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Abstract: Robust, fault tolerant, and available systems are fundamental for the adoption of Internet
of Things (IoT) in critical domains, such as finance, health, and safety. The IoT infrastructure is often
used to collect a large amount of data to meet the business demands of Smart Cities, Industry 4.0, and
Smart Home, but there is a opportunity to use these data to intrinsically monitor an IoT system in an
autonomous way. A Test Driven Development (TDD) approach for automatic module assessment
for ESP32 and ESP8266 IoT development devices based on unsupervised Machine Learning (ML) is
proposed to monitor IoT device status. A framework consisting of business drivers, non-functional
requirements, engineering view, dynamic system evaluation, and recommendations phases is pro-
posed to be used with the TDD development tool. The proposal is evaluated in academic and smart
home study cases with 25 devices, consisting of 15 different firmware versions collected in one week,
with a total of over 550,000 IoT status readings. The K-Means algorithm was applied to free memory
available, internal temperature, and Wi-Fi level metrics to automatically monitor the IoT devices
under development to identify device constraints violation and provide insights for monitoring
frequency configuration of different firmware versions. To the best of the authors’ knowledge, it is
the first TDD approach for IoT module automatic assessment which uses machine learning based
on the real testbed data. The IoT status monitoring and the Python scripts for model training and
inference with K-Means algorithm are available under a Creative Commons license.

Keywords: IoT; machine learning; software engineering; TDD; testbed

1. Introduction

The Internet of Things (IoT) is a critical infrastructure necessary to the deployment
of large projects with huge potential to change whole business sectors. Things present in
IoT environments are responsible for measuring the variables of the physical world and
share it across the network. Either a local network or the Internet can be used to connect
things and generate a connected environment that can be measured and controlled. Sensors
embedded in these things enable the measurement of temperature, pressure, oxygen levels,
presence, and others that are applied to projects related to Smart Cities, Industry 4.0, and
Big Data.

Consider an example of IoT application in the remote operation field. Workers oper-
ating remotely on hazardous situations and dangerous scenarios, with reduced costs and
safety guaranteed by the distance and the real time monitoring [1]. IoT could be the bridge
between the IT and the operations ground using the data generated in the production
process [2]. The non-functional requirements of the underlying IoT infrastructure are
fundamental to enable the business value generation in this example.
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Moreover, critical applications, such as health, finance, and safety, require higher levels
of quality. These areas are good examples of critical areas that require robust and fault
tolerant systems with high availability, as they are used in fields that are crucial for the
function of society, and unavailability events in these areas can be dangerous and expensive.
As analyzed by IBM in 1998 [3], the unavailability of brokerage operations and credit cards
operations had an average combined cost of USD 9.1 million per hour.

Considering an IoT architecture organized in layers as described in the reference
architecture IoT-A [4], the applications, such as the Smart City, are present in the data layer,
corresponding to the Application and Presentation layers of the traditional OSI model. The
underlying layers, End to end, Network and ID, Link, and Physical, which correspond to
the Session, Transport, Network, Data Link, and Physical layers of the OSI model. Similar
to how the Internet works, the underlying layers are essential for the smooth operation of
the applications, and we consider that these layers embed the non-functional requirements
that shape quality levels necessary to critical applications. The successful deployment of
IoT depends on how these non-functional requirements are modeled and implemented
to provide a reliable and trustworthy infrastructure that enables the IoT to create value to
businesses and people.

However, the deployment of traditional approaches to the IoT domain is not trivial.
The IoT integrates constrained devices with energy, processing, memory, and communi-
cation limitations, and it also employs heterogeneous communication protocols, devices,
and architectures, such as those that are edge and cloud-based. A motivation for this work
is relative to the application of a similar protocol to the Simple Network Management
Protocol (SNMP) [5] to manage IoT devices considering monitoring procedures.

In this article, we consider the following research question: “is it possible to assess
if non-functional requirements are being supported by an IoT system in real time in an
autonomous way?”. The objective is to monitor IoT modules with the goal of increasing
its Testability. Testability is considered a sub-characteristic of the Maintainability non-
functional characteristic as described in ISO25010 [6].

The problem considered within the scope of this paper is the lack of automated testing
and monitoring of IoT devices under development. Such low Testability hinders the quality
aspects of the resulting IoT system. For example, if an IoT device violates its resource
utilization in the development phase, the resulting IoT product may present unavailability
events when deployed.

Our hypothesis considers that the RM-ODP [7] standard is a relevant reference for the
proposition of a Test-Driven Development (TDD) Framework to allow the monitoring of IoT
systems considering a structured approach considering business drivers, non-functional
requirements, and dynamic evaluation. The TDD [8] is applied with unsupervised machine
learning based on IoT deployed modules data to obtain automated tests that better represent
real-world constraints. These automated tests could be used by a developer with a TDD
approach, so that IoT module problems (e.g., memory limitation) are identified earlier in
the development process.

The main contributions of this work are:

• A Test-Driven Development (TDD) tool built with K-Means clustering algorithm with
real testbed data to enhance the Testability non-functional requirement of IoT systems
under development;

• A framework that considers business drivers and non-functional requirements to
support the IoT solution development process;

• Validation of a proposed framework in smart home and remote lab study cases
to obtain deployment conditions and monitoring frequency of different IoT device
firmware versions.

