second best model in MAP by 2.7%,
3.85%, and 7.15% on the three different VERI-Wild sets. The experimental results showed
that our method was significantly better than the other methods.

Table 3. Test on VeRi (%).

Models MAP Rank1 Rank5

siameseCNN [19] 54.20 79.30 88.90
fdaNet [16] 55.50 84.30 92.40

siameseCNN+ST [19] 58.30 83.50 90.00
provid [46] 53.40 81.60 95.10
aaver [47] 66.35 90.17 94.34

bs [48] 67.55 90.23 96.42
cca [49] 68.05 91.71 94.34
prn [50] 70.20 92.20 97.90

agNet [51] 71.59 95.61 96.56
pamtri [52] 71.80 92.90 97.00

vehicleX [53] 73.26 94.99 97.97
mdl [43] 79.40 90.70 -

ours 81.55 96.84 98.99
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Table 4. Test on VehicleID (%).

Models
Small Medium Large

Rank1 Rank5 Rank1 Rank5 Rank1 Rank5

vami [54] 63.10 83.30 52.90 75.10 47.30 70.30
fdaNet [16] - - 59.80 77.10 55.50 74.70
agNet [51] 71.15 83.78 69.23 81.41 65.74 78.28
aaver [47] 74.70 93.80 68.60 90.00 63.50 85.60
oife [55] - - - - 67.00 82.90
cca [49] 75.51 91.14 73.60 86.46 70.08 83.20
prn [50] 78.40 92.3 75.00 88.30 74.20 86.40
bs [48] 78.80 96.17 73.41 92.57 69.33 89.45

vehicleX [53] 79.81 93.17 76.74 90.34 73.88 88.18

ours 84.34 93.48 83.42 90.63 79.96 86.52

Table 5. Test on VERI-Wild (%).

Models
Small Medium Large

MAP Rank1 MAP Rank1 MAP Rank1

googLeNet [56] 24.30 57.20 24.20 53.20 21.50 44.60
fdaNet [16] 35.10 64.00 29.80 57.80 22.80 49.40

mlsl [57] 46.30 86.00 42.40 83.00 36.60 77.50
aaver [47] 62.23 75.80 53.66 68.24 41.68 58.69

bs [48] 70.05 84.17 62.83 78.22 51.63 69.99

ours 72.75 93.31 66.68 91.03 58.78 87.70

4.5. Visualization Results

In the previous part of the paper, Figure 9 displayed the Local Region Projection
Transformation and Salient Projection Region Location. In this section, the visual results
are displayed.

original

region selected

perspective

augmentation

Figure 9. Workflow of the Salient Projection Region Location and Local Region Projection Transformation.

In Figure 10, column 1 is the original input image, and the other columns are the
augmented results. In detail, Figure 10a–c shows two vehicle samples from the VeRi-776,
VehicleID, and VERI-Wild datasets. The result illustrates that the local part of the image was
changed, but the overall features of the image were preserved to the maximum extent due to
our framework. When selecting appropriate augmented images, the network performance
gradually improved.
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(c) VERI-Wild

(a) VeRI-776

(b) VehicleID

Figure 10. Visualization of the Input Images and the Eleven Augmented Images.

5. Conclusions

A data synthesis framework was designed mainly for vehicle ReID tasks. An atten-
tion mechanism was employed to locate the perspective region and the intensity of the
perspective. A projection strategy was used to transform an original image. The image
with the greatest feature distance from the candidate images while retaining the identity
was chosen. Rather than increasing the size of the dataset, the difficulty of the dataset was
increased. Our framework seamlessly integrated with the current state-of-the-art baselines,
while keeping the datasets’ structures unchanged.
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Appendix A

Table A1. Variable Definitions of Projection Transformation.

Symbol Meaning

u the pixel to be moved
t the target’s moved position
M the matrix having the property MT ×M = λ2 I
λ the values within a range
p∗ the weight of the 10 anchor points
q∗ the weight of the 10 transformed anchor points
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