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Abstract: In recent years, with the rapid progress of unmanned aerial vehicle (UAV) technology, UAV-
based systems have been widely used in both civilian and military applications. Researchers have
proposed various network architectures and routing protocols to address the network connectivity
problems associated with the high mobility of UAVs, and have achieved considerable results in a
flying ad hoc network (FANET). Although scholars have noted various threats to UAVs in practical
applications, such as local magnetic field variation, acoustic interference, and radio signal hijacking,
few studies have taken into account the dynamic nature of these threat factors. Moreover, the UAVs’
high mobility combined with dynamic threats makes it more challenging to ensure connectivity
while adapting to ever-changing scenarios. In this context, this paper introduces the concept of threat
probability density function (threat PDF) and proposes a particle swarm optimization (PSO)-based
threat avoidance and reconnaissance FANET construction algorithm (TARFC), which enables UAVs
to dynamically adapt to avoid high-risk areas while maintaining FANET connectivity. Inspired by
the graph editing distance, the total edit distance (TED) is defined to describe the alterations of the
FANET and threat factors over time. Based on TED, a dynamic threat avoidance and continuous
reconnaissance FANET operation algorithm (TA&CRFO) is proposed to realize semi-distributed
control of the network. Simulation results show that both TARFC and TA&CRFO are effective in
maintaining network connectivity and avoiding threats in dynamic scenarios. The average threat
value of UAVs using TARFC and TA&CRFO is reduced by 3.99~27.51% and 3.07~26.63%, respectively,
compared with the PSO algorithm. In addition, with limited distributed moderation, the complexity
of the TA&CRFO algorithm is only 20.08% of that of TARFC.

Keywords: unmanned aerial vehicles; FANET; PSO-based; relay node placement; persistent
reconnaissance; dynamic threat avoidance; low complexity

1. Introduction

Due to recent advances in technology for small unmanned aerial vehicles (UAVs),
the application of a flying ad hoc network (FANET) has received a significant boost in
the military, industrial, and civil sectors. Small UAVs or quadcopters often have reduced
performance in order to reduce weight and cost compared to traditional UAVs that can
complete their missions alone. The greatest strength of small UAVs lies in their ability to
form a mission network and cooperate to complete complex tasks. As a result, a multi-UAV
cooperation, or FANET, has been in the spotlight of the research community over the
years. Scholars have made a detailed exploration of the FANET from different perspectives,
such as routing protocols, deployment, hierarchical structure, algorithm optimization,
and applications.

Various routing protocols have been proposed to optimize the performance of the
FANET [1–5]. The authors in [1] have carefully designed the application of IEEE 802.11 MAC
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in the FANET. Through an exhaustive performance analysis, they have obtained some
instructive conclusions. Khan et al. [2] use a specifically designed protocol for FANETs
that considers the interest characteristics of FANETs, but the path to destination sometimes
is not optimized and creates a closed-loop route. Considering the fast dynamic nature of
nodes in FANETs, Rosati et al. propose a technique in [3] to use combined directional and
Omni-directional antenna to improve routing path selection and try to minimize the Ex-
pected Connection Time (EMC) and the utility function for path selection. To accommodate
the communication requirements of a heterogeneous network, Oubbati et al. [4] design an
interaction possibility metric in routing protocol. In this way, the protocol improves the
extension of networks and coverage of sub-networks assistance to some extent. Focusing
on the UAVs’ power limitation, Kai [5] structures an energy-efficient cooperative relaying
scheme to extend the network lifetime while guaranteeing the success rate.

The excellent mobility of nodes in the FANET makes localization, deployment, and
timely optimization of paramount importance [6–9]. The localization of UAVs is a pre-
requisite for algorithms to maintain network connectivity and threat avoidance, and a
well-connected network can also improve localization accuracy through collaboration [6].
In [7], UAVs are envisioned as wireless base stations. The authors first calculated the
coverage probability of the downlink, then used circle packing theory to determine UAVs’
locations in 3D space to maximize the coverage area and coverage lifetime. Notably,
Silva et al. [8] propose a FANET topology coordination protocol based on Software-Defined
Network (SDN). By incorporating SDN into the UAV deployment strategy, the article sheds
new light on FANET deployment optimization. To cope with the deterioration of the net-
work connection caused by node vulnerability, ways to implement distributed connection
maintenance and node importance assessment are extensively investigated in [9].

With the popularity of FANET technology, it has received much research interest
in numerous practical applications [10–13]. To realize remote command and situational
awareness, the authors in [10] constructed a cooperative monitoring network consisting
of multiple UAVs and ground stations. A multi-relay UAV selection scheme based on
fuzzy optimization is developed to realize the tradeoff between surveillance performance
and connectivity maintenance. The articles [11,12] focus on the application of FANETs in
disaster relief. In [11], Joshi et al. deal with the continuous sensing and monitoring of the
geographical location of a specific disaster event. Their paper introduces and demonstrates
various protocol stacks. A network simulator (NS-3) and a robot simulator (Gazebo) are
used in synergy to simulate the disaster event boundary monitoring process. In addition,
Sánchez-García et al. [12] propose a distributed algorithm, dPSO, to provide network
support for victims and ambulance personnel in disaster areas. In the process of urban’s
digital and intelligent development, FANET technology is envisaged to play an important
part. Siddiqi et al. [13] designed an enhanced Ant Colony Optimization (ACO) technique
for traffic detection in remote urban areas, which improves the network life and the number
of received packets compared to comparison algorithms.

In the case when continuous reconnaissance is required, the detection range expansion,
information transmission, and even network segmentation of a FANET remain hard nuts
to crack. Moreover, the safety of UAVs cannot be guaranteed due to natural factors and
various enemy air defense operations [14–17]. For example, a common natural threat stems
from local magnetic field variations. Sudden magnetic field change can interfere with the
magnetic compass used for UAV positioning. The UAV incorrectly assumes that the change
in magnetic compass data is due to its position movement and makes corrective actions
to deal with it. These actions continue with the magnetic disturbance, and the UAV is out
of control as seen from the ground. Moreover, in a hostile environment, the enemy can
decrypt the communication protocol of UAVs to gain control. That is a common threat that
UAVs face in the process of reconnaissance. Furthermore, acoustic waves are also used
to strike UAVs. When the location of a UAV is detected, the acoustic transmitter sends
acoustic waves of a specific frequency to its direction, triggering a resonance effect of the
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UAV’s gyroscope. Once the gyroscope becomes abnormal, the UAV’s inability to identify
angles could cause it to crash.

