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Abstract: Several crucial system design and deployment decisions, including workload management,
sizing, capacity planning, and dynamic rule generation in dynamic systems such as computers,
depend on predictive analysis of resource consumption. An analysis of the computer components’
utilizations and their workloads is the best way to assess the performance of the computer’s state.
Especially, analyzing the particular or whole influence of components on another component gives
more reliable information about the state of computer systems. There are many evaluation techniques
proposed by researchers. The bulk of them have complicated metrics and parameters such as
utilization, time, throughput, latency, delay, speed, frequency, and the percentage which are difficult
to understand and use in the assessing process. According to these, we proposed a simplified
evaluation method using components’ utilization in percentage scale and its linguistic values. The
use of the adaptive neuro-fuzzy inference system (ANFIS) model and fuzzy set theory offers fantastic
prospects to realize use impact analyses. The purpose of the study is to examine the usage impact of
memory, cache, storage, and bus on CPU performance using the Sugeno type and Mamdani type
ANFIS models to determine the state of the computer system. The suggested method is founded on
keeping an eye on how computer parts behave. The developed method can be applied for all kinds
of computing system, such as personal computers, mainframes, and supercomputers by considering
that the inference engine of the proposed ANFIS model requires only its own behavior data of
computers’ components and the number of inputs can be enriched according to the type of computer,
for instance, in cloud computers’ case the added number of clients and network quality can be used
as the input parameters. The models present linguistic and quantity results which are convenient
to understand performance issues regarding specific bottlenecks and determining the relationship
of components.

Keywords: Mamdani and Sugeno adaptive neuro-fuzzy inference system; CPU utilization; complex
evaluation

1. Introduction

The performance of general-purpose computer systems is evaluated depending on the
area of application of the nominal, complex, system, and workload performance. Nominal
performance characterizes only the speed, or the performance, of the devices that make
up the system. The complex performance considers not only the speed of devices but
also the structure of the system—its effect on the speed of jointly functioning devices.
System performance considers both the above factors—the performance of devices and
the structure of the relationships between them, and the influence of the operating system.
Performance on a workload displays all the factors affecting system performance, and, in
addition, the properties of the workload—tasks that are solved by the computer system.
Closely related to performance is a characteristic of the quality of user service, such as
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response time, i.e., the residence time of tasks in the system. Therefore, when evaluating
performance, not only the number of operations executed by the system per unit of time is
determined, but also the response time for the entire set of tasks and individual classes of
tasks [1].

The performance of the computer system is related to the duration of the task process-
ing processes, which depends on three factors: (1) workload; (2) system configurations;
(3) task processing mode. These three factors together determine the order of development
of computational processes over time, and the first task of analyzing performance is reduced
to the dust of compact and informative forms of representation of computational processes.
These forms create a conceptual basis for evaluating the functioning of computing systems
during operation and during research using performance models. The second task of the
analysis is the creation of models that allow predicting the performance of systems for
various configurations, processing modes, and, possibly, different workloads.

Nowadays there are three main goals for assessing the performance of a computer
system. These are choosing a computer for a user, designing a computer for a manufacturer,
and improving configuration [2]. The purpose of these spheres is the optimization of
the system’s response time and workloads. The evaluation of computer condition is to
determine how well a certain system satisfies and correlates with current requirements
and resources. Many researchers proposed a lot of approaches to evaluate the computer
performance and prediction methods of hardware utilization, for instance, mathematical
models for identification of computer state [3], and benchmark-based [4] and synthetical
programs [5] have presented perfect results in the assessment of computer hardware
components. However, these assessment techniques are based on some datasets that cause
some inaccuracy during the implementation in the particular systems and on analyzing
existing real systems. Additionally, there are fuzzy models for predicting the utilization
of CPU based on trends and previous states of the workload [6,7] or taking into account
historical data of the central processor time, RAM (read time, write time, swap time), the
throughput of I/O and bus. In addition, these objects have many pointers (utilization, time,
throughput, latency, delay, speed, frequency, and percentage), which confuses the assessing
and prediction of computer components. However, all proposed methods are complex,
despite the good result. These evaluation techniques have troublesome data acquisition
for users and require programming knowledge, algorithms of machine learning, dataset
manipulations for evaluation of computer state, and familiarity with hardware architecture.
In addition, the methods of the above-discussed techniques are not clear, and the results of
performance evaluation and utilization of hardware components are not comprehensible to
all users.

Using the notion of fuzzy sets, we suggest transforming the data into linguistic
variables in order to make all kinds of data more understandable and to employ unique
metrics. The primary goal of the study is to develop an evaluation model using the adaptive
neuro-fuzzy inference system (ANFIS) for all types of computing systems, including
personal computers, mainframes, and supercomputers. The recommended model seeks
to evaluate the computing system’s performance, forecast central processing usage by
examining how hardware components interact with one another, and provide data for
drawing conclusions about the hardware bottleneck and incompatibility.

Based on our prior research [8], we created new, improved ANFIS models in this
study. In this study, we created Mamdani and Sugeno type ANFIS models to assess the
state of the computer in terms of the interaction between its components. Meanwhile,
in earlier work we employed two inputs for our fuzzy models, and the achieved results
were not satisfied. To improve the model’s performance, we enhanced it by input objects
and their datasets, which include cache, RAM, storage, and bus utilities. Particularly in
Mamdani type ANFIS, adding two input components significantly enhanced the model
evaluation outcome. The knowledge basis of the inference engine has also undergone some
adjustments, as a result of which a sizable dataset and rule base have been added to it. Our
ANFIS models produced more accurate results as a result.
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Related Works