This article is an extended version of our paper published in Intercloud and IoT
at 8th International Conference on Future Internet of Things and Cloud (FiCloud 2021),
considering the historical data collection, the addition of the remote lab case study, and the
proposition of a generalized framework considering RM-ODP besides the TDD.
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To the best of the authors’ knowledge, it is the first TDD approach for IoT module
automatic assessment which uses machine learning based on real testbed data. Some of the
related work carried out experiments in testbeds with real hardware devices, but none of
them used machine learning, which motivated the novel TDD approach validated with
two study cases.

The open source materials related to this article are available in the following reposi-
tory: https://github.com/vthayashi/TDD-IoT, (accessed on 30 November 2022).

This document is organized as follows: Section 2 presents a structured literature
search and with some related work. Section 3 follows with the Research Background
of IoT architecture, ISO25010 as a standard for non-functional requirements, the RM-
ODP standard, the microservices architecture and the TDD. Our proposed framework is
presented in Section 4. Section 5 describes the smart home and remote lab study cases to
show how the framework might be applied in the wild to elaborate suggestions related
to microservices, cloud and edge architectures, and device management. We discuss and
compare our approach with the related work in the Section 6. The final considerations and
directions for related work are presented in Section 7.

2. Related Work

The related work [9] offers an overview of the technology requirements for future
Cooperative Cyber–Physical Systems (Co-CPSs) in terms of wireless communication and
safety.They focused on highlighting the main wireless communication technologies cur-
rently available and evaluated their compliance to the safety requirements of Cooperative
Cyber–Physical Systems (Co-CPSs) in terms of dependability, security and safety.

The researchers in [10] presented a novel hybrid-simulation-based testing technique.
This technique allows IoT systems to be tested by orchestrating a real-time interaction
between real-life and virtual local IoT entities. First, they analyze the behavior of local
entities, such as IoT devices or people interacting with the IoT system. Additionally, they
presented two possible techniques to solve the scalability constraints of state-of-the-art
simulation techniques: one based on model abstraction and another based on the optimal
resource distribution of simulation entities. Challenges that arise when implementing this
hybrid simulation based technique are the simulation of the human behavior and the lack
of synchronization.

Developers in [11] demonstrated how an IoT-based infrastructure could support
establishing a co-simulation platform following SGAM requirements. Integrating a digital
real-time simulator could enable to test physical devices by hardware in-the-loop set-ups, as
well as evaluating the performance of new algorithms via software in-the-loop experiments.
The results of the proposed architecture are not as precise as a real advanced measurement
infrastructure, but it could provide accurate results.

Researchers in [12] compare open source technologies of IoT from the point of view
of different levels of technical requirements, such as device management, data manage-
ment, communication, data processing, security and privacy protection, and also look at
requirements of application development and deployment. Then, a cloud–fog cooperated
integrated application development platform architecture for IoT applications based on an
open source ecosystem was proposed and evaluated in an industrial IoT scenario. The per-
formance results showed that the CoAP protocol performed better than HTTP. The gateway
availability test also showed that the IoT gateway based on the open source ecosystem had
a stable and reliable performance with a certain data size and concurrency scale, and that
this scale could meet the application requirements of the IoT in most sensing environments.

Researchers in [13] proposed a layered IoT architecture (called IoTecture) whose com-
ponents are mapped to stages of an IoT computing in different deployment configurations.
A performance analysis study with six configurations revealed that different deployment
configurations of layered components into staged locations generate different hardware
and software bottlenecks that affect system performance and scalability. Examples of

https://github.com/vthayashi/TDD-IoT
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limitations of this article are: evaluating the performance of components located in higher
layers; automating the deployment process; and using different technology sets.

The researchers in [14] proposed an integrated authentication and capability-based
access control for increased usability in IoT environments. The important characteristic
of the approach is that the capability metric generated during authentication is used to
perform access control. The approach also allows lightweight operations to be performed
on IoT devices and computation intensive operations on the cloud server. The security
evaluation also shows that it is secure against various attack vectors predominant in IoT.
The testbed used a laptop device to imitate the Cloud Server and Raspberry Pi devices
to imitate the IoT devices. The experimental results show that the proposed approach
incurs a maximum CPU usage of 29.35%, a maximum memory usage of 2.79%, and total
computational overhead of 809.26 ms in a real IoT testbed.

In [15], a routing protocol for the IoT (RIoT) was presented with an aim to overcome
the problems associated with routing protocol for low-power and lossy networks (RPL)
for a better IoT ecosystem. They also presented a communication architecture based on
multiple gateways. The testbed results demonstrate that due to RIoT’s lower control
message overhead it exhibits better performance in terms of packet delivery ratio (PDR)
and per-packet end-to-end delay compared to the RPL-based protocol. They showed that
network partitioning is a major problem in mobility-based IoT use cases, and the impact
of the problem on a network performance can be reduced using multiple gateways in
the network.

The proposal in [16] is to use the MAPE-K framework (monitoring, analyze, plan, and
execute with knowledge base), applied to a BPM system to operate an IOT environment
capable of monitoring itself in cycles and verifying its own functioning and its own quality,
if the tasks are being carried out in the best way possible.

Researchers in [17] presented an alternative to improve the data transmission valida-
tion process in a previously developed WSN-IoT system. They implemented the test-driven
development methodology (TDD) for the build out of validation application algorithms. As
a result, they developed validation application that captures and analyzes data frames, in
addition, compares the values of the monitored variable in each layer of the implemented
model. Furthermore, the development reports the errors detected in the data transmission.
As limitations of this work, they cite the high dependence on networks to monitor the
performance of the designed application.