Some studies did take the above-mentioned issues into account. Zuev et al. considered
the possible threats at the data transfer protocol level, such as hostile devices altering or
masking the signals received by UAVs’ GPS receivers [15]. They proposed a new method
to evaluate UAV security threats based on Two-Criteria Likelihood-Impact scales. In [16],
electromagnetic interference is considered, and the interference suppression is realized by
optimizing the airborne antenna. Taking targets’ movement into account, Song et al. [17]
designed a cooperative UAV tracking method based on a sparse A* search and Standoff
tracking algorithm. It realizes continuous tracking of moving targets in the task area.

However, as far as reconnaissance missions are concerned, none of the above literature
considers the dynamics of the threat to drones. Nowadays, various jamming and hijacking
capabilities have been integrated into diversiform mobile anti-reconnaissance devices,
making the UAVs’ threat change frequently. Only when the security of UAVs is guaranteed
can various network architecture schemes and collaborative tasks be executed normally.

To achieve sustained reconnaissance in hostile scenes, in this study we first proposed
the Threat Avoidance and Reconnaissance FANET Construction algorithm (TARFC). Then,
taking into account the movement of monitored targets and the overall changes in the
hostile area, the Total Edit Distance (TED) is defined as a measure of those variations.
Finally, the Dynamic Threat Avoidance and Continuous Reconnaissance FANET operation
(TA&CRFO) is proposed by incorporating the TED indicator into TARFC. The algorithm
reduces the complexity of TARFC by making UAVs execute adaptively and has good
application value in actual scenes. The contributions of this paper are as follows:

• We introduce a constraint on the threat probability density function (threat PDF) to
model the changing threats in the scene. By transforming the constrained problem
into an unconstrained problem using the Lagrange Multiplier method, the PSO-based
TARFC algorithm is proposed to find optimal UAV locations that stay away from
threats and maintain network connectivity.

• The TED metric is put forward to measure the variation degrees of the FANET and
reconnaissance scenarios over different periods of time. According to the TED value,
the control center will determine whether to execute overall coordination by sending
control commands or to allow each node to perform distributed adaptive adjustments
based on their local information. In this way, the dependence of UAVs on the control
center can be reduced.

• Combined with the above two, the TA&CRFO algorithm is designed. It can adaptively
adjust the topology of the FANET in realistic scenarios and realize the dynamic contin-
uous reconnaissance goal of the FANET with low complexity, even if the monitored
targets or scenario’ threats are time-varying.

The structure of this paper is organized as follows: Section 2 mainly introduces a
hierarchical architecture of the heterogeneous FANET and presents the problem-framing
process. In Section 3, the PSO-based TARFC algorithm is proposed to achieve the con-
struction of the FANET reconnaissance network and the threat avoidance in the scenario.
Then, the TED metric is designed to measure the relevant changes. Finally, TA&CRFO
is proposed to achieve the on-demand collaborative management of UAV nodes during
continuous reconnaissance. Subsequently, Section 4 provides some analysis of simulation
results, and some conclusions and future directions are described in Section 5.

2. System Model and Problem Statement

In this subsection, we first provide a description of the system model and then for-
mulate an optimization problem that the TA&CRFO algorithm can handle. Tables 1 and 2
present, respectively, the lists of acronyms and variables used in this article for the readers’
convenience.
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Table 1. List of acronyms.

Acronym Description

TA&CRFO Dynamic threat avoidance and continuous reconnaissance FANET operation
UAV Unmanned aerial vehicle

TARFC Threat avoidance and reconnaissance FANET construction algorithm
FANET Flying ad hoc network

ACP Airborne command and control platform
LoS Line-of-sight
PSO Particle swarm optimization
TED Total edit distance

AUDS Anti-UAV defensive system
MUs Monitoring UAVs
RUs Relay UAVs
PDF Probability density function
KKT Karush–Kuhn–Tucker method

Table 2. List of variables.

Variable Description

A The ACP of FANET
U Set of low-altitude drone swarms
R Set of all RUs
M Set of all MUs
xi Location of node i
V Node Set

XV Set of locations of all nodes in V
εm The MU assigned to mission m

ρ(m) Routing path for mission m
P Set of all active links
f Overall performance function

f C Network connectivity function
f C
i,j Wireless connectivity quality between i and j

f T FANET threat metric
rthr Threatened radius of UAV
ϕ(x) Threat PDF in related areas
rC Maximum communication radius between UAV
rS Minimum safety radius between UAV
t, τ Time
ϑ(t) FANET in time t
N Node set in graph theory model

σ(t) Edge set in graph theory model
PN(t) Nodes’ position set in graph theory model

2.1. System Model

In recent years, three main strategies have been used to achieve drone swarms’ persis-
tent surveillance [8,11–13,18–27]: (i) on-duty UAV replacement scheme based on recharging
stations [13,19,25]; (ii) energy-efficiency path planning [20–27]; and (iii) novel structures of
UAV teaming [8,11,18,22]. UAV distribution’s hierarchical architecture helps plan efficient
and adaptive surveillance missions when the surveillance map changes due to weather
or invisible factors. The hierarchical structure intends to divide the surveillance task into
different platforms such as ground stations, high-altitude UAVs, and UAV sensing swarms.
Each platform is in charge of different functions such as control, motion coordination, data
transmission, package routing, etc.

We assume that the FANET in this study consists of a high-altitude UAV A, as its
airborne command and control platform, i.e., ACP, and set U of drone swarms in low-
altitude to perform reconnaissance missions.
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If there is any ambiguity, all UAVs are referred to as nodes of the network throughout
this article. We identify a node i’s location by xi ∈ R3, and a set of all the nodes’ locations
in set V by XV = {xi}i∈V . To simplify the model, we presume that each UAV can only
carry out one reconnaissance operation at a time and that each target that is being scouted
should be covered by at least one UAV. As a consequence, we make the assumption that
the number of targets to be scouted is not larger than the number of drones that are
currently accessible. In our FANETs, the ACP can either hover over the given location
or fly around the periphery of the area of interest, while drone swarms have controllable
mobility. Therefore, drone movement can be managed by themselves or by the ACP to
achieve excellent performance in both network and mission-related factors. Considering
the radio propagation model, Friis’s free space model [28], the most popular propagation
model, is used in this article. According to this radio propagation model, all nodes have
the same transmission radius. The connection between two nodes occurs when and only
when they are within the transmission radius. One of the crucial research concerns is the
energy problem, which includes things such as patterns of energy consumption and battery
dynamics. We direct readers to [29] and any references therein because it is outside the
scope of this article.