Numerous researchers employed ANFIS for a variety of important research projects,
including those in the fields of industry, finance, weather forecasting, health, and water
quality prediction [9–13]. According to [14], air pollution (SO2) data collected at Bhadra
station were combined with meteorological data to forecast the average air temperature
using ANFIS. The wavelet’s approximately decomposed sub-series data are fed into the
ANFIS. ANFIS and hybrid wavelet ANFIS (Gaussian membership) are contrasted (Gbel
membership). The ANFIS (Gauss membership) displays superior results compared to the
other two approaches, with a coefficient of determination (R2) = 0.95 and RMSE = 0.74. The
effectiveness of the discrete wavelet transforms and ANFIS in time-series data modeling of
weather characteristics is examined by Munandar [15]. The foundation of the statistical
model is a linear regression plot of projected data outcomes. At the weather station at
Indonesia’s Bungus port, data were checked every 10 min. When milling aluminum with
a ball end, the authors of [16] used ANFIS to forecast surface roughness. After using a
ball end mill, the study determined the average surface roughness Ra value for aluminum.
ANFIS models have been used to forecast Ra in 84 studies. The ANFIS model, which
is built with three Gaussian membership functions for each input variable and a linear
membership function for the output, was chosen based on the minimal value of root
mean square error (RMSE). The theoretical model and the response surface model have
been compared to the ANFIS model (RSM). With the use of the ANFIS network and the
features extracted from vibration signals, Helmi et al. [17] have proposed a structure for
the diagnosis and detection of rolling bearing faults. Vibration signal defect information
has been retrieved using time-domain and frequency-domain statistical properties. The
findings show that this strategy outperforms other methods in terms of accuracy and
classification performance. A thorough automatic system based on ANFIS is introduced
by Awadallah et al. [18] for the detection of stator short circuits in brushless DC motors.
A discrete-time numerical model was used to determine the performance of the system
under typical operation. By adjusting the model to account for the fault current and
accommodate the short circuit, a flawed performance was attained. The ANFIS for risk
prediction for the computational grid environment is presented by Abdelwahab et al. [19].
The fuzzy model was set up by academics to evaluate the risk of the computer system’s
expanding computing needs. The risk calculation of individual grid components, such
as storage, CPU, memory, etc., is not taken into account by the authors in their work.
In order to anticipate cloud workloads, Amekraz et al. [20] introduce a system known
as CANFIS, which combines the Savitzky–Golay (SG) filter, chaotic time series analysis,
and the adaptive neural fuzzy inference system (ANFIS). The SG filter is used to remove
noise and outliers from the data, and chaotic analysis is used to look into how chaotic the
workload is and to create the enhanced ANFIS model. Real workload traces from web
apps, including NASA Kennedy and Wikipedia, are used to assess the suggested technique
(i.e., CPU and memory of Google cluster). For the purpose of predicting CPU utilization,
Bey et al. [21] combined ANFIS with the clustering procedure employed on CPU utilization
time series. The more pertinent research is found in [6], where the authors applied fuzzy
logic control theory to modify CPU workloads as needed such that use converges with a
specified setting even for dynamic workloads. The study stated that fuzzy logic control is
unrelated to a mathematical model of a controlled system or operating range, in contrast
to proportional, integral, and differential (PID) approaches and other predictive models.
The probability of introducing design flaws as a result of statistical inaccuracies included in
the black box installation model is small because there is no fuzzy logic controller model.
By conducting a logical study of the nonlinear relationship between utilization and load
variations, Basaran and his research colleagues suggested a new fuzzy closed-loop system
for managing CPU use [6].

Butt et al. [22] present the process scheduling ANFIS for the multi-tasking operating
system. In their research, the simulator was designed in such a way that the packaging
time, arrive time, and the final time of each completed process were used as input variables.
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The proposed simulator computes the last processor workload and utilization for each
process using the defined formula. For each process, fuzzy dynamic priority is generated
by the proposed ANFIS. According to the dynamic priority of each process in descending
order, the process for execution of that process will be selected which will be first in the
queue. The CPU design was proposed to be optimized in [23] using a unique fuzzy logic
technique in order to reduce power consumption, boost productivity, measure and manage
heat dissipation in the derived Pareto-optimal configurations, and more. By examining
CPU design knowledge conveyed using fuzzy logic rules during the investigation of the
design space from points of view of both the solution quality and speed of convergence,
they proposed the improvement of microarchitecture using selective load value prediction
(SLVP). In the studies of Chen et al. and Beghdad et al., we can see the C-means clustering
methods. Chen et al. [7] present a fuzzy-based neural network for resource prediction, that
is a self-adaptive prediction algorithm for resources of cloud computers. They combined
subtractive fuzzy and C-means clustering methods to optimize convergence characteristics
and training speed. To increase the reliability and performance in real time, the method is
optimized using self-regulating training speed and weight of impulse. A CPU utilization
predicting model was proposed by Beghdad et al. [24]. The model was built on the clustered
instance selection in the previous stages. The proposed ANFIS uses a naive Bayes network
controller for CPU prediction. A C-means clustering algorithm is used to estimate the
direction of the next step. Hussain et al. [25] proposed a brand-new clustered induced
ordered weighted averaging (CI-IOWA) Adaptive neuro-fuzzy inference system (ANFIS)
model. This fuzzy time-series prediction model addresses the nonlinear relationship of the
cloud QoS dataset and minimizes data dimensions. The suggested approach incorporates a
fuzzy neural network structure for the best possible prediction outcomes and an intelligent
sorting mechanism to control prediction uncertainty. The suggested method sorts input
arguments based on associated order-inducing factors and then applies customized weights
in accordance. This is carried out using the IOWA operator. Three fuzzy clustering
techniques—fuzzy C-means (FCM), subtractive clustering, and grid partitioning—are used
to further categorize the inputs. The inputs are then passed on to the ANFIS structure,
which combines the advantages of neural and fuzzy networks.