In [18], the researchers described the Open-Multinet (OMN) framework, which allows
the extraction of underlying information from tree-based data structures. Additionally, they
developed a set of ontologies to support resource management in federated and distributed
computing infrastructures. Users can query OMN information that represents the resources
available in the underlying infrastructures and match them with their own computational
requirements. The time needed to find matching resources in more complex queries are
acceptable to end-users.

A mathematical model to represent a system in aggressive cyberspace is presented
in [19], and it supported a simulation of a system considering its efficiency of operation,
operation risk, and the resources invested in cybersecurity measures.

The authors of [20] propose the functional safety estimate of a cyber–physical system
using a Markov model. It is relevant because the assessment of functional safety is one
of the primary tasks both at the design stage and at the stage of operation of critical
infrastructure, in which IoT systems could be deployed.

Regarding IoT systems development, some application fields are vehicular networks
(e.g., delay-tolerant networks for IoT-based vehicular networks are proposed in [21]) and
smart homes (e.g., a smart home based on Bluetooth is proposed in [22]). One case study
presented in this paper is also in the smart home scenario.

Table 1 summarizes the related work. We realized that some of the related work carried
out experiments in testbeds with real hardware devices but none of them used machine
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learning (ML), which motivates the TDD approach with machine learning proposed and
validated with two study cases.

Table 1. Related works regarding IoT testing.

Reference Publisher Year Simulation Testbed ML

Balador et al. [9] MDPI 2018 no yes no

Bosmans et al. [10] ACM 2019 yes yes no

Estebsari et al. [11] MDPI 2019 yes yes no

YangQun Li [12] MDPI 2018 yes no no

Zyrianoff et al. [13] MDPI 2020 no yes no

Sivaselvan et al. [14] IEEE 2020 no yes no

Farooq [15] Oxford 2020 yes yes no

Seiger et al. [16] Springer 2019 yes yes no

Fernández et al. [17] UCC 2021 yes no no

Willner et al. [18] MDPI 2017 no yes no

Kovtun et al. [19] IEEE 2022 yes no no

Kovtun et al. [20] Springer 2022 yes no no

3. Research Background

This section presents the IoT architecture considered in this work, the ISO25010
standard to understand the non-functional requirements used to specify quality levels
the resulting IoT system must adhere. The RM-ODP method is described as a structured
approach to consider different views during a system specification and modeling. The
microservices architecture is described considering its strong and weak points. Finally,
the TDD methodology is summarized as a guideline we used in the proposition of the
automated monitoring based on automated tests.

3.1. IoT Architecture

Standards and reference architectures (RA) contribute to the reduction of the com-
plexity of IoT systems and the architectural structures help to build IoT systems that can
support and execute necessary functions [23]. It is important because an architecture for
IoT needs to integrate many technologies, such as protocols, patterns, sensors, actuators,
conventional frameworks of the Internet, and applications for the most different purposes
while keeping the security and reliability of applications.

IoT architecture presents challenges in the most diverse scenarios. These challenges
may be in architectural layers (inter-architecture or intra-architecture), entity-based (hard-
ware, software, or data), technological (specific IoT or related technologies), or feature-based
challenges (compatibility, capacity, connectivity, scalability, or security) [24]. Then, the
challenges for architecture in IoT are diverse and occur because of the heterogeneity of
environments and technologies.

IoT heterogeneity can be observed in [25] with an overview of IoT architectures, tax-
onomies, devices, gateways, operating systems, communication technologies, middleware,
and platforms. Architectures based on layers, middleware, service-oriented, and fog-based
are presented. In middleware-based architectures, one middleware layer is responsible
for controlling the flow of data in the system. Service-oriented architecture divides the
functionalities and exposes them through interfaces. In fog-oriented architectures, other
layers are added with a focus on the processing of data.

Therefore, the diversity of IoT architectures result in its complexity. Reference archi-
tectures are proposed to mitigate this diversity. Another issue must be taken into account,
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the heterogeneity of physical and software components to be integrated in these architec-
tures. These components directly influence the complexity of the IoT design and the choice
of architecture.

In the proposed TDD framework, we propose the automated monitoring of black-
box connected devices and software modules that compose IoT architectures. As long
as the architecture uses the open standard MQTT (Message Queuing Telemetry Trans-
port) [26] protocol to support rastreability with the proposed framework, the underlying
IoT architecture may use other technologies and reference architectures. In this way, the
proposed framework may contribute to address the challenge of diverse IoT architectures
by enhancing their testability.

3.2. ISO25010

There are development guidelines to be followed in order to ensure that the IoT system
delivers the needed level of trust and reliability, with non-functional requirements to be
fulfilled. By definition, the non-functional requirements of a system are what the system is,
not what the system does. The non-functional requirements must be evaluated under a
quality model that assures the quality in a degree that the system can satisfy the needs and
demands of its stakeholders. The ISO/IEC model defines the standard of non-functional
requirements and guarantees that each of the stakeholders needs are covered.

The ISO25010 standard defines a quality model composed of eight quality charac-
teristics: functional suitability, performance efficiency, compatibility, usability, reliability,
security, maintainability, and portability. The performance efficiency considers the time
behavior, resource utilization and capacity of a system. The maintainability characteristic
has the modularity, reusability, analysability, modifiability, and testability characteristics.

The development process must be planned in order to be compliant with the ISO/IEC
25010 [6] from the beginning, combining characteristics with agile development methods
to deliver fault tolerant, reliable, and trustworthy software solutions. As an example of the
implementation of a software engineering tactic to control a non-functional requirement
of an IoT system, consider the Markov analysis for availability evaluation and impact of
preventive and corrective maintenance procedures at device and local network levels based
on real testbed data from local and Internet-level ping procedures [27].