For ease of description, we designate the UAV assigned to reconnaissance mission m
as monitoring UAV (MU) and denote it as εm. Therefore, the set of MUs can be expressed
as M = {ε1, . . . , εm}. The remaining drones that are not assigned to any reconnaissance
mission are used as communication relay nodes in the network, which are in charge of
transmitting data between MUs and the ACP in the upper air. Relay UAVs (RUs) is the
term we use to identify them, i.e., R = U\M.

Figure 1 describes the hierarchical structure of our UAV persistent surveillance team.
Because of the quadcopter’s limited communication range, the high-altitude UAV un-
dertakes information exchange with the remote ground end. Some necessary control
instructions for drone swarms are also sent from the high-altitude UAV since its bigger role
is the ACP of the network. Inside the FANET, a buffer layer of UAV swarm between the
ACP and ground objects extends this system’s ability on connection service and real-time
tracking. With many agents within the UAV swarm layer, an adaptive formation policy
can be developed to fit various requests, including avoiding dangerous areas such as Anti-
UAV Defensive System (AUDS), thunderstorm areas, strong communication interference
areas, etc.
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Next, it is challenging to guarantee direct communication between each UAV node
and the ACP to maximize the drone swarm’s search and surveillance range. Therefore,
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multi-hop communication is usually adopted, which requires establishing a routing path
for packet transmission. As a result, the choice of routing path significantly impacts the
performance of the FANET. When coming up with a solution for the UAV locations, the
routing protocol should be considered. Different UAVs may operate in different ideal
locations depending on the routing protocol. Therefore, in this paper, we focus on routing
protocols that offer a selection of routes between MUs and the ACP based on the positions
of the nodes and presumptively employ a routing protocol that is known in advance.
Accordingly, we define a routing function,

ρ : {xεm , xA, XR} ⇔ ρ(m), (1)

where ρ(m) is the series of wireless links from the MU εm to the ACP A through the relay
UAVs in R.

2.2. Problem Formalation

Communication is the basis of cooperation and collaboration between UAVs, which
is crucial and essential [10]. For simplicity, we assume that the communication between
the UAVs follows the line-of-sight (LoS) model [28,30]. In the following, we introduce the
concept of network connectivity and the FANET threat metric.

2.2.1. Network Connectivity

We examine a network connection function that only considers active links in order to
more correctly evaluate the network performance of our FANET. An active link is defined
as a link that is a part of any routing path that connects the executing MU and the ACP. Due
to the node location xi’s differentiable characteristic, we define the network connectivity
f C as the averaged value of all active links’ quality, i.e.,

f C(XV , ρ) =
1
|P| ∑

(i,j)∈P
f C
i,j
(

xi, xj
)
, (2)

where P is the set of all active links, i.e., P = ∪
m∈M

ρ(m), and f C
i,j represents the quality of

the wireless link (i, j). Accordingly, we make the assumption that the f C
i,j can be defined as

‖xi − xj‖p, where ‖·‖p stands for the Lp-Norm.

2.2.2. FANET Threat Metric

For the sake of practical application, we define the FANET threat metric, f T , to quantify
and uniformly express various threats (military anti-reconnaissance threat, terrain features,
weather conditions, communication interference, etc.) that each relay UAV faces in a scene.
However, our main concern in this paper is not how to define or measure those threats
posed to the UAVs by different factors but how each UAV can stay away from areas with
high threat values while ensuring its reconnaissance performance and network connectivity.
Therefore, in this paper, we do not discuss the modeling and quantification of the threat
metric model. Instead, we give a predefined time-varying threat density distribution for
the scenario.

To help readers obtain a more intuitive impression, Figure 2 is used as an example to
show the threat density distribution in the reconnaissance area. The threat density may
come from anti-drone devices, communication jamming, etc. In the image, the darker the
red, the greater the threat is. For each UAV in the simulated area, the threat value is the
integral of the threat density in its associated area.
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The f T is defined by

f T(XR, ϕ(x), rthr) =
1
|R|

|R|

∑
i=1

∮
x∈〈xi |rthr〉

ϕ(x)dx xi ∈ XR, (3)

where ϕ(x) is the known scenario’s threat Probability Density Function (PDF), and rthr is
the threatened radius of drones. Note that 〈xi|rthr〉 is the circular region with center xi and
radius rthr. The threat value of each UAV can be obtained by integrating the threat PDF in
the corresponding area. When location xo is outside the defined area D, we define ϕ(xo)

equals the average value of threat PDF in D, i.e., ϕ(xo) =
∑ ϕ(x)
|D| , ∀x ∈ D, xo /∈ D.

2.2.3. Problem Construction

Network connectivity is the guarantee of information interaction between UAVs.
Drones can share data with each other only when they are connected to the FANET. The
ACP also needs a connected network to control and adjust drone swarms. In addition,
ensuring the safety of UAVs is a prerequisite for the regular operation of FANETs. Today,
all kinds of jamming and hijacking functions are integrated into various mobile anti-
reconnaissance equipment, threatening UAVs’ security. Only when the safety of UAVs is
guaranteed can drones cooperate to perform complex tasks.

Considering the above two aspects, we define the overall performance function f as a
weighted sum of network connectivity and FANET threat metric as shown in Equation (4),

f
(
XV , {εm}m∈M, ϕ(x), rthr, ρ

)
= wC f C(XV , ρ)

+wT f T(XR, ϕ(x), rthr),
(4)

where wC and wT are the weights for network connectivity and FANET threat metric,
respectively. Then, we can formulate the problem in the following way so that it can be
solved by the TA&CRFO algorithm:

maximize
xu ∈ D, ∀u ∈ V

εm ⊆ V, ∀m ∈ M

f
(
XV , {εm}m∈M, ϕ(x), rthr, ρ

)
, (5)

s.t. ‖xi − xj‖ ≤ rC ∀(i, j) ∈ ρ(m) (6a)
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‖xi − xj‖ ≥ rS ∀(i, j) ∈ V, u 6= v (6b)

εm 6= εn ∀εm ∈ M, ∀εn ∈ M (6c)

|εm| ≥ 1 ∀εm ∈ M (6d)

wC > 0, wT < 0 (6e)

ϕ(xo) =
∑ ϕ(x)
|D| , ∀x ∈ D, xo /∈ D (6f)

where rC, rS, and rthr represent the maximum allowable link length for reliable direct
communication between two nodes, the minimum safety distance to avoid collisions
between UAVs, and the threat radius of each relay UAV that can be deployed in a given
three-dimensional Euclidean space, D ∈ R3, respectively. Constraint (6a) guarantees the
UAVs’ reliable end-to-end communication. A safe flight distance is produced by constraint
(6b) to reduce the danger of UAV crashes. Each UAV can only undertake one mission at
a time and at least one UAV is required to complete each task, according to constraints
(6c) and (6d). Constraint (6e) means that the overall performance function f increases as
the FANET’s network connectivity increases and decreases as the FANET threat metric
increases. Constraint (6f) describes the threat PDF definition for locations outside the
simulation area.