In order to address concerns with over- and under-provisioning, research on re-
source consumption prediction in the cloud has been conducted by Malik et al. [26]. Over-
provisioning of resources results in higher expenses and increased energy use. However,
under-provisioning results in SLA violations and a decline in quality of service (QoS). The
majority of the currently used mechanisms concentrate on the forecast of a single resource’s
use, such as memory, CPU, storage, network, or servers assigned to cloud applications,
but they ignore the correlation between resources. This study focuses on multi-resource
consumption prediction utilizing a hybrid genetic algorithm (GA) and particle swarm opti-
mization (PSO) functional link neural network (FLNN). The suggested method is assessed
using Google cluster trace data. Hamid et al. [27] propose a fuzzy model for the load
balancing method that provides fault tolerance by properly distributing the load according
to user tasks among the currently available resources using anomalies and malfunction
detection. By monitoring the current state of the system and the fairness in the distribution
of tasks, the authors made calculations of priority value for each resource, i.e., fuzzy eval-
uation of CPU utilization, and tried to avoid overload problems that are the cause of the
system renouncement. When anomalies are detected, the algorithm instructs the system to
apply the failure rejuvenation mechanism to a virtual machine with abnormal behavior.
Li et al. [28] proposed a fuzzy logic controller for load balancing. Their approach analyzes
the correlation between several parameters such as CPU, memory, and I/O utilization
that affect load balancing and uses the fuzzy logic algorithm, obtaining the load of several
virtual servers. Then, it chooses the least loaded virtual server to handle the request and, if
necessary, installs the server waiting or restart policy. This procedure involves checking the
load state of virtual servers in real time. They used a software-defined networking (SDN)
simulation platform for testing the correctness and effectiveness of this proposed algorithm.
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Moreover, many researchers investigated CPU evaluation using the artificial neural
network (ANN), as inaccurate resource predictions result in either low or high cloud re-
source provisioning. Valarmathi et al. [29] focused on finding a proactive solution to this
issue. The majority of the prediction models now in use are based on a single workload
pattern, making them unsuitable for handling unusual workloads. The researchers tackled
this issue by employing a modern approach to dynamically evaluate CPU consumption
in order to correctly estimate data center CPU utilization. For resource estimate, the sug-
gested architecture uses deep architectural models based on ensemble random forest–long
short-term memory. The data in this approach are preprocessed and trained using historical
observation. An actual cloud data collection is used to analyze the strategy. According
to the empirical interpretation, the new design beats the earlier strategies since it bears a
30–60% increase in resource usage accuracy. The evolutional neural network was proposed
by Mason et al. [30]. To forecast CPU consumption, they made use of several distinct
recurrent neural networks. Particle swarm optimization (PSO), differential evolution (DE),
the covariance matrix evolutionary adaptation method (CMA-ES), and the dataset of Plan-
etLab files were employed for the suggested recurrent neural network. Duggan et al. [31]
proposed a CPU utilization prediction approach based on machine learning algorithms.
They also used an RNN and trained it in the Google cluster trace dataset using a backward
propagation algorithm to predict the utilization of host CPU. Kumar et al. [32] proposed
a workload prediction model for cloud data centers using the LSTM techniques. The
model was tested in three datasets from the NASA HTTP server, Saskatchewan server,
and Calgary server, and the result is incredible, i.e., it can perform a 60 min forecast of the
workload of large data centers. Datrois et al. [33] developed a technique using machine
learning approaches to forecast 24 h resource availability. The prediction technique uses
quantile regression to provide an elastic relationship with a resource for restoration and
the determination of unutilized resources. Computer components such as CPU, memory
(RAM), storage, and network metrics were predicted to provide full availability. A study of
SISO and MIMO models, including adaptive reliable controllers for the task of allocating
CPU resources by virtual machines and satisfying certain QoS requirements, was presented
in [34]. The controllers were aimed at adjusting CPU resources based on observations of
previous CPU loads. In their work, the system takes into account only the CPU capacity,
and the resource requirements are interconnected in several dimensions (i.e., calculations,
storage, and network bandwidth). The identification/training of a system to extract in-
terconnected information between resource requirements to consolidate workload when
performing service level objectives is explored.

Many evaluation techniques have been proposed by researchers. The bulk of them
have complicated metrics and parameters such as utilization, time, throughput, latency,
delay, speed, frequency, and the percentage which are difficult to understand and use in the
assessing process. According to these, we proposed a simplified evaluation method using
components’ utilization in percentage scale and its linguistic values. In the implementation
part of our idea, we chose a personal computer and we used its CPU, memory, cache,
storage, and bus utilization. Many evaluation approaches of computer performance indicate
that the main computer’s components which influence the performance of CPU are memory,
cache, storage, and I/O devices. In contrast to approaches in the literature, the model
shows language outcomes. In the future, performance counter correlations will aid in
the creation of algorithms that can determine if a certain computer’s performance will be
impacted by a given priority. The performance assertions generated from these approaches
will allow resource management strategies to prevent performance degradation, allowing
the infrastructure to operate safely and according to plan.

2. Proposed Idea
2.1. ANFIS

Automated control, decision-making, expert systems, data classification, and computer
vision are some of the fields where adaptive neural-fuzzy inference systems have been
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successfully applied. Numerous academics use terms such as fuzzy rule-based systems,
fuzzy expert systems, fuzzy modeling, fuzzy associative memory, fuzzy logic controllers,
and just plain fuzzy systems to describe the numerous adaptive neural fuzzy inference
systems that are currently available. Figure 1 depicts the general architecture of ANFIS.
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In order to control linguistic aspects for the evaluation and prediction of CPU con-
sumption, neuro-fuzzy was chosen. It is a good alternative for decision-making and for
quality modeling of the human knowledge base. Artificial neural networks have the ca-
pacity to learn. Like humans, an ANN can notice patterns that can be used as input to
provide predictions. Performance, error reduction, and adaptability can all be increased
by integrating an ANN and fuzzy logic [13]. An adaptable neural network is used to
build the fuzzy inference system, also known as the adaptive neuro-fuzzy inference system.
ANFIS may use human knowledge, such as fuzzy if–then rules, and approximative mem-
bership functions, to produce an input–output mapping from the input–output data pairs
supplied for the purpose of neural network training. An adaptive neuro-fuzzy inference
system (ANFIS) is the process of creating a FIS using the framework of adaptive neural
networks [13]. By using two different techniques, ANFIS learning updates the parameters
of the membership function: backpropagation for all parameters and a hybrid technique
that uses least-squares estimation for the parameters relating to the output membership
functions and backpropagation for the parameters relating to the input membership func-
tions. As a result, at least locally, the training error lowers as learning progresses. The
ensuing parameters, which define the coefficients of each output equation, are found using
the least-squares approach and a fuzzy rule base of the Sugeno type. The training process
continues until the required root mean square error (RMSE) between the desired and gener-
ated output is attained, the right number of training steps (epochs), or both. The foundation
and subsequent parameters of a first order Sugeno type fuzzy system for estimating and
forecasting CPU utilization are established in this study using a hybrid learning technique.