The proposed framework aims to enhance the testability, which is a characteristic of the
maintainability non-functional requirement of ISO25010 standard. The study cases reported
in the next sections investigated the automated monitoring of the resource utilization,
characteristic of the performance efficiency non-functional requirement.

3.3. RM-ODP

The RM-ODP method [7] provides five architectural viewpoints that complement each
other: business domain (consisting of business drivers that the solution must comply),
functional and non-functional requirements, engineering solutions (considering hardware,
software, and process mechanisms), and technologies (components, platforms, and their
integrations). It provides a rationale to specify solutions from the business domain, to the re-
quirements, engineering solution and technologies that are used to implement the system.

Considering the trade-off involving high capacity in the IoT scenario in terms of pro-
cessing from cloud resources, and limited capacity of vulnerable sensors and actuators,
these views from RM-ODP contribute to identify architectural decisions that must be care-
fully created, tested, and monitored through all the development and operation life cycle
to support quality aspects, such as fault tolerance, availability, precision, and traceability.

Simulations regarding trade-off analysis in IoT architectures are presented in the
literature. For example, the authors of [28] use Petri Nets to evaluate architectural trade-
offs in a smart speaker system, such as the accuracy and response time trade-off between
speech to text services, and provided some suggestions regarding a redundant architecture
and the lock-in aspect of some conversational interfaces integrated to IoT systems.
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The case studies presented in the following sections use the RM-ODP views to organize
the documentation of the automated monitoring tests.

3.4. Microservices

A monolith structure means high coupling in terms of data, functionality, and tech-
nology. Low development scale, low productivity in tests and limited evolution are some
characteristics in opposition with an agile development process. There are non-functional
requirements as the foundation to adopt microservices [29,30] structures for IoT systems.

Sensors precision, availability, and resulting data integrity considering vulnerable
devices. In this scenario, fault tolerance is achieved by microservices which deal with the
low robustness of devices, so that the fragility of specific parts of the system do not damage
the rest of the IoT application (if well isolated).

The fault tolerance aspect needs redundancies of hardware, software, and data algo-
rithms with high cohesion and low coupling structuring components. Small parts command
alternative functions that are sufficiently complete to avoid system unavailability because
of these smart redundancies provided by independent services.

Modifiability would be one of the leading quality aspects of successful microservices
adoption. The modification and test spaces are limited to pieces that bring agility, velocity
for changes, and business evolution due to the flexible architectural solution.

An IoT system requires a balanced architecture to support agility to evolve, perform,
monitor, and respond considering suitable functions and the large scale of a parallel
development team. All of these aspects are present in the microservices-based architecture.
Additional benefits are to be achieved if the agile development process, automation tests,
and continuous integration are combined with the microservices architecture.

3.5. TDD

The manifest of agile software development main point is to focus more on what
makes the solution work than in rules and writing about the solution [31]. The goal is to
deliver the best of the solutions, with continuous improvement during the development
process. For testing, Kent Beck, signer of the agile manifest, adds Test-Driven Development
(TDD) to the manifest concepts and states that test cases should be written for the needed
improvement, and then code should be written for this test and refined until it becomes
acceptable [8].

The TDD seems easy to write but difficult to execute. In a microservices-based system,
the TDD is so crucial as it is related to properly testing components (code and assets)
of the IoT system. If an automation test module is responsible for approving modified
parts, then an automated quality gate is working. Additional software process challenges
arise with non-functional requirements; response time, precision, simultaneous access, and
fault-tolerance are examples of quality aspects that might require automated verification:

• Test programs may create conditions with high simultaneous access then measure the
response time to assess good performance levels;

• Similar to precision, using simulated fault of sensor readings to validate the employed
redundancies to support precise responses;

• In case of simultaneous access, the first item would be sufficient to create a quality
gate to approve modifications;

• Availability can be measured by test cases that create fault parts of the system and the
resultant behaviors.

As the development process follows the test driven methodology, an opportunity
arises: the technology itself could be used to ensure the system compliance levels. In this
work, we consider the automation of the test cases based on data collected by deployed
modules ensures that these tests are close enough to the real-world scenario.
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4. Proposed Framework

This section presents the proposed framework for IoT automated monitoring. First, the
proposed method based on TDD and RM-ODP is described. The automated test approach
detailing how the unsupervised machine learning is used on real testbed data follows.
Finally, an IoT status example for the ESP32 IoT Development Module is presented.

4.1. Proposed Method

The proposed method considered in the framework for automated monitoring in
IoT is illustrated in the Figure 1. It must be used by a team consisting of different
stakeholder roles:

• IoT developer: the technical staff, individual, or company that is held responsible by
the implementation of the IoT solution. It must have necessary hardware, software
and architectural expertise to develop and deploy the IoT solution;

• Business specialist: usually the client, a team, or individual that wants to deploy IoT
solutions to reduce costs and create value in Smart City, Industry 4.0, Smart Home,
and other application fields. It has a deep understanding of the business needs related
to the IoT solution.