3. Algorithm Description

By taking into consideration the mobility of the monitored targets and the dynamic
changes at the scene, we present a description of how to build and run a continuous
reconnaissance FANET under problem (5).

In order to facilitate readers’ understanding, we first introduce the principle of the basic
PSO algorithm. Then, based on the PSO algorithm, we develop the TARFC. Considering
the MUs’ movement toward the reconnaissance targets and the dynamic change of threat
information in real scenarios, the TARFC has difficulty meeting real-time requirements.
So, inspired by graph edit distance [31], we design the TED to measure the changes in
network topology and scenario’s threat distribution at different times. Finally, combined
with those mentioned above, we develop the TA&CRFO algorithm. This algorithm realizes
the dynamic continuous reconnaissance goal of the FANET in a low-complexity way.

3.1. Rudimentary PSO Algorithm

PSO is a heuristic search algorithm proposed by J. Kennedy and R. Eberhart [32]
in 1995. It is a random search algorithm that simulates biological activities and swarms
intelligence in nature. The core idea is to use the information sharing of individuals in
the group to guide the group’s movement in the problem-solving space. In the process
of evolution from disorder to order, a feasible solution to the problem will be obtained.
In addition to considering the group activities of simulated organisms, it is a swarm
intelligence algorithm integrating individual cognition and social influence.

Each particle in PSO iterates to improve its location in the simulation space of the
optimization problem, selecting the best position thus far as the final solution at the end of
the iteration.

For ease of understanding, we will use the following optimization problem to explain
the PSO algorithm:

minimize
x∈Rn

h(x), (7)

where h(·) : Rn 7→ R is called an objective function, Rn is the simulation space, and x is
the decision variable.

We suppose that the PSO algorithm operates on a swarm of particles, each of which
is represented by its position and velocity, i.e., (xi, vi) ∈ N. Each particle’s position
corresponds to one of the potential solutions to the problem, as was previously mentioned.
So, two special parameters emerge: pBest and gBest. The position that is the ith particle’s
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pBest, represented by pi, is the best position that the particle has ever achieved. Analogously,
the best position among the pBest of all particles is the unique gBest, represented by g. The
ith particle’s velocity is updated by adding the stochastically weighted differences between
its current position and both its pBest and the gBest, i.e.,

vl+1
i = wvl

i + c1u1 ◦
(

pl
i − xl

i

)
+ c2u2 ◦

(
gl − xl

i

)
, ∀(xi, vi) ∈ N, (8)

where w is the inertia weight, c1 and c2 are individual cognition parameter and social
influence parameter, the index l indicates the PSO algorithm’s lth iteration, both u1 and u2
are independent random vectors on [0, 1]n with uniform distribution, and the superscript n
represents the dimension of the simulation space.

In Equation (8), the inertia term controls the velocity’s amplitude, while the cognitive
and social terms strike a balance between local search and global search. Equation (9), i.e.,

xl+1
i = xl+1

i + vl+1
i , ∀(xi, vi) ∈ N, (9)

can be used to determine the new particle position based on the updated velocity.
The positions of all the particles are updated iteratively in the simulation space by com-

bining their velocities, which are modified in each iteration in accordance with Equation (8).
The number of iterations, the swarm’s pace of convergence, the algorithm’s duration, and
other factors can be used as termination conditions. The gBest becomes the top current
solution to the unconstrained optimization problem (7) after the PSO algorithm terminates.
Figure 3 shows the whole process of the rudimentary PSO algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 27 
 

 

 
Figure 3. Flow chart of rudimentary PSO algorithm. 

Specifically, for FANETs, each particle in the PSO algorithm represents a complete 
FANET topology distribution scheme. The particle contains information about the UAVs’ 
position vector, the UAVs’ velocity vector, the FANET’s connectivity value, each UAV’s 
threat value, and the total performance of the scheme. During each iteration, the position 
vector of UAVs is updated based on the UAVs’ velocity vector in the previous round. The 
total performance values of all particles are compared, and the following iteration will be 
performed based on the particle with the best total performance. 

3.2. PSO-Based TARFC 
The PSO algorithm is suitable for solving unconstrained optimization problems such 

as Equation (7). Hence, in order to use our PSO-based TARFC algorithm, the Lagrange 
Multiplier and Karush–Kuhn–Tucker (KKT) methods [33] are employed to transform the 
constrained problem (5) into an unconstrained one. Thus, the reformulated problem is 
defined as 

( )
 { } ( )( )

, ,
,

maximize , , , ,
i i i
m

V m thrm Mx v x V
V m M

f X x r
ε

ε ϕ ρ
∈∈ ∀ ∈

⊂ ∀ ∈


 
(10)

As shown in Equation (11), 
f  is then obtained by converting the constraints into 

penalty terms and adding them to the objective function: 

 { } ( )( )
{ } ( )( )

( )

( )

2
1

1,..., 1

2

,

, , , ,

, , , ,

max ,

min ,

m

V m thrm M

V m thrm M

k k C
m m mkm M

S

u v M R
u v

f X x r

f X x r

r

r u v

ρ

ε ϕ ρ

ε ϕ ρ

ζ δ ρ ρ

ξ δ

∈

∈

+
+

= −∈

+

∈
≠

=

  + −    

  
 + − 
    





 

(11)

  

Figure 3. Flow chart of rudimentary PSO algorithm.