2.2. Mamdani and Sugeno Type ANFIS

This work is a logical continuation of our previous work [8]. In this paper, we propose
ANFIS which implements the principles and mechanisms of fuzzy set theory to assess the
utilization of CPU by taking into account the influences of four components, cache, memory
(RAM), storage, and bus throughput, on the performance of CPU while running multiple
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applications at the same time. In the previous work [8], we analyzed CPU utilization by two
input components and the training dataset was not so big. Using the performance monitor
(perfmon.exe) of the operating system, we collected data of components’ utilization, such
as processor time, processor utility, paging, disk time, cache time (by retrieving the data
directly from the cache), and bus utility, respectively, and information about CPU, RAM,
storage, cache, and bus utilization. In the monitoring period, we created a utilization
dataset of memory, cache, storage, bus, and CPU workloads of the test bench computer.
The training dataset is illustrated in Table 1.

Table 1. Training dataset.

№
Utilization (%)

RAM Cache Storage Bus CPU

1 51 32 5 72 14
2 38 97 25 100 35

. . . . . . . . . . . . . . . . . .
3000 48 80 20 95 65

An adaptive neuro-fuzzy inference system that uses a rule base system was created
by human experience and knowledge [35]. In this paper, to apply our idea we developed
Sugeno type ANFIS and Mamdani type ANFIS models for assessing the utilization value
of CPU, by evaluating the effect of RAM, cache, storage, and bus utilizations on CPU
usage. There are some differences between the Sugeno and Mamdani ANFIS, i.e., they
have a different knowledge base and outputs are varied. Sugeno type ANFIS generates
the knowledge base by a training dataset and displays the numerical information about
the CPU workload, and Mamdani type ANFIS has the rule base knowledge and outputs a
linguistical assessment of the CPU utilization status, for example, low, middle, or high. Both
ANFIS models contain the same modules, i.e., fuzzification, knowledge bases, inference
engine module, and defuzzification modules [8]. Although Sugeno ANFIS and Mamdani
ANFIS have the same modules, their constitution is different, i.e., the internal mechanism
of the fuzzy inference system is different according to the rule base and training dataset.
Figure 2 demonstrates the differences of the two models.
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We used the algorithm for our ANFIS which is presented in Algorithm 1.
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Algorithm 1: Steps of ANFIS algorithm

1: Defining of linguistic variables for each hardware component
2: Constructing membership functions for each linguistic variable
3: Developing knowledge base (rule base for Mamdani ANFIS and training dataset for
Sugeno ANFIS)
4: Fuzzifying the crisp inputs
5: Training process and evaluating knowledge base (database, dataset, and rule base)
6: Combining the output results of each rule
7: Defuzzifying nonfuzzy outputs

An adaptive neuro-fuzzy inference system starts the process from the fuzzification
module, but before that, linguistic variables and membership functions must be defined.
In the fuzzification module, all the RAM, cache, storage, and bus utilization numeric
values of inputs are fuzzified into fuzzy inputs. In this step, we utilized the Gaussian type
membership function and the function is shown in Equation (1).

gaussian(x; c, σ) = e−
1
2 (

x−c
σ )

2
(1)

In Equation (1), c represents the center of the membership function, and σ determines
the width of the membership function [35]. For instance, we defined a “middle” linguistic
term by the Gaussian function in the range of (x: 50, 30). It means that 50 is the center of
the membership function and here the weight of the function obtains the highest quality
of 1, and accordingly, when the membership function reaches 30, the value of the function
will be 0.5. For building the membership function of variables for all inputs and outputs,
we used Equation (1).

The module of the inference engine produces outputs or predicts the system results by
applying the dataset and rule base. The inference engine module of the proposed ANFIS
was built on an “if–then” rule set [35]. As already mentioned, we propose two kinds of
adaptive neuro-fuzzy inference systems. These are Mamdani ANFIS and Sugeno ANFIS.

The Mamdani type ANFIS which we offer is implemented by using the following steps:

1. Formulating a list of fuzzy rules.
2. Using membership functions to fuzzify the input values that are crisp.
3. Combining inputs that have been fuzzified in accordance with fuzzy rules to deter-

mine the rule strength.
4. By combining rule strength and output, determining the rule’s effect.
5. Combining the outcomes of obtaining an output distribution.
6. Defuzzification of the results.

According to the combination of four inputs’ and one output’s linguistic variables,
we developed 81 rules for Mamdani ANFIS and one example of the rules is described in
Equation (2). Based on these 81 rules, the inference engine of Mamdani ANFIS generates the
rule strength. The equation shows that RAM, cache, storage, and bus are inputs. Their crisp
values are fuzzified by the Gaussian membership function and using the logic operator
“AND” combines all four inputs to obtain the rule strength.

IF(RAM is Low and Cache is Low and Storage is Low and Bus is High) THEN (CPU is Low) (2)

The inference engine module of Sugeno ANFIS is different, i.e., this module generates
its rule strengths according to the training process. In the training step, the inference engine
using the backpropagation method builds optimal weights to predict the utilization of CPU.
For the training process, we used the dataset which is illustrated in Table 1. The detailed
calculation process for rule strength generation of the Mamdani ANFIS and Sugeno ANFIS
is shown in Figure 3.
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The defuzzification module is the final step of ANFIS, it transforms the results of fuzzy
outputs, i.e., according to the Mamdani type ANFIS it provides linguistic values and in
Sugeno type ANFIS it provides crisp values. In this step, the input numeric values are
fuzzified, the rule strengths are implemented, inference engine is trained, and rule strengths
built. Here, rule strengths compute fuzzy output data and transform them into numeric
values. For Mamdani ANFIS, we used the centroid defuzzification method which is the
default and for Sugeno type ANFIS we used the weighted average method, as illustrated
in Figure 3.

3. Data Acquisition and Performance Evaluation
3.1. Data Acquisition Application

The task of the system monitor is to log the internal states of the computer system. The
information obtained by system monitors allows us to solve problems in a wide range of
applications, for example, detecting some errors in a computer system, checking resource
usage and workload of hardware components, providing a basic rule for building models
of a computer system, and finding bottlenecks in the system. Using the system monitor,
we acquired data for our ANFIS models. For data acquisition, we chose a personal testbed
computer. In Table 2, the testbed computer’s specific parameters are presented.
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Table 2. Parameters of testbed computer.