We consider that the IoT developer and the business specialist are individuals or teams
that participate in an IoT project in a critical field. The quality aspects must be controlled to
make sure that the resulting technical solution adheres to the non-functional requirements
modeled considering the business drivers. The method may be applied in the start of an
IoT project to enhance the resulting IoT solution quality attributes. It is comprised of the
following steps:

1. Business drivers: related to business view from the RM-ODP. Business needs must be
specified by the business specialist to the IoT developer;

2. Non-functional requirements: according to the ISO25010, specify the non-functional
requirements and prioritize these requirements considering the business drivers
described in the first step;

3. Engineering view: related to the engineering view present in RM-ODP. The IoT
developer must present the architectural solution that support the non-functional
requirements monitoring;

4. Dynamic system evaluation: real time monitoring and data collection from testbeds
that enable automated tests and analysis with unsupervised machine learning mecha-
nisms. The automated tests are used by the IoT developer in a TDD methodology;

5. Recommendations: the IoT developer must provide suggestions based on the anal-
ysis performed to the business specialist, considering how the business drivers are
modeled in non-functional requirements. The suggestions may be related to the
architecture (e.g., monolithic or microservices, cloud or edge data processing).

Figure 1. Proposed method for the framework for automated monitoring in IoT.



Sensors 2021, 22, 9498 9 of 25

4.2. Automated Test

The proposed automated test approach is illustrated in Figure 2. There are three
environments considered: the deployment, cloud, and development environment. The
user interacts with IoT modules in an deployment environment, such as a smart home.
The deployed modules send their status to a MQTT (Message Queuing Telemetry Trans-
port) [26] broker in a continuous fashion. The MQTT broker available in a cloud computing
environment, where other services such as storage could also be available. The IoT module
status metrics are used to train an unsupervised machine learning model. This trained
model is used in an automated test that the developer applies to an IoT module under
development. As the model was trained with the deployment scenario data, we advocate
that the resulting automated test resemblance to a real-world scenario is bigger than a
manual test that the developer could create.

Figure 2. Proposed TDD scheme for IoT with automated tests.

ESP32 modules with different firmware versions (and even for different applica-
tions) send their data frequently to an open MQTT broker using the integrated Wi-Fi
communication (1). A script is responsible for data collection from the open MQTT broker
deployed in a cloud computing environment (2). The data collected are used to train the
K-Means model with another script deployed in Google Colab cloud environment, with the
cluster labeling (i.e., good or bad) performed by the developer (3), as detailed in Figure 3.
The trained model is imported by a script responsible for inference that receives the real
time data from the ESP32 modules and classify them according to the labels provided by
the developer in the previous step (4). The inference procedures is detailed in the BPMN
diagram of Figure 4. The K-Means clustering algorithm [32] was chosen because of its
maturity. An additional motivation is that this algorithm showed good results in other
applications, such as image segmentation [33].
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Figure 3. BPMN diagram of the training phase of the automated tests.



Sensors 2021, 22, 9498 11 of 25

Figure 4. BPMN diagram of the inference phase of the automated tests.
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4.3. IoT Status

As illustrated in Figure 5, the IoT module status is composed by intrinsic and extrinsic
metrics. Intrinsic metrics could be the total free memory available in a given moment, or
the CPU temperature. An example of extrinsic metric is related to communication, that
is subject to external environmental conditions. In this example, we consider the ESP32
which has a built-in Wi-Fi communication, it is possible to obtain the Wi-Fi level of the
network which the IoT module is connected to.

Figure 5. Example of IoT module status collected metrics.

The metrics free memory available, processor’s temperature and Wi-Fi level may
be collected with the ESP32. Figure 6 portrays the IoT status monitoring rationale to
collect these three metrics. Wi-Fi and MQTT connection are monitored and reconnection
procedures are applied if necessary. If both connections are available, then the metrics
monitored are sent to the MQTT broker in JSON format each 2 s. Each module publishes in
a specific topic “chipID/status”, where “chipID” is an identifier available for the ESP32
module. As the free memory available is an instantaneous variable, it is monitored with the
highest frequency possible, and its minimum value is stored and sent to the MQTT broker.

Figure 6. IoT module flowchart for status publishing in a MQTT topic.
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We validate our approach with a Proof of Concept (PoC) with ESP32 and ESP8266 (its
predecessor) Wemos IoT Development modules. The libraries used for the IoT module
monitoring script are Wi-FiClient and Wi-Fi for Wi-Fi connection, and PubSubClient for
MQTT connection.

5. Case Studies

This section presents two study cases that show how the proposed method could
be applied in the wild with different MQTT broker implementations, SQL and NoSQL
databases, and in private and public cloud environments.

5.1. Remote Lab

The first study case is a remote lab whose IoT devices are responsible for temperature
and humidity monitoring, and air conditioner control by infra-red signals. As illustrated
in the Figure 7, each deployed IoT device sends its status readings to a Mosquitto MQTT
broker. The status available for the ESP32 devices in this scenario is composed by free
memory, processor temperature and Wi-Fi level metrics. A Python agent is integrated with
the MQTT broker and it is responsible for the registration of messages in a MySQL database.
This database is consulted by a Python notebook for an unsupervised machine learning
training. The trained K-Means model is used by a TDD tool that uses the current IoT status
readings to assess if the IoT under development has similar status to the deployed IoT
devices, according to their historical values. The Mosquitto MQTT broker, Python Agent,
and MySQL database are deployed in a private cloud computing environment in Brazil,
the deployed IoT device is in a remote lab in an Brazilian University, the IoT device under
development is installed in a student’s home, where the TDD tool and model training
Python notebooks are executed.

Figure 7. Remote lab study case architecture.

The data collection procedure is detailed in the Figure 8. Each 10 s the air conditioner
devices send the status to the MQTT broker, and the humidity and temperature device
send the status each 2 s. All messages are registered in the MySQL database by the Python
Agent integrated with the Mosquitto MQTT broker.
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Figure 8. Deployed IoT device status data collection with periodic sending.