Specifically, for FANETs, each particle in the PSO algorithm represents a complete
FANET topology distribution scheme. The particle contains information about the UAVs’
position vector, the UAVs’ velocity vector, the FANET’s connectivity value, each UAV’s
threat value, and the total performance of the scheme. During each iteration, the position
vector of UAVs is updated based on the UAVs’ velocity vector in the previous round. The
total performance values of all particles are compared, and the following iteration will be
performed based on the particle with the best total performance.

3.2. PSO-Based TARFC

The PSO algorithm is suitable for solving unconstrained optimization problems such
as Equation (7). Hence, in order to use our PSO-based TARFC algorithm, the Lagrange
Multiplier and Karush–Kuhn–Tucker (KKT) methods [33] are employed to transform the
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constrained problem (5) into an unconstrained one. Thus, the reformulated problem is
defined as

maximize
(xi, vi) ∈ N, ∀xi ∈ V

εm ⊂ V, ∀m ∈ M

f̃
(
XV , {εm}m∈M, ϕ(x), rthr, ρ

)
(10)

As shown in Equation (11), f̃ is then obtained by converting the constraints into
penalty terms and adding them to the objective function:

f̃
(
XV , {εm}m∈M, ϕ(x), rthr, ρ

)
= f

(
XV , {εm}m∈M, ϕ(x), rthr, ρ

)
+ ∑

m∈M
ζm

([
max

k=1,...,|ρm |−1
δ
(

ρk
m, ρk+1

m

)
− rC

]+)2

+ξ


rS − min

u, v ∈ M ∪ R
u 6= v

δ(u, v)


+

2 (11)

Note that ζm and ς are negative penalty coefficients corresponding to the end-to-
end communication constraint and the safety requirement, respectively. [•]+ stands for
max{0, •}, which means that if the communication distance and safety distance between
two UAVs meet the corresponding constraints, then the penalty term takes the value of
zero. The particle i’s individual pBest and the gBest are defined as x∗i and x∗, and the
solution x∗ that maximizes the f̃ would be the answer for the problem (5).

Algorithm 1 describes the PSO-based TARFC algorithm in full. Lines 1–4 are the
preliminary stage. We first establish some fundamental characteristics (line 1). Then, we set
all particles’ velocities to zero and their positions to random numbers evenly distributed
over the defined simulation space. After that, we initialize all particles whose positions
are to be random numbers uniformly distributed in the defined space of the problem (10)
and whose velocities are to be all zeros. When the first time the particle i is initialized,
its position automatically becomes its pBest position x∗i , and the routing function {ρm}∗i
determines its corresponding routing paths (lines 2–4). Following initialization, we identify
the particle with the highest penalized performance metric value (since we defined ζm and
ς are negative penalty coefficients). Then, change the particle g’s pBest position x∗g to the
gBest position x∗, and its corresponding routing paths {ρm}∗g are also changed as the gBest
position’s routing path {ρm}∗.

In the iterative stage (lines 5–19), we first obtain the current location of the ACP and
mission-execution UAVs, XA and XM, as well as the latest threat PDF, ϕ(x), in the scenario.
Guided by the above, relay UAVs’ velocity, position, routing, and other attributes are
updated periodically. To be more specific, the particles’ position and speed are changed
stochastically based on both their unique pBest position and the overall gBest position as[

xl+1

vl+1

]
=

[
1− c1u1 − c2u2 w
−c1u1 − c2u2 w

][
xl

vl

]
+ I2[c1u1 + c2u2]

[
pl

gl

]
(12)

The index l in Equation (12) is the algorithm’s lth iteration. Both u1 and u2 are uniformly
distributed random vectors.

It should be noted that during the simulation, the speed change could be out of the
actual. Hence, we bring in a velocity clamping method [34] as shown in Equation (13),

vl+1
i,j =


vl+1

i,j if vl+1
i,j ∈

[
−Vmax

j , Vmax
j

]
vl+1

i,j∣∣∣vl+1
i,j

∣∣∣Vmax
j otherwise

(13)
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where vl+1
i,j is the jth element of vl+1

i , and Vmax
j is the velocity clamping threshold. If the

modified position can obtain better results in f̃ , the pBest and gBest for each particle will
be altered, as explained in lines 11–18. Eventually, the algorithm terminates when it meets
the termination condition, i.e., it runs to a preset number of iterations, or the results no
longer improve in a certain number of iterations (line 19).

Algorithm 1. Threat Avoidance and Reconnaissance FANET Construction
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Although the TARFC algorithm provides FANETs with a feasible network construc-
tion method to perform reconnaissance tasks in threatening scenarios, in most real recon-
naissance missions, such as military target reconnaissance, to remain undetected, UAVs 
cannot influence the movement of the detected targets or the relevant scene’s alteration. 
This puts forward a “sustainable” reconnaissance requirement for the FANET. As for al-
gorithm II, every FANET adjustment according to the changing targets or scene requires 
a large number of iterations, which is extremely time consuming. For this reason, in the 
following Sections 3.3 and 3.4, we first propose an indicator called Total edit distance to 
measure the variation degree of the FANET and the threat PDF change in related scenar-
ios. Secondly, a low-complexity algorithm named TA&CRFO is proposed. According to 
the above indicators, the algorithm can conduct two different adjustment modes for the 
FANET to meet the needs of “sustainable” in real situations. 

  

Although the TARFC algorithm provides FANETs with a feasible network construction
method to perform reconnaissance tasks in threatening scenarios, in most real reconnais-
sance missions, such as military target reconnaissance, to remain undetected, UAVs cannot
influence the movement of the detected targets or the relevant scene’s alteration. This
puts forward a “sustainable” reconnaissance requirement for the FANET. As for algorithm
II, every FANET adjustment according to the changing targets or scene requires a large
number of iterations, which is extremely time consuming. For this reason, in the following
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Sections 3.3 and 3.4, we first propose an indicator called Total edit distance to measure the
variation degree of the FANET and the threat PDF change in related scenarios. Secondly, a
low-complexity algorithm named TA&CRFO is proposed. According to the above indica-
tors, the algorithm can conduct two different adjustment modes for the FANET to meet the
needs of “sustainable” in real situations.

3.3. Total Edit Distance

Inspired by the graph edit distance [31,35], we innovate the Total Edit Distance concept
to measure the changes in the FANET and the extent of changes in the threat PDF. Our basic
philosophy is to avoid frequent routing updates and iterations to reduce computational
overhead and preserve overall efficiency to the greatest extent possible. To do this, we
will judge whether to execute overall coordination by sending control instructions through
ACP or let each node perform distributed adaptive adjustment according to the range of
the TED.