Hardware and Software Parameter

Operating system Windows 10 Professional (Microsoft Corparation), 64 bit
Processor Intel(R) Core(TM) i7-8700 CPU @3.20 GHz 3.19 GHz

Memory (RAM) 16.0 GB
Cache L1 384 KB, L2 1.5 MB, L3 12.0 MB

Storage 1050 GB

As explained in Section 2, in our testbed computer we simultaneously ran multiple
applications and monitored the objects mentioned below and their aspects, then collected
the data described in Table 1. Monitoring CPU directly measures the CPU workload and
utilization. Due to the dependence of multi-processor systems on such metrics, they are
particularly crucial. That is why it is necessary to regularly examine the system for active
and idle processors, as well as which ones are capable of completing the pending task.
The “Memory” section displays the current state of memory, we monitored “Pages/sec” to
obtain data about memory utilization. The way a cache behaves affects a computer system’s
overall performance. One can deliberately configure the system if the real behavior of
the system is known. The communication between system components is centered on the
buses. An indicator of system component activity is bus activity. We can infer information
about bus protocol problems, the kind and volume of messages in the bus, and system
bottlenecks by measuring the bus throughput. More effective indicators for obtaining
storage utilization and workload are monitored, and these are “Average transfer rate”,
“Disk time”, and “Disk queue length” [8].

3.2. Developing the ANFIS for Evaluation of CPU Utilization

Five layers make up the ANFIS structure: the fuzzy layer, the product layer, the
normalized layer, the defuzzy layer, and the overall output layer. The development process
of these five layers of ANFIS consists of three steps, these are:

1. Fuzzification of input RAM, cache, storage, and bus values—fuzzy layer.
2. Determination inference method and rules (data)—product and normalized layers.
3. Defuzzification of CPU utilization values as output—defuzzy and output layers.

In the fuzzification step, we used the Gaussian membership function to fuzzify input
variables, i.e., in this step we measured percentage quantity of RAM, cache, storage, and
bus utilizations for linguistic variables. We used the same linguistic variable distribution
and Gaussian membership function for all components, as shown in Table 3.

Table 3. Linguistic variables and distribution diapasons.

Linguistic Variables Distribution

Low (0, 20, 40)
Middle (30, 50, 70)
High (60, 80, 100)

In the next step, according to the knowledge base we defined two kinds of inference meth-
ods, as shown in Figure 4. One is for Mamdani ANFIS based on the rule base and the second
one is Sugeno ANFIS based on the dataset of influences among the resource utilizations.

The determination inference method and rules i.e., creation of normalized layers, are
different. The normalized layer of Mamdani ANFIS is based on an “if–then” rule base. The
rule base of Mamdani ANFIS is linguistic and developed according to utilization data of
hardware components. The rule base is developed by analyzing the impact of four input
resource utilizations to one output CPU utilization with their three linguistic variables and
consists of eighty-one rules. The rule development process is described in Figure 5. This
rule base determines the inside layer of the ANFIS model. If multiple rules are active for a
single membership output function, only one membership value must be selected. This
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procedure is called fuzzy conclusion or fuzzy solution. Mamdani type ANFIS finds the
association among the variables for assessing the ANFIS [35]. The formula in Equation (3)
is used for the centroid defuzzification method in Mamdani type ANFIS.

Z =

∫
µc(z)× zdz∫

µc(z)dz
(3)Sensors 2022, 22, x FOR PEER REVIEW 11 of 20 
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In the Sugeno type ANFIS, we used the weighted average defuzzification method and
Equation (4) describes it [35]:

Z =
∑ µcZ × Z

∑ µcZ
(4)

The normalized layer of Sugeno type ANFIS is developed by training the dataset. The
training process of Sugeno ANFIS determined the weights of layers. The training data
come from the application of a system monitor, as shown in Table 1. The fuzzy logic toolbox
is provided with an ANFIS editor window, and it is designed for training Sugeno type
ANFIS logical output mechanisms. We used a hybrid algorithm for the training process,
which includes two methods, that is, the gradient descent method and the least-squares
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method. The training process of Sugeno ANFIS is completed in 1000 epochs, and accuracy
is 0.231 as described in Figure 6. The obtained training process accuracy of our Sugeno
ANFIS model is significantly suitable, especially when we have multiple inputs.
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Thus, we completed the rule base, inference method determination, and defuzzifica-
tion steps of our ANFIS models. In Figure 7, the Rule Viewer shows the input parameters of
Mamdani type ANFIS and Sugeno type ANFIS where RAM = 95.6, cache = 94.4, bus = 95.0,
and storage = 60.0. The Sugeno ANFIS evaluated CPU utility as 19.3. Mamdani ANFIS
assessed it as 19.5 by following the established rule base. The linguistic result of “Low” is
equivalent according to the membership function distribution. In the ANFIS Rule Viewer,
we can perform the evaluation as shown in Figure 8.
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4. Experimental Results

The total amount of work a central processing unit handles is known as CPU usage.
The performance of the system is also estimated using it. The volume and kind of comput-
ing jobs might affect CPU utilization because some take a lot of CPU time while others do
not. In this paper, we focus on an experiment on system performance and RAM, cache, stor-
age, bus, and CPU utilization. This section contains the evaluation results of the simulated
ANFIS models. The performances of ANFIS models are demonstrated by comparing their
results with actual CPU utilization status which was acquired from a system monitoring
application. The system monitoring application shows the numerical view of the actual
states of computer resources in real-time mode. The comparison of results of ANFIS models
with the system monitor’s data allowed us to evaluate the reliability of our ANFIS model.

During the hundred seconds, we monitored the state of computer components’ indica-
tors, such as processor utility (CPU), disk time (storage), cache, bus throughput, and pages
(RAM). Simultaneously, the obtained data were assessed using the Mamdani and Sugeno
type ANFIS models. In the first five columns of Table 4, we present the system monitor
application data. The table also presents the quantity and linguistical values of Mamdani
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and Sugeno ANFIS models in the remaining four columns. Both ANFIS models’ results
are practically similar to the actual utilization state of CPU. It means that our developed
ANFIS models evaluated the utilization status of CPU reliably, that is, the inference engine
containing the component rule base and training dataset was successfully studied by the
output mechanisms of ANFIS. The linguistical results of the Mamdani type ANFIS model
are more understandable and demonstrate a clear visual conclusion about CPU utilization.

Table 4. Utilization data and ANFIS evaluation results.

