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Abstract: Facial emotion recognition (FER) systems are imperative in recent advanced artificial
intelligence (AI) applications to realize better human–computer interactions. Most deep learning-
based FER systems have issues with low accuracy and high resource requirements, especially when
deployed on edge devices with limited computing resources and memory. To tackle these problems,
a lightweight FER system, called Light-FER, is proposed in this paper, which is obtained from the
Xception model through model compression. First, pruning is performed during the network training
to remove the less important connections within the architecture of Xception. Second, the model
is quantized to half-precision format, which could significantly reduce its memory consumption.
Third, different deep learning compilers performing several advanced optimization techniques are
benchmarked to further accelerate the inference speed of the FER system. Lastly, to experimentally
demonstrate the objectives of the proposed system on edge devices, Light-FER is deployed on
NVIDIA Jetson Nano.

Keywords: edge device; facial emotion recognition; model compression; Xception

1. Introduction

Facial emotion recognition (FER) is one of the most popular subjects of study in the
field of emotion recognition. The FER system is an emotion recognition system that analyzes
human facial expressions to determine which emotion is being expressed. The following
are some of the most prevalent human emotions used in FER: (1) anger, (2) disgust, (3) fear,
(4) happiness, (5) sadness, (6) surprise and (7) neutral. The sophisticated implementation
of FER, which normally provides a wide range of accuracy, is due to these seven emotions.
For example, the highest accuracy in [1] is found in happiness, while the lowest accuracy
is found in fear, resulting in a low total accuracy of 76%. In addition, [2] used K-nearest
neighbor (KNN) and artificial neural network (ANN) to investigate alternative supervised
classification task methods for FER. However, due to the related low accuracy from distinct
emotion categories, both KNN-based and ANN-based FER approaches produce low ac-
curacy results (54.16% and 66.66%, respectively). To address the issue of accuracy, deep
learning (DL)-based methods have been proposed to enhance the overall accuracy of FER
algorithms by up to 90% [3]. As a result, researchers are concentrating their efforts on
constructing deeper networks to detect more complex features and improve the accuracy
of the FER system, trying to find significant face patterns that can improve the accuracy of
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the FER system to more than 95% [4]. On the other hand, other studies [5,6] developed FER
systems that can handle both static/still images (laboratory-controlled environment) and
in-the-wild conditions which are more natural and spontaneous than those of a laboratory-
controlled environment. In another study, ref. [5] proposed a novel deep convolutional
neural network framework to extract holistic features in identifying facial expressions
while adopting a gravitational force-based edge descriptor to fetch low-level local features.
Furthermore, ref. [6] proposed a simple CNN network to classify static expressions that
perform well even on a small dataset which is specifically designed to learn detailed local
features (e.g., eyes and mouth corners) that are exhibited by different facial expressions in
face images. In [7], a texture-based feature-level ensemble parallel network was proposed
for FER that uses multi-scale convolutional and multi-scale residual block-based DCNN,
which prevents the deep network from having insufficient training data and improves the
recognition rate while lowering computational complexity. Both proposed methods can
accurately and precisely recognize facial expressions, which outperforms up to 25 baseline
methods in terms of feature extraction analysis, classification accuracy and precision. How-
ever, in exchange for improved accuracy outcomes, the inference speed and computing
costs of FER system are frequently overlooked.

To deal with the challenges of deep learning models, some researchers have pro-
posed the creation of lightweight FER models with lower resource requirements and faster
inference speed. Several studies use state-of-the-art pre-trained DL models, such as VGG-
Face and VGG16 and Deep Face Convolutional Neural Network (CNN), to create transfer
learning-based lightweight FER models. Their studies, however, only compare which pre-
trained models can provide both high accuracy and a simpler architecture when compared
to other existing models. That is, the original structure of the pre-trained models is not
reduced and thus there is no relative improvement in the results.

In this paper, we propose Light-FER, a lightweight FER system developed by op-
timizing the hardware and software components of the Xception model using various
compression methods. The contributions of this paper are summarized as follows:

1. To reduce computational costs, pruning is used to remove unimportant and redundant
connections within the architecture of the FER model.

2. To reduce memory usage and increase the inference speed of the FER system, quanti-
zation is used to save the lightweight FER model in a lower precision format.