Prior to introducing the TED, we briefly describe the graph edit distance [35] here to
aid. In graph theory, the graph edit distance measures the dissimilarity between graph
Ω1 and graph Ω2. Many graph editing operations, such as node and edge additions and
deletions, can change one graph into another. With each graph edit operation’s cost, the
cost of each operation is summed to obtain the total cost of converting the graph Ω1 to Ω2,
and the smallest cost in this process is defined as the graph edit distance from Ω1 to Ω2.
Note that different operations usually have various cost functions. Thus, two different sets
of operations, with the same outcomes in altering the graph Ω1 to Ω2, may be of relatively
large distinction regarding the total cost.

We first establish the FANET edit distance to measure the change in the FANET. Then,
the threat edit distance is defined to record the fluctuation of threat PDF in associated areas,
both of which are based on the graph edit distance principle. As a result, the FANET edit
distance and the threat edit distance are added to form the TED.

Unlike normal graph edit operations, our system does not consider the addition or
damage of UAV nodes. So, the node sets are the same at different times. That is to say, the
FANET edit operations only contain edge changes, such as edge insertion, edge deletion,
and edge length change.

We symbolize the FANET as a graph ϑ(t). The graph consists of the set of nodes N,
the set of edges σ(t) and their corresponding positions set PN(t). To transform ϑ(t) to ϑ(τ),
where t and τ are adjacent time with t < τ, the minimum edge insertions and deletions can
be expressed as

d1(t, τ) = σ(τ)− σ(t), (14)

d2(t, τ) = σ(t)− σ(τ), (15)

where d1(t, τ) is the edge insert operation between time t and τ, the d2(t, τ) is the edge
delete operation between time t and τ, respectively.

More importantly, we must pay special attention to the changes in edge lengths since
the drones in the FANET move vigorously and frequently. Because the edge length between
two nodes is closely related to their communication performance, the optimal routing path
may differ from time t to time τ. Hence, the total amount of edge length changes between
time steps t and τ is how we define the edge length change operation; that is,

d3(t, τ) = ∑
i,j∈N

∣∣∣‖pi(t)− pj(t)‖2 − ‖pi(τ)− pj(τ)‖2

∣∣∣ (16)

where pi(t) stands for the position of node i in time step t. Note that TED is applicable to
simulations of different dimensions. Depending on the simulated scene’s dimensionality,
the node i’s position pi can be equivalent to a two-dimensional (xi, yi) vector, a three-
dimensional (xi, yi, zi) vector, or even a higher-dimensional space vector.

We lastly define the threat edit distance to measure the changes in the scenario’s
threat density distribution at different times. In the duration of a reconnaissance mission,
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obtaining global information is laborious and impractical. Moreover, each drone in the
FANET is threatened by a limited area in our model. Hence, the threat edit distance is
defined as the average change in each UAV’s threat value between time t and τ, i.e.,

d4(t, τ) =
1
N

|N|

∑
i=1

∣∣∣∣∣∣∣
∮

p∈〈pi |rthr〉

ϕ(p(t))dx−
∮

p∈〈pi |rthr〉

ϕ(p(τ))dx

∣∣∣∣∣∣∣ (17)

Finally, the TED between time t and τ is defined as

θ(ϑ(t), ϑ(τ), P) =
4

∑
i=1

wi · di(t, τ), (18)

where P is the set of all active connections, and wi is the weight parameter of each edit
operation di.

A large value of TED implies that the FANET has changed a lot, or the regional threat
density distribution varies greatly. In such cases, centralized scheduling is needed to tune
the FANET. If the value of TED is within a reasonable range, we may enable each UAV to
adjust its speed adaptively to optimize reconnaissance and communication performances.
So, the TA&CRFO algorithm is developed to achieve dynamic, persistent surveillance in a
less complex way.

3.4. TA&CRFO

We now go into depth about our TA&CRFO algorithm in this subsection. Algorithm 2
presents the pseudo-code. In the preparatory phase (lines 1–2), which usually is the
beginning of reconnaissance missions, the high-altitude UAV, known as ACP, constructs
the initial FANET by Alg. 1 based on available information. Then, each low-altitude UAV
flies to the position specified by the high-altitude UAV. When they arrive, we abstract the
FANET into a graph and define it as a reference graph ϑre f for a particular time.

During the iterative stage (lines 3–16), the high-altitude UAV collects the position in-
formation of the scouted targets and evaluates the fluctuation of threat density distribution
in the scenarios. Meanwhile, in time t, the ACP calculates the TED θ

(
ϑre f , ϑ(t− 1), P

)
between reference graph ϑre f and the FANET graph at time step t− 1 in the current sce-

nario. The θ
(

ϑre f , ϑ(t− 1), P
)

value represents how much the FANET and threat PDF in
the scenario have changed from the reference time. We assert that the cumulative changes
are insignificant if the TED between them is below the threshold λ. Therefore, by Equations
(19) and (20), we have each low-altitude drone adaptively alter its position (lines 7–11).

The right side of Equation (19) is the gradient of the total performance function
concerning the position of node xi at time t. With neighbor UAVs’ position information
and the threat PDF of related areas, each node’s gradient value can be easily obtained.

On the other hand, if the TED is greater than λ, we believe that the distributed position
adjustment has lost its meaning since the routing path or scenario’s threat PDF may have
altered too much. Therefore, we use Algorithm 1 again to reconstruct the FANET network
in a centralized way and set the newly configured network as the reference graph ϑre f .

vi(t) = ∇xi f (t) = ∇xi f
(
XV(t), {εm}m∈M, ϕ(x(t)), rthr, ρ

)
(19)

xi(t + 1) = xi(t) + vi(t) (20)

In other words, at each time, the high-altitude UAV will decide whether to issue
instructions to all low-altitude drones for overall control according to θ

(
ϑre f , ϑ(t− 1), P

)
.

If low-altitude drones receive those instructions, they will obey them. Otherwise, they
continue their adaptive location optimization method using local information.
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Algorithm 2. Dynamic Threat Avoidance and Continuous Reconnaissance FANET Operation
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4. Results

This article considers a 3D scene with a randomly generated threat PDF, in which
multiple monitoring UAVs perform reconnaissance tasks at different locations. Various
numbers of relay UAVs are provided to forward the detected targets’ relevant data and the
variation in threat PDF at the scene. The high-altitude UAV, known as ACP, oversees the
entire FANET in the whole process.