The TDD procedure is described in the Figure 9. The TDD tool with the trained
machine learning model is subscribed in IoT status topics. Each status message from the
IoT device under development is relayed to the TDD tool by the MQTT broker, and it is
used to compare the current status to the clustered historical values from deployed devices.

Figure 9. TDD procedure for IoT device under development (remote lab scenario).

We collected a total of 1178 readings from two ESP32 devices with two different
firmware versions from 9 July 2021 to 13 July 2021. The metrics of the ESP32 devices
are freeheap in bytes (i.e., free memory available), internal_temperature in Celsius (i.e.,
temperature of the processor) and wifi_level in decibels (i.e., local Wi-Fi network level). A
summary of the collected metrics of these two devices is presented in the Table 2.

Table 2. Remote lab ESP32 metrics summary.

Chipid
Freeheap Internal_Temperature Wifi_Level

Min Mean Max Min Mean Max Min Mean Max

5,861,220 215,592 220,818 222,332 50.0 50.4 52.2 −78.0 −70.8 −65.0

13,443,280 220,404 222,117 222,160 52.8 53.5 53.9 −83.0 −80.6 −79.0

The correlation matrix of the Figure 10 shows the strong negative correlation between
wifi_level and freeheap.
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Figure 10. Remote lab metrics correlation matrix.

The negative correlation between wifi_level and freeheap is confirmed by the clusters
visualization in Figure 11. The K-Means clustering algorithm was performed using the
aforementioned three metrics with the total number of cluster of two corresponding to a
good and bad status clusters. After the clustering, the cluster label is performed by the IoT
developer based on the visual representation, such as the one represented in Figure 11.

Figure 11. Remote lab K-Means clusters. Red dots are the centroids of each cluster, cluster 0 has
yellow dots and cluster 1 has purple dots.

The clustering results are summarized in Table 3. One may observe that both firmwares
presented more bad status occurrences than good status occurrences, with bad status
occurrences accounting for around 60% of all readings for both cases.
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Table 3. Remote lab ESP32 clustering results.

Firmware Kmean Count

arcond-ir
0—bad 224

1—good 144

dht-tempumid
0—bad 498

1—good 312

With the trained model, it was possible to classify the IoT device under development
status described in (1) in the bad status cluster (i.e., cluster 0).

′chipid′ :′ 16716748′

′ f reeheap′ :′ 222160′

′internal_temperature′ :′ 53.89′

′wi f i_level′ :′ −81′

(1)

Considering the proposed framework, we describe the five steps considered:

1. Business drivers: the motivation is to scale the air conditioner automation solution
to the entire campus, considering the different communication conditions, and the
possible additional functionalities that may be required by certain labs;

2. Non-functional requirements: the performance efficiency requirement is prioritized,
considering the resource utilization. Another relevant requirement is the maintain-
ability, considering the testability characteristic.

3. Engineering view: the architectural solution was illustrated in the Figure 7, and
described in detail.

4. Dynamic system evaluation: initial descriptions are described in Figures 8 and 9. The
historical clustering results are presented in Table 3, and one example of a status
reading classified in the cluster 0 (bad status according to the IoT developer rationale)
is presented in (1).

5. Recommendations: considering that the deployed modules presented Wi-Fi levels
from −83 to −65 (see Figure 11), it is desirable that the new IoT automation modules
have Wi-Fi levels within this range. Based on Table 2, the modules with extended
functionalities must maintain a free memory of around 220,000 bytes. The developers
should use the TDD tool to monitor the free memory and internal temperature metrics.

5.2. Smart Home

The second study case is a smart home whose IoT devices are responsible for energy
consumption monitoring, and appliances control by smart plugs.

As illustrated in the Figure 12, a Python agent requests the IoT status in a periodic
and configurable way. Each deployed IoT device responds by sending its status readings
to a HiveMQ MQTT broker (Community Edition, which is the free version). The status
available for the ESP8266 devices in this scenario is composed by free memory, loop count,
total bytes used by the filesystem, and Wi-Fi level metrics. A database plug-in is integrated
with the MQTT broker and it is responsible for the registration of messages in a MongoDB
NoSQL database. This database is consulted by a Python notebook for an unsupervised
machine learning training. The trained K-Means model is used by a TDD tool that uses the
current IoT status readings to assess if the IoT under development has similar status to the
deployed IoT devices in the smart home, according to their historical values. The HiveMQ
MQTT broker and its database plug-in, Python Agent, and NoSQL database are deployed
in a public cloud computing environment in the United States (USA), the deployed IoT
device is in a Brazilian smart home testbed, and the IoT device under development is
installed in a student’s home, where the TDD tool and model training Python notebooks
are executed.
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Figure 12. Smart Home study case architecture.

The data collection procedure is detailed in the Figure 13. Each second the Python
agent queries the IoT devices deployed in the smart home, which send their status to the
MQTT broker. All messages are registered in the NoSQL database by the plug-in integrated
with the HiveMQ MQTT broker.

The TDD procedure is described in the Figure 14. The TDD tool with the trained
machine learning model is subscribed in IoT status topics. Each status message from the
IoT device under development (sent as a result of the periodic Python Agent request) is
relayed to the TDD tool by the MQTT broker, and it is used to compare the current status
to the clustered historical values from deployed devices.

Figure 13. Deployed IoT device status data collection with periodic request.



Sensors 2021, 22, 9498 18 of 25

Figure 14. TDD procedure for IoT device under development (smart home scenario).