3. To increase inference speed while maintaining low computational costs, a DL compiler
will be used to redesign the FER model in order to take advantage of the available
hardware of the device.

4. To verify the effectiveness of the proposed FER system on edge devices, Light-FER is
deployed on NVIDIA Jetson Nano.

The remainder of this paper discusses in detail the development of the FER system,
various network compression methods, the proposed methodology and the conclusion.

2. Related Works

In this section, the development of a facial emotion recognition (FER) system is
thoroughly discussed. This is followed by a discussion of various network compression
methods that can be used to improve the inference performance of the FER system.

2.1. Development of FER System

The FER systems are divided into two tasks: (1) face detection and (2) facial emotion
classification. The human face is detected and fed into an algorithm in the FER system,
which analyzes patterns and classifies facial expressions. The emergence of cutting-edge
face detection algorithms resulted in the development of these FER systems.

In the face detection task, multi-task cascaded convolutional neural network (MTCNN) [8]
and Deep alignment network (DAN) [9] have been recently used for face alignment and de-
tection to ensure high accuracy. As shown in Figure 1, DAN generates a total of 68 facial
landmarks, whereas MTCNN only generates five. However, because both MTCNN and DAN
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are built with multiple stages of CNNs, they require high computational costs, resulting in
slow inference speed during real-time implementation. In this paper, a pre-trained 68-facial
landmark detector trained by Dlib [10] in the iBUG 300-W dataset is used. It produces similar
results to DAN but at a lower computational cost.
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In the facial emotion classification task, several facial expression or FER models
have been developed to achieve higher accuracy results. CNN architectures are typically
used to leverage deeper networks. The number of parameters in a CNN architecture
is increased by using more layers and smaller kernels, which can learn more complex
patterns. However, DL-based FER models suffer from a low inference speed issue due
to the high computational cost requirement. To address this issue, several researchers
worked on developing lightweight FER models to allow low computational cost and fast
inference implementation. The key to lightweight FER models is significant reduction in
the parameters.

2.2. Network Compression Methods

DL-based FER systems suffer from high resource requirements when applied to edge
devices. To address these challenges, several network compression methods have been
studied and performed. These methods, namely, pruning, quantization and DL-based
compiler optimizations, can achieve faster inference speed, reducing computational costs
and complexity of CNN models. The goal is to simplify the model without considerably
compromising its accuracy.

Pruning refers to the effective search for and elimination of unimportant and re-
dundant connections within the CNN model [11]. Weights, filters and channels are the
connections in the CNN model that contribute to its enormous complexity. Pruning can
permanently remove a number of less significant connections within a CNN model in a
fine-grained nature. It can take advantage of the hardware parallelism of the device at
the expense of significantly reducing the storage footprint of the model while securing
zero or negligible accuracy loss. As a result, the memory and computational costs of the
model will be reduced during implementation. However, there are challenges in finding
the compression hyperparameter in each layer of the CNN model that causes a general
problem in applying pruning to a model. To effectively optimize the hyperparameters,
several approaches can be used. One of these approaches is known as a heuristic method or
manual tuning of the hyperparameter per layer of the CNN architecture. Another method
is black box optimization, also known as Bayesian optimization, which is an automatic
hyperparameter-search approach. These approaches, however, are inefficient because
they rely solely on repeated trial-and-error procedures to determine the optimal hyperpa-
rameters in a layer-wise manner, which frequently results in a significant accuracy loss.
Meanwhile, quantization refers to the conversion of the bit representation of each weight of
the CNN architecture into a lower precision format [12]. Because CNN models are initially
stored in 32-bit floating-point (FP32) format, they can be quantized to FP16 or even lower
integer (INT) formats such as INT8 and INT4. As a result, memory consumption is re-
duced while inference speed is increased. The general pruning and quantization process is
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demonstrated in Figure 2. Finally, a DL compiler can be used to leverage with the hardware
architecture of the model [13]. It can optimize models by redesigning and compiling its
architecture, so that hardware optimizations for faster inference are easily accessible. It
includes advanced performance optimization, variable computation graph optimization,
tensor optimization and support for half precision formats. These DL compilers have
similar processes for optimizing CNN models. In this paper, a DL compiler is utilized to
compile the Xception model into an efficient end-to-end framework in order to improve
the inference performance of the FER system.
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3. Proposed Lightweight FER System

The proposed lightweight FER system is illustrated in Figure 3. As shown in the figure,
the Light-FER system includes three main processes: (1) face detection in the input image,
(2) network compression of the FER model and (3) facial emotion classification.
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First, we used a pre-trained landmark detector from the Dlib library to identify 68 key
points or facial landmarks marked at specific x and y coordinates in the human face.