For the sake of effective comparison, four algorithms, RWP [36], PSO, TARFC, and
TA&CRFO, are respectively implemented under the condition that the values of all param-
eters are consistent. The simulation process is executed on MATLAB. In the simulation, we
assume that there are no projectiles in the environment, such as birds or obstacles, which
may block the flight path of the UAV, and it is assumed that the battery capacity of the
UAVs meets the requirement of continuous reconnaissance.

The alteration of each index in the process of algorithm execution is compared, and
the reasons for different results obtained by different algorithms are analyzed. Simula-
tion results demonstrate that the FANET net constructed by the TA&CRFO algorithm is
6.06~7.23% lower than TARFC in connectivity and 0.46~1.21% higher in UAV’s average
threat value, but the time consumption of the algorithm is only 19.86~20.31% of TARFC. At
the cost of other performances’ slight impairment, the TA&CRFO achieves UAV’s limited
distributed control and a significant reduction in computing overhead.

Table 3 describes the simulation scenario and lists the parameters during the simula-
tion. The horizontal dimension of the simulated scenario is set as 1 km × 1 km, and the
flight height of the UAV is set to 100 m and 200 m. In valid experiments, the number of
RUs ranged from 7 to 19. Given that too few RUs cannot establish communication links
at multiple reconnaissance sites simultaneously, too many RUs may not offset the outlay
despite the increased performances. We assume that the relay drones can either hover or
travel at a maximum speed of 15 m per second. The shortest path routing algorithm, whose
link usage is calculated as the cube of its length, is the default routing protocol. In terms
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of distance, the low-altitude UAVs’ safety distance, maximum communication distance,
and the diameter of the perceived threat area are set to 20 m, 200 m, and 50 m, respectively.
Our work not only uses the original PSO algorithm as the comparison algorithm but also
constructs a new one based on the PSO algorithm. Therefore, the PSO-related parameters
are listed explicitly for ease of reference. Finally, the parameters related to the KKT method
and our algorithms are also listed in Table 3.

Table 3. Setting of simulation parameters.

Parameter Value

Scenario
Horizontal dimensions 1000 × 1000 m

Vertical dimension [100~200] m
Number of RUs [7~19]

RUs’ speed [0~15] m/s

Distances
Minimum safe distance, rS 20 m
Maximum link distance, rC 200 m

UAV’s threat perception radius, rthr 25 m

PSO-related
Number of particles, Np 50

Number of iterations 400
Inertia weight, w 0.7192

Cognitive parameter, c1 1.4472
Social parameter, c1 1.4472

KKT and FANET-related
ξ, ζm 0.5

Connectivity weight, wC 0.5
Weight of FANET threat metric, wT 2.5

Weight, of edit operations, w1, w2, w3, w4 2, 2, 0.3, 40
TED’s threshold parameter, λ 5.23

4.1. Scenario Exhibition

In the FANET consisting of the ACP, 12 relay UAVs, and two monitoring UAVs, the
TA&CRFO algorithm is used to simultaneously carry out continuous reconnaissance of
mobile targets. Figure 4 shows the simulation results at ti. The circle with the relay UAV as
the center in Figure 4 represents the maximum communication range of the RUs. During
the reconnaissance, the monitoring UAVs move closely with the movement of monitored
targets. Since the trajectory of targets is unpredictable for the ACP, the MUs’ movements
are completely controlled by themselves. The RUs adjust their positions according to the
displacement of the MUs and the variation in threat PDF to avoid hazards and ensure the
communication quality between the ACP and the MUs.

4.2. The Simulation Trajectory

Figures 5–7 are the trajectory diagrams of each UAV in the continuous reconnaissance
process using TA&CRFO. Only a period of FANET trajectory is shown to facilitate readers’
identification. Since the whole network is in 3D space, a multi-angle display is necessary to
clearly show the changes in the FANET in the continuous reconnaissance process. Thus,
Figures 5–7 are presented as the process’s top, left, and front views. Inside these pictures,
the colors and shapes of the markings represent different types of UAVs. The lines in
different colors represent the moving track of each relay UAV during this time period.
Through those figures, it can be observed that the newly formed FANET can play a better
relay role in monitoring UAVs at (900, 100, and 100) m and (900, 900, and 100) m, and keep
away from positions in high-threat areas of the moment.
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4.3. Connectivity

Figure 8a,b show each algorithm’s network connectivity in the iterative process of
FANET construction. To facilitate the demonstration, we select the FANET construction
process of different algorithms in the same scene, including identical threat PDF and the
movement of monitored targets. Due to limited space, only the process where the RUs’
number is 10, 14, and 18 is displayed, respectively. The RWP algorithm is listed separately in
Figure 8, considering that the value range of this algorithm’s communication performance
is quite different from others.
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RWP is a random movement model. In this model, nodes move randomly without
any constraints. The nodes are random in speed, direction of motion, and are independent
of each other. However, our reconnaissance targets are not entirely random in the real
world. Therefore, after the distance constraint in Equation (6) is converted into a penalty
coefficient (Equation (11)), the increase in the penalty term makes the network connectivity
of RWP fluctuate randomly in a wide range (shown in Figure 8a). Moreover, the network
connectivity of the FANET constructed by RWP does not converge with the iterative
process since the nodes’ movement in the RWP algorithm has characteristics of randomness
and irregularity.

Figure 8b shows the convergence process of PSO, TARFC, and TA&CRFO’s network
connectivity. Among them, PSO only focuses on optimizing network connectivity, while
TARFC and TA&CRFO also consider threat avoidance during the continuous reconnais-
sance process. Therefore, PSO is slightly better than TARFC and TA&CRFO in terms of
network connectivity. TA&CRFO is a simplified version of TARFC in terms of complexity,
but as can be seen from the chart, the performance of network connectivity is comparable to
that of TARFC. In addition, as the RU number increases, the network connectivity of those
algorithms also increases, and their performance shows a tendency toward convergence.