Performance Monitor Evaluation
(Percentage Utilization of Components)

CPU Evaluation of Mamdani
FIS

CPU Evaluation of Sugeno
FIS

Cache RAM Storage Bus CPU Crisp Value
(%)

Linguistic
Value

Crisp Value
(%)

Linguistic
Value

30 50 5 75 14 16.5 Low 11.8 Low
90 97 15 90 21 25.3 Middle 18.9 Low
78 80 30 100 31 33.1 Middle 29.9 Middle
96 90 15 100 33 34.3 Middle 34.9 Middle
82 97 23 92 50 49.0 Middle 49.6 Middle

100 100 25 100 52 50.6 Middle 52.6 Middle
20 70 3 92 26 28.2 Middle 24.0 Low
21 86 33 95 28 29.7 Middle 26.1 Middle
95 90 54 93 33 31.2 Middle 32.6 Middle
40 70 5 87 12 15.2 Low 17.6 Low

100 100 100 100 84 80.9 High 80.5 High
52 90 26 98 17 16.2 Low 19.4 Low

100 41 30 100 100 96.3 High 96.9 High
97 100 94 96 78 73.2 High 76.6 High

100 95 5 99 71 73.6 Middle 71.3 Middle
94 100 95 96 45 46.4 Middle 44.3 Middle
95 96 58 97 20 23.8 Low 18.3 Low
93 91 45 93 18 20.6 Low 16.6 Low
12 15 6 56 15 11.4 Low 14.1 Low
60 20 9 63 23 21.6 Low 21.3 Low
31 23 13 78 39 36.6 Middle 38.7 Middle
93 62 3 97 60 59.1 Middle 60.2 Middle
2 15 6 23 7 4.6 Low 5.1 Low
7 40 59 43 12 15.0 Low 10.9 Low
26 92 90 98 22 23.6 low 26.4 Low

The graphical visualization of performance monitor data shows the actual state of
the cache, RAM, storage, bus, and CPU utilization, Figure 8. According to these graphics,
we can analyze the impact of the above-mentioned components on CPU utilization. To
carry out analyses about the influence, we represented whole components’ influence on
CPU and the particular influence of each component on CPU utilization. As we see
in the graphs, it is difficult to realize fully linear characteristics between the CPU and
particular components, but each hardware component in many cases has a linear impact
on CPU. In Figures 9 and 10, cache and RAM are more important, and the results show
that their utilizations have more impact on CPU utilization on each level, i.e., increasing
and decreasing the utilization level significantly impacts CPU. In Figures 11 and 12, we
can see that storage and even bus have linear characteristics when utilization is quite low.
Moreover, the whole influence of all components is clearly represented in Figure 8 and the
total utilization level of all components has more sharp and linear characteristics in CPU
utilization. The results of the analyses demonstrate that the tested computer hardware
has linearity and that each hardware component is compatible with the others. System
compatibility indicates that no computer reconfiguration or redesign is required; instead,
the computer system handles and manages the actual workload.
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To evaluate the proposed ANFIS models, we compared the ANFIS data with actual
data about CPU utilization. The achieved results are impressive despite some incompatibil-
ities. The results of the ANFIS models are shown in Figures 13 and 14. As aforementioned,
we used linguistic variables and we defined their distribution diapasons. Table 5 shows
error prediction results, and average accuracy in the “Middle” diapasons is 0.16 for our pro-
posed Mamdani and Sugeno ANFIS models. In “Low” and “High” distribution diapasons,
both models show a difference from the actual status of CPU, especially in the “High” level.
The Mamdani type ANFIS model’s maximum and minimum error range is between 4.3
and −4.8. The maximum and minimum error indicator of Sugeno type ANFIS is between
5.6 and −3.1. Sugeno ANFIS has more accurate results in the “Low”, “Middle” levels. In
the “Low”, “Middle”, and “High” linguistic levels, Sugeno ANFIS average error results
are, respectively, −0.05, −0.18, and −2.26. Despite these weaknesses, we assess that the
proposed ANFIS models achieved significant evaluation results.
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Figure 13. Actual CPU and Mamdani ANFIS evaluation.
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Table 5. Prediction error and ANFIS evaluation results.

Performance Monitor Mamdani ANFIS Sugeno ANFIS

Linguistic
Value

Actual CPU
State Error Average

Error Error Average
Error

Low

7 −2.4

1.25

−1.9

−0.05

12 3.2 5.6
12 3 −1.1
14 2.5 −2.2
15 −3.6 −0.9
17 −0.8 2.4
18 2.6 −1.4
20 3.8 −1.7
21 4.3 −2.1
22 1.6 4.4
23 −1.4 −1.7

Middle

26 2.2

0.16

−2

−0.18

28 1.7 −1.9
31 2.1 −1.1
33 1.3 1.9
33 −1.8 −0.4
39 −2.4 −0.3
45 1.4 −0.7
50 −1 −0.4
52 −1.4 0.6
60 −0.9 0.2
71 2.6 0.3