The key points define the area around the human face, including the brows, eyes, nose,
mouth, chin and jaw. The Dlib 68-landmark face detector also provides the coordinates
of a bounding box enclosing the human face. It is trained on the iBUG 300-W dataset,
which was created by the Intelligent Behavior Understanding Group (iBUG) at Imperial
College London. The iBUG 300-W dataset contains 68 facial landmarks and bounding
box annotations from “in-the-wild” images collected from the internet. It contains over
4000 static images, each with a single face in a variety of poses, expressions and illumi-
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nations. The trained model is tested on a 300-W test dataset that includes “in-the-wild”
images, 300 indoors and 300 outdoors, with multiple faces and large facial variations in each
image. Based on a 300-W test dataset, the pretrained face detection model has an efficient
inference performance in detecting faces. As a result, in this paper, the Dlib 68-landmark
face detector is used to extract useful patterns from various types of emotions in human
faces. For an accurate FER system, it can provide an efficient calculation to distinguish one
specific emotion from another. Second, in order to apply network compression methods
to the FER model, we used pruning, quantization and a DL compiler with the Xception
model to create a lightweight FER system. As trained and tested on the FER2013 dataset, an
Xception model outperforms existing CNN models (e.g., VGG-Net and ResNet-50) in terms
of accuracy and parameters. However, it still has issues with high computational costs, high
memory usage and slow inference speed during FER implementation. To address these
issues, we used several compression methods that targeted both software and hardware
components of the FER system.

Initially, we used the pruning method to reduce the total number of non-zero Xception
model parameters by removing redundant and insignificant parameters. This compression
method will significantly reduce the computational costs of the model. The compression
ratio of the pruned CNN architecture relative to the uncompressed is typically given by

R =
∑l

i=1 U(i)
w, f ,c

∑l
i=1 P(i)

w, f ,c

(1)

where R is the compression ratio between uncompressed (U) and pruned models (P);
Uw, f , c (i) and Pw, f , c (i) represent the total number of weights (w), filters ( f ) and/or
channels (c) up to layer L of the uncompressed and pruned CNN architecture, respectively.

Then, we used a quantization method to reduce memory usage and increase inference
format from speed of the Xception model by converting its high precision FP32 to FP16 or
INT8 low precision format. The quantization of general weights is computed by

Wb = ∂
(

SbW f p

)
ε

[
−
(

2b − 1
2

)
,

(
2b − 1

2

)]
(2)

Sb =
2b − 1
2Mw

(3)

Mw = max
(

abs
(

W f p

))
(4)

where Wb represents the quantized weight tensor, b is the desired lower precision format,
Sb is the quantization scale factor, W f p is the original weight tensor in higher-precision
floating-point format and MW is the absolute maximum weight from W f p. The quantized
weight tensor is obtained by the product of the quantization scale factor and each weight
from the original weight tensor rounded to the nearest integer. The quantized weights are
bounded by the symmetrical dynamic range of the desired lower-precision format. This
will reduce the memory usage of Xception model by more than 50% and slightly increase
its inference speed.