4.4. FANET Threat Metric

In Figure 9, the fluctuation of the UAV’s average threat value is presented. Four
different colored curves in the picture represent four different algorithms. Similarly, the
FANET threat metric with 10, 14, and 18 RUs in the network illustrates the trend of UAV’s
average threat value with the number of RUs.
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As mentioned above, the excessive randomness of RWP makes the FANET threat
metric fluctuate randomly within a wide range of values and does not tend to converge in
the iteration process. On the contrary, other algorithms gradually find the UAVs’ optimal
position in the iteration process, and their FANET threat metric can converge to a small
range. In addition, by longitudinal comparison of the three subgraphs, the spatial freedom
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of each relay UAV increases as the number of RUs increases, which allows them to optimize
themselves by reaching better relay positions.

4.5. Detailed Comparison of Algorithms

In this section, we examine the four algorithms from a variety of perspectives, in-
cluding the overall performance, average threat value for UAVs, longest and shortest link
distances between UAVs, and algorithm complexity. In order to ensure the effectiveness of
comparative experiments, all parameters in different algorithm experiments are consistent.
The results are averaged over 20 repeated experiments.

Due to the randomness of RWP, its total performance (Equation (11)) is not ideal and
the value varies rapidly. Thus, Figure 10 shows the overall performance variations of
PSO, TARFC, and TA&CRFO as the number of available RUs increases. We notice that
the connectivity value of these three algorithms is between 34 and 50, after which they
tend to be stable, while the FANET threat metric is in the range of 8–12. To ensure the
fluctuation of these two values is consistent, the weight factors wC and wT were set to 0.5
and 2.5, respectively.
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The network’s connectivity requires a certain number of UAVs as a guarantee, so the
number of RUs starts from seven, according to the simulation experiment. It can be seen
that with the increase in RUs, the total performance of the three algorithms becomes larger.
However, it should be noted that the performance improvement of PSO mainly comes from
network connectivity, so its growth trend gradually decreases. Whereas the performance
of TARFC and TA&CRFO is first improved due to network connectivity; then, as the RUs’
option space increases, low-threat density areas are selected as relay positions.

Figure 11 presents the UAV’s average threat value obtained by constructing the FANET
with different algorithms. It is worth mentioning that most places in the scene have a threat
PDF between 6 and 13. It can be easily seen that the UAV’s average threat value in RWP
and PSO does not decrease with the increase in RU number but fluctuates randomly. This
is because RWP moves randomly in space, while PSO only cares about the interconnection
between nodes and does not consider the threat PDF information in the scene. On the
contrary, the UAV’s average threat value in TARFC and TA&CRFO is lower than that of the
above two algorithms and gradually decreases with the increase in relays. Among them,
TARFC is slightly better than TA&CRFO, mainly because TA&CRFO performs distributed
adjustments sometimes and cannot keep the optimal global state at all times.
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Figures 12 and 13 show the longest and shortest UAV distance of the FANET con-
structed by different algorithms. Taken these two metrics together, they demonstrate
FANET’s compactness and uniformity. As shown in the figures, other algorithms can meet
the constraints of the maximum communication distance of 200 m between UAVs and the
minimum safe distance of 50 m, except RWP. Among them, with the increase in relays,
the decrease in PSO’s longest link distance is more significant than that of TARFC and
TA&CRFO, while the decline of the shortest UAV distance is smaller than that of TARFC
and TA&CRFO. It can be seen that PSO can make the FANET’s nodes tend to be evenly
distributed. However, for realistic scenarios with uneven threat PDF, algorithms such
as TARFC and TA&CRFO obviously have more advantages since they can bypass the
high-risk area.
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We assume that the high-altitude UAV control center has superior operational ca-
pability and can obtain the algorithm’s optimization results in milliseconds. However,
the FANET results constructed by the algorithm cannot be provided in time due to the
limitations of our simulation equipment. To visualize the algorithms’ complexity, we use
the same parameter settings and scene settings to simulate two detected targets at different
positions moving 300 m in a straight line. Continuous reconnaissance is carried out for
this process, and the total execution time of each algorithm is calculated (target one from
(900, 900, and 100) m to (660, 720, 100) m, and target two from (900, 100, and 100) m to
(900, 400, and 100) m). It is assumed that only when the algorithm completes the FANET’s
construction of time step t will the monitored target will arrive from the position at t to the
position at τ.

Figure 14 shows the execution time of different algorithms to complete the entire
continuous reconnaissance process. There is no iterative process in RWP, and the selec-
tion process at each moment is entirely random, so its average execution time is about
12.46~13.11% of that of PSO and TARFC. TARFC has a similar complexity as PSO, but it
optimizes the maintenance of network connectivity and the avoidance of high-threat areas.
Based on the original TARFC, TA&CRFO is designed to selectively realize the self-adaptive
regulation of UAVs, which effectively reduces the iterative operation of the algorithm.
When the parameter threshold λ is set to 5.23, the TA&CRFO’s execution time is about
19.86~20.31% of that of TARFC, even though its effect is slightly inferior to that of the
TARFC algorithm in other aspects (Figures 9–13).
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5. Conclusions and Future Works

This paper presents a layered structure of FANET, in which high-altitude UAVs act as
ACPs and multiple UAVs are used for remote relaying and data collection. A “sustainable”
dynamic reconnaissance mechanism, TARFC, is constructed considering the movement of
reconnaissance targets and the change in various adverse factors in the scenario.

During the simulation, we found that for the FANET, maintaining network connectiv-
ity and avoiding local threats during mission execution are two conflicting requirements.
The basic PSO only considers network connectivity, which has the best performance in
this aspect but is inferior to TARFC and TA&CRFO in terms of threat avoidance. For the
latter two algorithms, the weighting values of network connectivity and threat avoidance
during simulation must be carefully considered according to realistic requirements. The
overall performance of the TA&CRFO algorithm is slightly lower than that of TARFC,
but its computational overhead is effectively reduced by decreasing the iterative process.
In addition, the computation time required by TA&CRFO increases more slowly as the
number of UAVs used in the simulation increases. So, the TA&CRFO algorithm is more
suitable for larger-scale FANET.

Of course, the design of indicator functions such as TED also determines the simulation
results to a large extent and should be paid special attention.

In this work, the network construction process of Algorithm 1 is carried out on
the high-altitude UAV, namely, ACP, which is a centralized approach. The TA&CRFO
algorithm is semi-distributed since local neighbor information is used between UAVs when
the TED is less than the threshold value. This approach reduces communication overhead
and dependence on the central node ACP. In the future, a fully distributed continuous
reconnaissance algorithm that completely abandons the central node will bring a greater
leap in FANET’s adaptability and survivability. In addition, a complex sensing model and
connectivity disruption caused by UAV failure will be further considered.
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