High
78 −4.8

−3.86
−1.4

−2.2684 −3.1 −3.5
100 −3.7 −3.1

5. Conclusions

The proposed ANFIS models for evaluating processor performance are based on
specific parameters, which generally represent common parameters, such as the average
percentage of the workload associated with cache, RAM, bus, and storage. We assumed that
the utilization of cache, memory, storage, and bus includes all the main features affecting
the infrastructure of the computing system, namely the CPU utilization. We used adaptive
neuro-fuzzy logic to determine the evaluation rule strength by enhancing our previous
work [6]. This ANFIS is useful for any user who has an elementary knowledge and is just
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studying performance and utility of computer components. Computational experiments
were carried out based on adaptive neuro-fuzzy techniques to evaluate the utilization
influence of cache, RAM, bus, and storage on the state of CPU. For input components,
we determined linguistic variables such as “Low”, “Middle”, and “High”. Experimental
results allow us to analyze hardware components of the computer in linguistic mode,
that is, in the form of human language, which improves the judgement for experts and
impressively accelerates the decision-making process. In our work, the models’ results
were analyzed by comparing the results of a testbed computer component’s actual state,
and the rule strengths were built on this testbed computer, that is, the main concept of
our ANFIS models is that they require their own behavior dataset. The knowledge base
module partition dataset and rule base cannot be utilized in ANFIS models to evaluate
the other computers’ states. To prove the reliability of the proposed ANFIS models, we
made result comparisons only with the data acquired from the system monitor application.
The comparison shows each ANFIS has different accuracy in each linguistic distribution.
Mamdani type ANFIS predicts in the “Middle” level, near to the actual state, i.e., its average
accuracy is 0.16. In the “Low” and “High” linguistic distribution, ANFIS prediction error
reaches, respectively, 1.25 and −3.86. The Mamdani type ANFIS model’s maximum and
minimum error range is between 4.3 and −4.8. The maximum and minimum error indicator
of Sugeno type ANFIS is between 5.6 and −3.1. Sugeno ANFIS has more accurate results
in the “Low”, “Middle” levels. In the “Low”, “Middle”, and “High” linguistic levels, the
Sugeno ANFIS average error results are, respectively, −0.05, −0.18, and −2.26. Since the
system monitor application provides only quantitative data about utilization of computer
components and applications, it does not carry out any influence analysis among the
hardware components. Unlike the system monitor, our Mamdani and Sugeno type ANFIS
models receive utilization data and then assess CPU utilization. If actual state data of
the system monitor and ANFIS outputs are close or similar to each other, then we can
assess that the proposed models are reliable and we can use them for prediction and
evaluation of CPU state and determine component compatibility. The proposed technique
can be implemented in personal computers, mainframes, supercomputers, cloud computers,
centralized computers, and distributed computers by using their own behavior dataset
and rule base. In our future works, we are planning implement and test our model in the
above-mentioned computers.

Author Contributions: Conceptualization, A.B.; methodology, A.B.; software, A.B., A.M.; validation,
A.B., A.M.; formal analysis, A.B.; project administration, A.M.; investigation, A.B.; writing—original
draft preparation, A.B.; writing—review and editing, A.M.; visualization, A.B., A.M.; supervision,
A.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Enberg, P.; Rao, A.; Tarkoma, S. I/O is faster than the processor—Let’s share resources and eliminate (most) OS abstractions. In Pro-

ceedings of the Materials of the Workshop on Current Topics in Operating Systems (HotOS’19), Bertinoro, Italy, 13–15 May 2019;
pp. 81–87.

2. Ahituv, N.; Ibgaria, M. A Model for Predicting and Evaluating Computer Resource Consumption. Commun. ACM 1988, 31,
1467–1473. [CrossRef]

3. Perez, F.A.F. Mathematical modeling of the performance of a computer system. In Proceedings of the 1st Symposium on
Information Management and Big Data, SIMBig, Cusco, Peru, 8–10 September 2014.

4. Rajaram, K.; Malarvizhi, M.P. Utilization based prediction model for resource provisioning. In Proceedings of the International
Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017; pp. 1–6.
[CrossRef]

http://doi.org/10.1145/53580.53585
http://doi.org/10.1109/ICCCSP.2017.7944099


Sensors 2022, 22, 9502 19 of 20

5. Mentis, A.; Katsaros, P.; Angelis, L. Synthetic Metrics for Evaluating Runtime Quality of Software Architectures with Complex
Tradeoffs. In Proceedings of the 35th Euromicro Conference on Software Engineering and Advanced Applications, Patras, Greece,
27–29 August 2009.

6. Basaran, C.; Suzer, M.H.; Kang, K.D.; Liu, X. Robust Fuzzy CPU Utilization Control for Dynamic Workloads. J. Syst. Softw. 2010,
83, 1192–1204. [CrossRef]

7. Chen, Z.; Zhu, Y.; Di, Y.; Feng, S. Self-Adaptive Prediction of Cloud Resource Demands Using Ensemble Model and Subtractive-
Fuzzy Clustering Based Fuzzy Neural Network. Comput. Intell.Neurosci. 2015, 2015, 919805. [CrossRef] [PubMed]

8. Buriboev, A.; Kang, H.K.; Ko, M.C.; Oh, R.; Abduvaitov, A.; Jeon, H.S. Application of Fuzzy Logic for Problems of Evaluating
States of a Computing System. Appl. Sci. 2019, 9, 3021. [CrossRef]

9. Abraham, A. Adaptation of Fuzzy Inference System Using Neural Learning. In Fuzzy Systems Engineering. Studies in Fuzziness and
Soft Computing; Nedjah, N., Macedo Mourelle, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 181.

10. Tiwari, S.H.; Babbar, R.; Kaur, G. Performance Evaluation of Two ANFIS Models for Predicting Water Quality Index of River
Satlu (India). Adv. Civ. Eng. 2018, 2018, 8971079.

11. Kordestani, M.; Saif, M.; Orchard, M.E.; Razavi-Far, R.; Khorasani, K. Failure Prognosis and Applications—A Survey of Recent
Literature. IEEE Trans. Reliab. 2019, 70, 728–748. [CrossRef]

12. Dumitrescu, C.; Ciotirnae, P.; Vizitiu, C. Fuzzy Logic for Intelligent Control System Using Soft Computing Applications. Sensors
2021, 21, 2617. [CrossRef]

13. Karnavel, K.; Shanmugasundaram, G.; Salunkhe, S.S.; Sundari, V.K.; Shunmugathammal, M.; Saraswat, B.K. Actuator Fluid
Control Using Fuzzy Feedback for Soft Robotics Activities. Intell. Autom. Soft Comput. 2022, 32, 1855–1865. [CrossRef]

14. Karthika, B.; Deka, P.C. Prediction of air temperature by hybridized model (wavelet-ANFIS) using wavelet decomposed data.
Aquat. Procedia 2015, 4, 1155–1161. [CrossRef]

15. Munandar, D. Wavelet discrete transform, ANFIS and linear regression for short-term time series prediction of air temperature.
Int. J. Adv. Intell. Inform. 2017, 3, 68–80. [CrossRef]

16. Hossain, S.J.; Ahmad, N. Adaptive neuro-fuzzy inference system (ANFIS) based surface roughness prediction model for ball-end
milling operation. J. Mech. Eng. Res. 2012, 4, 112–129.