Pruning and/or quantization are generally difficult to implement since it is difficult
to find compression hyperparameters in each layer of the CNN model. Several existing
approaches (e.g., heuristic method, Bayesian optimization) are ineffective in determin-
ing which hyperparameters are used to compress the network that typically leads to a
large accuracy loss. To address this issue, we used a constrained approach to pruning
and quantization methods in order to reduce any potential accuracy degradation after
optimization. To eliminate the risk of low accuracy results, this approach will not consider
any compression hyperparameters.
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Finally, we used a DL compiler to further optimize and accelerate the inference speed
of the Xception model. Each framework (e.g., PyTorch, Keras and TensorFlow) has its own
distinct representation of a computation graph, which frequently leads to limitations when
moving a model from one framework to another. We solved this problem by implementing
an Open Neural Network Exchange Format (ONNX), which is intended to standardize
network layer definitions and support the majority of deep learning model formats. In this
paper, a Keras framework is used to train and optimize the Xception model. The network
graph is then rebuilt using an existing Keras to ONNX converter with the equivalent
operators in ONNX format. This will enable the ONNX Runtime, a performance-focused
inference optimizer, to automatically use the host device’s hardware accelerators and
runtime. As a result, the performance of the model improves. This inference engine divides
the execution graph into subgraphs and runs each subgraph on the most efficient execution
provider available, such as CUDA or TensorRT. By applying pruning, quantization and DL
compiler, a lightweight FER model is developed, as shown in Figure 3.

4. Results and Discussion

In this section, we perform several experiments to evaluate the effectiveness of our
proposed Light-FER. First, the implementations, including experimental platforms, will
be introduced in detail. Next, we verify the actual test results of our proposed method.
Then, we compare the Light-FER to other existing FER models in terms of training and
test accuracy using FER2013 dataset. Then, we validate the viability of the proposed
method based on its hardware performance as compared to other FER models. Finally, to
observe the best possible output of the proposed Light-FER, we perform a benchmarking
experiment using different DL compilers as deployed on NVIDIA Jetson Nano.

The experiments are originally implemented on Keras framework. We train and
compress the models on the computer with Intel Xeon CPUs of 2.2 GHz and an NVIDIA
Tesla V100 GPU. Then, the models are initially deployed on a local PC with Intel Core
i5-10300H CPU at 2.50 GHz and 16 GB memory. After that, to test the performance of the
Light-FER on edge devices, we deployed the proposed method on NVIDIA Jetson Nano.
The NVIDIA Jetson Nano is a low-power edge device that consumes less than 10 W. The
operating system of this edge device is Ubuntu 18.04, with CUDA 10.0 and cuDNN 7.6.

In order to verify the effectiveness of the Light-FER, we perform an actual test on a
local PC and observe if the result is correct for each emotion category. Table 1 shows the
accuracy results when the Light-FER model is used. As can be seen, all results are correct
for each emotion showing different accuracy number. The accuracy results are relatively
high for anger, disgust, happy and surprise, reaching more than 95%, followed by fear at
84%. The sad and neutral classes have low accuracies at about 40% and 50%, respectively.
Nonetheless, these results indicate that the Light-FER can be used to accurately recognize
human emotion based on facial patterns.

Table 1. Actual test results of the proposed Light-FER.

Light FER Angry Disgust Fear Happy Sad Surprise Neutral

Angry 0.996 0.000 0.001 0.000 0.002 0.000 0.000

Disgust 0.002 0.997 0.000 0.000 0.000 0.000 0.000

Fear 0.003 0.000 0.839 0.000 0.128 0.027 0.003

Happy 0.001 0.000 0.001 0.992 0.000 0.005 0.002

Sad 0.160 0.001 0.029 0.003 0.414 0.001 0.391

Surprise 0.004 0.000 0.035 0.003 0.000 0.957 0.000

Neutral 0.156 0.000 0.050 0.008 0.271 0.004 0.511
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Table 2 compares the accuracy of the proposed Light-FER to other existing FER models.
The proposed model has the highest test accuracy result, as shown in the table, reaching
69%. Other models, such as VGG-Net, ResNet-50 and CNN, suffer from overfitting because
their accuracy on the train set is close to 100%, but their accuracy on the test set is only
around 60%. This implies that the proposed model outperforms other FER models in an
unconstrained environment and still provides decent accuracy despite having network
modifications in the network.

Table 2. Comparison of different FER models based on training and test accuracy results.