We collected a total of 595,554 readings from 22 ESP8266 devices with 13 different
firmware versions from 10 July 2021 to 17 July 2021. The metrics of the ESP8266 devices
are freeheap in bytes (i.e., free memory available), wifi_level in decibels (i.e., local Wi-Fi
network level), fs_usedbytes (i.e., total bytes used in the filesystem) and max_loop_wdt_cnt
(i.e., the maximum loop watchdog count).

The readings count by each of the 13 different firmware versions is presented in
Figure 15.

Figure 15. Readings count by firmware version.

A summary of the collected metrics of the 22 ESP8266 devices installed in the smart
home is presented in the Figure 16.
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Figure 16. Summary of the four ESP8266 metrics.

The correlation matrix of the Figure 17 shows the negative correlation between
wifi_level and freeheap, and between wifi_level and fs_usedbytes.

Figure 17. Smart home metrics correlation matrix.

The K-Means clustering algorithm was performed using the aforementioned four
metrics with the total number of cluster of two corresponding to a good and bad status
clusters. After the clustering, the cluster label is performed by the IoT developer based on
the visual representation, such as the one represented in Figure 18.

The clustering results are summarized in Table 3. The firmware versions ArCond2,
R4x2, RM6, RM8, and TV4x2 presented the worst status results, resulting from bad Wi-
Fi signal and more integrated functionalities that may compromise performance. The
firmware versions R4x2o, R4x4ir5, R4x4o, RM, RM1, RM1t10o, and WifiModem presented
the best results, resulting from specialized functionality or better location for Wi-Fi level.
The R4x4ir firmware version presented an average status.
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Figure 18. Smart home K-Means clusters.

With the trained model, it was possible to classify the IoT device under development
status described in (1) in the good status cluster (i.e., cluster 1).

′ f s_usedBytes′ : 340858,
′max_loop_wdt_cnt′ : 992,

′ f reeheap′ : 39112,
′wi f i_level′ : −75

(2)

Considering the proposed framework, we describe the five steps considered:

1. Business drivers: the motivation is to scale the energy efficiency solution to smart
homes in the same region, considering the different communication conditions;

2. Non-functional requirements: similar to the remote lab scenario, the performance
efficiency requirement is prioritized, considering the resource utilization. Another
relevant requirement is the maintainability, considering the testability characteristic.

3. Engineering view: the architectural solution was illustrated in the Figure 12, and
described in detail.

4. Dynamic system evaluation: initial descriptions are described in Figures 13 and 14.
The historical clustering results are presented in Table 4, and one example of a status
reading classified in the cluster 1 (good status according to the IoT developer rationale)
is presented in (2).

5. Recommendations: considering that the deployed modules have the filesystem usage
presented in Figure 16, it is desirable that the new IoT devices have filesystem usage
of less than 300,000 bytes. Based on Table 4 obtained with the historical analysis
of the 22 ESP8266 devices, from the 13 different firmware versions, the ArCond2,
R4x2, RM6, RM8, and TV4x2 firmware versions must be monitored in detail by the
Python Agent microservice. The devices with good status may have their monitoring
cycle extended.
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Table 4. Smart home ESP8266 clustering results.

Firmware Kmean Count

ArCond2 0—bad 16,384

R4x2 0—bad 53,644

R4x2o 1—good 51,049

R4x4ir
0—bad 11,242

1—good 13,343

R4x4ir5 1—good 47,458

R4x4o 1—good 25,494

RM 1—good 112,168

RM1 1—good 84,060

RM1t10o 1—good 59,498

RM6 0—bad 21,886

RM8 0—bad 24,329

TV4x2
0—bad 54,758

1—good 76

WifiModem 1—good 20,165

6. Discussion

The proposed framework and the TDD tool built with the K-Means algorithm could
provide a rationale for the remote lab and smart home study cases, considering an end-to-
end view. The RM-ODP standard was essential to provide a link between business drivers
and non-functional requirements, and an approach to use the automated monitoring tool
with the objective to analyze and assist in the IoT solution development process.

Some benefits found in the study cases: in the remote lab scenario the deployment
and free memory conditions for devices with extended functionality were elucidated, and
in the smart home scenario the status of 13 different firmware versions could be evaluated
in an automated way, and provide insights for the monitoring frequency configuration.

The different conditions of the study cases show that our approach is not limited to
specific scenarios or proprietary technologies. The study cases cover private and cloud
computing environments in Brazil and USA, HiveMQ and Mosquitto MQTT brokers,
SQL and No-SQL databases, and ESP8266 and ESP32 devices. The proof of concept was
performed with these IoT development boards, but any board that supports the MQTT
protocol might be integrated with the proposed TDD framework.

Another contribution is related to the applicability of the proposed method, consid-
ering that the proof of concept is open source for facilitated replication, and the commu-
nication is based on the open source standard MQTT [26]. The scripts for ESP32 and
ESP8266 modules are, therefore, compatible with any cloud provider that implements the
MQTT protocol, so our approach is compatible with any cloud back-end, minimizing the
vendor lock-in problem. The PubSubClient library used for the device MQTT connection
is also open source, unlike the Amazon Web Services (AWS) library only compatible with
AWS back-end.

The validation of the proposed method with real devices might contribute to close the
gap between proposed TDD methodologies and their effective application. We also expect
that the proof of concept contributes as an example of using machine learning to generate
automated tests for IoT.

However, a limitation of the proposed solution is that the automated tool must be
trained in each different deployment scenarios for accurate assessment results. For example,
in the remote lab the Internet connection could provide a remote clock sync in a faster way
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than in the smart home scenario, so an IoT device developed for the remote lab may not
perform well in the smart home scenario.