17. Helmi, H.; Forouzantabar, A. Rolling bearing fault detection of electric motor using time domain and frequency domain features
extraction and ANFIS. IET Electr. Power Appl. 2019, 13, 662–669. [CrossRef]

18. Awadallah, M.A.; Morcos, M.M. ANFIS-based diagnosis and location of stator interturn faults in PM brushless DC motors. IEEE
Trans. Energy Convers. 2004, 19, 795–796. [CrossRef]

19. Abdelwahab, S.; Kumar, V.; Abraham, A. Neuro-Fuzzy risk prediction model for computational grids. In Proceedings of the 2nd
International Afro-European Conference for Industrial Advancement—AECIA 2015, Paris-Villejuif, France, 9–11 September 2015.

20. Amekraz, Z.; Hadi, M.Y. CANFIS: A Chaos Adaptive Neural Fuzzy Inference System for Workload Prediction in the Cloud. IEEE
Access 2022, 10, 49808–49828. [CrossRef]

21. Bey, K.B.; Benhammadi, F.; Mokhtari, A.; Guessoum, Z. CPU load prediction model for distributed computing. In Eighth
International Symposium on Parallel and Distributed Computing; IEEE: New York, NY, USA, 2009; pp. 39–45.

22. Butt, M.; Akram, M. A novel fuzzy decision-making system for CPU scheduling algorithm. Neural Comput. Appl. 2016, 27,
1927–1939. [CrossRef]

23. Gellert, A.; Florea, A.; Fiore, U.; Zanetti, P.; Vintan, L. Performance and energy optimization in CPUs through fuzzy knowledge
representation. Inf. Sci. 2019, 476, 375–391. [CrossRef]

24. Beghdad, K.; Benhammadi, F.; Gessoum, Z.; Mokhtari, A. CPU Load Prediction Using Neuro-Fuzzy and Bayesian Inferences.
Neurocomputing 2011, 74, 1606–1616. [CrossRef]

25. Hussain, W.; Merigó, J.M.; Raza, M.R.; Gao, H. A new QoS prediction model using hybrid IOWA-ANFIS with fuzzy C-means,
subtractive clustering and grid partitioning. Inf. Sci. 2022, 584, 280–300. [CrossRef]

26. Malik, S.; Tahir, M.; Sardaraz, M.; Alourani, A. A Resource Utilization Prediction Model for Cloud Data Centers Using Evolutionary
Algorithms and Machine Learning Techniques. Appl. Sci. 2022, 12, 2160. [CrossRef]

27. Hamid, A.; Claus, P.; Giovani, E.; Areeg, S.; Frank, F. A fuzzy load balancer for Adaptive Fault Tolerance Management in Cloud
platforms. In Proceedings of the Service-Oriented and Cloud Computing: 6th IFIP WG 2.14 European Conference, ESOCC 2017,
Oslo, Norway, 27–29 September 2017.

28. Li, G.; Gao, T.; Zhang, A.; Chen, Y. Fuzzy logic load balancing strategy based on software-defined networking. In Proceedings of
the Wireless Internet: 10th International Conference, WiCON 2017, Tianjin, China, 16–17 December 2017.

29. Valarmathi, K.; Kanaga Suba Raja, S. Resource utilization prediction technique in cloud using knowledge-based ensemble random
forest with LSTM model. Concurr. Eng. 2021, 29, 396–404. [CrossRef]

30. Mason, K.; Duggan, M.; Barrett, E.; Duggan, J.; Howley, E. Predicting host CPU utilization in the cloud using evolutionary neural
networks. future generator. Comput. Syst. 2018, 86, 162–173. [CrossRef]

31. Duggan, M.; Mason, K.; Duggan, J.; Howley, E.; Barrett, E. Predicting host CPU utilization in cloud computing using recurrent
neural networks. In Proceedings of the 8th International Workshop on Cloud Applications and Security, Cambridge, UK,
11–14 December 2017.

32. Kumar, J.; Goomer, R.; Singh, A.K. Long Short-Term Memory Recurrent Neural Network (lstm-rnn) based Workload Forecasting
Model for Cloud Datacenters. Procedia Comput. Sci. 2018, 125, 676–682. [CrossRef]

http://doi.org/10.1016/j.jss.2010.01.031
http://doi.org/10.1155/2015/919805
http://www.ncbi.nlm.nih.gov/pubmed/25691896
http://doi.org/10.3390/app9153021
http://doi.org/10.1109/TR.2019.2930195
http://doi.org/10.3390/s21082617
http://doi.org/10.32604/iasc.2022.023524
http://doi.org/10.1016/j.aqpro.2015.02.147
http://doi.org/10.26555/ijain.v3i2.101
http://doi.org/10.1049/iet-epa.2018.5274
http://doi.org/10.1109/TEC.2004.837273
http://doi.org/10.1109/ACCESS.2022.3174061
http://doi.org/10.1007/s00521-015-1987-8
http://doi.org/10.1016/j.ins.2018.03.029
http://doi.org/10.1016/j.neucom.2011.01.009
http://doi.org/10.1016/j.ins.2021.10.054
http://doi.org/10.3390/app12042160
http://doi.org/10.1177/1063293X211032622
http://doi.org/10.1016/j.future.2018.03.040
http://doi.org/10.1016/j.procs.2017.12.087


Sensors 2022, 22, 9502 20 of 20

33. Dartois, J.; Knefati, A.; Boukhobza, J.; Barais, O. Using Quantile Regression for Reclaiming Unused Cloud Resources while
Achieving SLA. In Proceedings of the 2018 10th IEEE International Conference on Cloud Computing Technology and Science,
Nicosia, Cyprus, 10–13 December 2018.

34. Makridis, E.; Deliparaschos, K.; Kalyvianaki, E.; Zolotas, A.; Charalambous, T. Robust Dynamic CPU Resource Provisioning in
Virtualized Servers. IEEE Trans. Serv. Comput. 2022, 15, 956–969. [CrossRef]

35. Ross, T.J. Fuzzy Logic with Engineering Applications; John Wiley Sons: Hoboken, NJ, USA, 2009.

http://doi.org/10.1109/TSC.2020.2966972

	Introduction 
	Proposed Idea 
	ANFIS 
	Mamdani and Sugeno Type ANFIS 

	Data Acquisition and Performance Evaluation 
	Data Acquisition Application 
	Developing the ANFIS for Evaluation of CPU Utilization 

	Experimental Results 
	Conclusions 
	References