Model Train (%) Test (%)

VGG-Net [14] 98.98 59.32
ResNet-50 [14] 98.87 57.48

Simple CNN [14] 99.70 58.90
HOG + CNN [15] - 61.86

Improve Inception [16] - 66.41
Network from [17] - 66.40

CNN + Softmax [18] - 65.03
ShallowNer [19] - 63.49

Light-FER 82.35 69.87

Table 3 displays the hardware performance of the proposed lightweight FER model.
As shown in the table, the resulting parameters of the proposed method are significantly
lower than the other models, such as VGG-Net, ResNet-50 and simple CNN, because of the
applied pruning method that eliminates unimportant weights. This is in addition to the
advantage of using Xception model that uses Global Average Pooling rather than a fully
connected layer. Furthermore, the computational cost of the proposed model in terms of
CPU usage is only second to CNN; however, the significant difference in memory usage
makes the proposed model (3.1%) superior to CNN (12%).

Table 3. Hardware Performance of Different FER Models.

Model CPU (%) MEM (%) FPS

VGG-Net [14] 22.3 1.6 11
ResNet-50 [14] 52.1 1.3 15

Simple CNN [14] 11.5 6.1 19
Light-FER 18.4 1.5 27

Lastly, the overall performance of the proposed method is evaluated on NVIDIA Jetson
Nano by measuring the inference speed and hardware parameters on different frameworks
at full and half precision format. The comparison of the evaluation metrics is given in
Table 4. We select Keras at FP32 as the baseline in this comparative analysis. It can be seen
that, among the used frameworks, TensorRT has the best overall performance as deployed
on NVIDIA Jetson Nano. The fastest inference speed is measured at TensorRT FP32 of about
5.5 FPS. The power consumption, on the other hand, is relatively similar to all experiments
at around 3300 mW. The lowest memory usage, 1.06 GB, is measured in TFLite framework,
but its inference speed is 12% slower than of TensorRT.

Table 4. Overall performance of the proposed FER system using different deep learning frameworks
on Jetson Nano.

Framework Format FPS P (mW) CPU (GB) GPU (GB) Total (GB)

Keras FP32 2.5 3215 2.1 1.3 3.4

TFLite FP32 4.85 3310 0.844 0.216 1.06
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Table 4. Cont.

Framework Format FPS P (mW) CPU (GB) GPU (GB) Total (GB)

TFLite FP16 4.87 3300 0.863 0.216 1.08

ONNX FP32 5.21 3480 2.6 1.3 3.9

ONNX FP16 4.73 3470 2.9 1 3.9

TensorRT FP32 5.43 3390 1.9 0.467 2.37

TensorRT FP16 5.51 3360 1.9 0.467 2.37

The above experiments show that our proposed method sufficiently achieved the
objective of developing an FER system with lower computational costs and memory usage
and relatively faster inference speed as deployed on edge devices having limited resources.

5. Conclusions

We proposed a lightweight FER system in this paper that achieves efficient inference
performance during real-time implementation. We demonstrated experimentally that using
network compression methods such as pruning and quantization can significantly reduce
the computational costs and memory usage of the Xception model without affecting its
accuracy results. Using a DL compiler, such as TensorRT, can further improve the inference
speed of the model. The experimental results show that the proposed lightweight FER
system, particularly in terms of real-time inference, which employs the Dlib 68-landmark
face detector, outperforms other existing FER models. In particular, when compared to
other existing FER systems, the proposed method has lower CPU and memory usage
(17.50% and 3.1% in local PC; 33.6% and 57.5% in NVIDIA Jetson Nano) and a relatively
high inference speed of 27 fps in local PC and 5.51 fps in NVIDIA Jetson Nano. These
experimental results prove that the proposed lightweight FER system can be efficiently
implemented on edge devices with low computational and memory capability. In future
work, other edge devices, such as NVIDIA Jetson TX2 and Xavier, can be used to further
improve the performance of the proposed lightweight FER system.

Further study is necessary, as the face detector (dlib 68-facial landmark detector) used
in this paper has its limitations in detecting faces that are at a steep angle. The FER2013
dataset is collected in in-the-wild condition which includes some faces with a pose angle
that is greater than 45 degrees. In order to overcome this situation, a face detector method
should be developed and configured to extract a total of 68 facial landmarks that can handle
facial poses at a steep angle while not consuming high power resources, or can be efficiently
deployed on edge-type devices. Moreover, our proposed lightweight FER system was only
trained and tested using one dataset (FER2013), so future works will include applying it to
more than one dataset to allow generalizability of our method.
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