Considering the most relevant related work found in the literature regarding IoT
testing, [10] shows an overview of the challenges that arise when testing large IoT applica-
tions at the system level. They present a novel hybrid-simulation-based testing approach,
and introduce various solutions to the challenges that arise when implementing this hy-
brid methodology. These challenges are mainly related to the IoT development pipeline,
synchronization between real-life and the simulation environment and the scalability con-
straints of modern simulation techniques. The concept of hybrid simulation is to combine
a complex behavior, represented by testbeds, with a more homogeneous behavior repre-
sented by simulation. Although it mentions that machine learning can be used, the article
does not comment that it may have adopted such a solution.

The architecture proposed in [13] provides a high-level structural view of software,
hardware, and communication components placed into layers for facilitating system design
and development. However, it does not provide indications on where these components
should be deployed. In order to provide a clear view of the different deployment locations
for architectural components, they developed an approach of formalizing the highly dis-
tributed infrastructure of IoT systems and facilitating the creation of different deployment
views for the mapping between layered architectural components into stage locations.
In comparison with this work, our solution automated the implementation process and
presented a better applicability of the proposed method, as the software and scripts are in
the public domain and compatible with any provider that implements the MQTT protocol.

The MAPE-K framework (monitoring, analyze, plan, and execute with knowledge
base), proposed in [16] requires detailed knowledge about contexts, sensors and actuators,
and effects of the process in the real world for the modeling of objectives using the proposed
methodology, requiring the use of more sophisticated approaches to formalize and deduce
this knowledge in order to reduce the modeling effort. The work used BPM processes
and systems that are more self-aware of their executions and self-adaptive through the
feedback loop. However, applying feedback loops to ensure the result of process execu-
tion also introduces additional computational overhead, which can be counterproductive
with respect to real-time constraints. The adopted solution requires additional resources
for operation and communication, which may not be feasible in resource-constrained
computing environments.

Researchers in [17] presented an alternative to improve the data transmission vali-
dation process. They implemented the test-driven development methodology (TDD) for
the build out of validation application algorithms. As a result, they developed validation
application that captures and analyzes data frames, in addition, compares the values of the
monitored variable in each layer of the implemented model. Furthermore, the development
reports the errors detected in the data transmission. This work has limitations, such as
the high dependence on networks to monitor the performance of the designed application
and also, the work did not perform testbeds to verify the approach in the wild with a real
IoT implementation.

The Open-Multinet (OMN) framework [18] is based on ontologies to support the
resource management in federated and distributed computing infrastructures. One of
the known limitations of explicit knowledge-based systems is the laborious process of
knowledge retrieval and update. Once the information is known, the queries may be
acceptable to end-users, but its underlying update process may not be so dynamic. We
could consider our proposed framework as a method to obtain resource information
regarding specific scenarios in an automated way, thus providing more dynamism than the
OMN framework.

Simulations and its underlying mathematical apparatus [19,20] are also relevant and
may be used as an alternative to the proposed TDD approach with machine learning based
on real testbed data.



Sensors 2021, 22, 9498 23 of 25

To the best of the authors’ knowledge, it is the first TDD approach for IoT module
automatic assessment which uses machine learning based on real testbed data.

7. Final Considerations

Considering the challenge of quality assessment in IoT systems, this work addressed
the topic of automated non-functional requirements evaluation. The objective is to enhance
the Testability non-functional requirement of IoT systems under development.

The proposal is evaluated in academic and smart home study cases with 25 devices,
consisting of 15 different firmware versions collected in one week, with a total of over
550,000 IoT status readings. K-Means algorithm was applied to free memory available,
internal temperature and Wi-Fi level metrics to automatically monitor the IoT devices under
development to identify device constraints violation and provide insights for monitoring
frequency configuration of different firmware versions. The clustering results enabled to
assess if new data of a specific IoT device fits into bad or good status. In the remote lab, the
bad status accounted for around 60% of the total readings.

The proposed framework guides the IoT system designer from the business domain
to the non-functional requirement dynamic evaluation, based on RM-ODP [7] standard.
The TDD tool is built with K-Means clustering algorithm application in real testbed data
to acquire a high resemblance to real deployment scenarios. According to the proposed
framework, the TDD tool could be used to identify IoT development problems earlier in
the development process. The automated test results from the remote lab and smart home
study cases indicate that the identification of device constraints violation is possible.

To the best of the authors’ knowledge, it is the first TDD approach for IoT module
automatic assessment which uses machine learning based on real testbed data. Some of the
related work carried out experiments in testbeds with real hardware devices but none of
them used machine learning, which motivated the novel TDD approach validated with
two study cases.

As future work, the comparison of K-Means with other unsupervised learning algo-
rithms could be performed. Other possibility is to test different deployment conditions with
synthetic firmware versions with known resource misuses to investigate how the number
of clusters may affect the proposed automated tool performance. Supervised algorithms
for time series prediction and firmware version classification tasks also might be applied
to the collected data to expand the TDD approach to the security domain, focusing on
anomaly detection.

A limitation of the proposed framework and the associated TDD tool based on ma-
chine learning is the need to know the total number of clusters beforehand, because the
tool uses the K-Means algorithm. Such a limitation may be investigated in future work
by testing other machine learning models. For example, graph-based deep learning ap-
proaches have been proposed as a promising solution for relevant problems (e.g., anomaly
detection in communication networks [34,35], intrusion detection in IoT environments [36]).
Additionally, the framework was validated with two case studies, therefore other scenarios
may contribute to enhance its relevance.
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