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Abstract: Graph neural networks (GNNs) have achieved great success in many research areas
ranging from traffic to computer vision. With increased interest in cloud-native applications, GNNs
are increasingly being investigated to address various challenges in microservice architecture from
prototype design to large-scale service deployment. To appreciate the big picture of this emerging
trend, we provide a comprehensive review of recent studies leveraging GNNs for microservice-based
applications. To begin, we identify the key areas in which GNNs are applied, and then we review in
detail how GNNs can be designed to address the challenges in specific areas found in the literature.
Finally, we outline potential research directions where GNN-based solutions can be further applied.
Our research shows the popularity of leveraging convolutional graph neural networks (ConGNNs)
for microservice-based applications in the current design of cloud systems and the emerging area of
adopting spatio-temporal graph neural networks (STGNNs) and dynamic graph neural networks
(DGNNs) for more advanced studies.

Keywords: anomaly detection; graph neural networks; microservices; resource scheduling; software
decomposition

1. Introduction

Currently, the Internet of Things (IoT) has become an essential element in all aspects
of human life. With different connected sensors in place, data collected from these devices
can be transmitted to an IoT edge-cloud-empowered analytics platform to provide various
applications and services to benefit citizens in cities [1–4]. Deep learning, with its ability
to learn from the massive amount of data from the cloud through neural networks, can
perform better analysis for various data-driven problems, which cannot be easily achieved
using conventional statistical approaches [5,6].

However, with such an enormous volume of IoT data to be collected and processed, it is
less beneficial in practice to deploy monolithic applications in a cloud platform particularly
considering their scalability and performance. In contrast, a microservice architecture,
which consists of a collection of small, independent, and scalable services, has become
the new paradigm for the design and development of cloud-native applications. The key
idea of the architecture is to allow a group of microservices working together to achieve
common goals through efficient communication protocols and mechanisms facilitated in
cloud networks.

At present, microservice architectures have been widely deployed by many cloud
computing giants, such as Microsoft, Google, and Amazon [7]. This architecture, as shown
in Figure 1, allows software developers to factorize a monolith application into multiple
small components, providing flexible configurations and resource management for cloud-
native applications. Each microservice can be independently designed, developed, and
deployed, which further enables data-driven and machine-learning-based functions, such
as predictive maintenance and elastic scaling, to be supported in the cloud systems [8,9].
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Figure 1. A typical microservice architecture.

The workload of an application in the cloud is dynamic, which dramatically increases
the complexity of the design of autoscaling algorithms. Machine-learning-based methods
have demonstrated their efficacy in scaling [10,11] with a faster response [12] compared
to reactive rule-based strategies [13]. Machine-learning models can learn and interact
with the environment and automatically adapt to dynamic workloads [14]. This natural
property of machine-learning-based methods is suitable for the scalability decision of
cloud applications. Moreover, some authors combined a set of validated machine-learning
methods to further improve the accuracy and efficiency of the algorithms in different
scenarios [15–17].

In [15], a combination of the convolutional neural network (CNN) and boosted trees
(BT) methods was proposed by Zhang et al. The model analyses the dependencies of the
microservices, the tail latency quality of service (QoS), and long-term QoS violations. This
approach abstracts the complex microservice connection solely using collected data (the
resource usage history, latency history, and resource allocation).

Yan et al. [16] proposed a combination of the bidirectional long short-term memory
(Bi-LSTM) load prediction model and active SARSA reinforcement learning model to obtain
a more accurate workload prediction and to improve the resource utilization while ensuring
service level agreement (the response latency of the service) and the total resource limit.
The resource-allocation algorithm utilized both reactive and active methods; however, the
dependencies between microservices were not considered in the decision-making process.

Moreover, Park et al. [17] showed how the dependence of the microservice chain is
important for accurate monitoring of the cascade effect and can be used in an autoscaler to
make decisions satisfying the latency service-level objective (SLO). The authors collected
the front-end workload and distributed the workload of each microservice as inputs for
training the graph neural network model using the gradient-descent method, where the
aim was to predict the minimal CPU quota of the corresponding microservice.

Graph neural networks and their variants have been applied to address graph-based
learning challenges in various domains, including but not limited to, physical system
modelling [18,19], chemical reaction prediction [20], biological disease classification [21],
traffic state prediction [22–25], text classification [26], machine translation [27], and object
detection [28,29].

To illustrate a few, the authors in [23] devised an attention-based temporal graph con-
volutional network to predict anomalous lane-changing behaviours of drivers in highway
scenarios. In addition, the authors in [27] proposed an encoder–decoder architecture cou-
pled with a gated graph neural network for graph-to-sequence learning problems arising
in natural-language processing.

Most recently, GNNs have also been utilised for microservice-based applications due
to their good properties linked to graph data structures. A “microservice graph” can be
used to represent the dependencies of microservices in an application. In a calling graph,
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the GNN models can capture the back-pressure and cascading effect as GNNs learn the
dependencies of the graph via messages passing between nodes. GNNs can be adopted
to build sophisticated analytic frameworks for modelling and predicting the metrics of
applications in cloud systems, e.g., workload characteristics, system resource utilization,
and network throughput.

In addition, GNNs can also capture both the spatial and temporal dependency of a
dynamic microservice graph where the node attributes change over time through transfer
learning. These attributes along with the naturally interconnected graph of the services in
the microservice architecture make GNN an ideal method to handle the irregularity and
dynamic resource needs of microservices. Currently, there are ongoing research efforts in
applying GNNs to microservice-based applications on anomaly analysis [30–34], resource
scheduling [17,35,36], and refactoring monolith applications [37,38].

Various GNN algorithms have been utilised in microservice-based applications to
further improve the prediction accuracy and computational efficiency. However, we found
a lack of studies summarizing the key GNN applications for microservice architecture.
Therefore, this paper focuses on the current literature in which GNNs and their variants
were applied to analyse complex issues in microservices. This leads to the specification
of the potential research topics and extensive research questions for applied GNN-based
microservice studies. To summarize, our contributions are:

1. We investigate the current development and application of GNNs for microservice tasks.
2. We identify the key research areas where GNNs can be applied to microservices.
3. We summarize the main technical challenges and research gaps in relation to the

applications of GNNs for microservices.
4. To the best of the authors’ knowledge, this is the first review paper that attempts to

highlight this new and advanced field of research where GNNs can be leveraged for
microservice-based applications.

The rest of this paper is organized as follows. Section 2 reviews the related survey
papers in the literature. Section 3 introduces our review technique. Section 4 briefly recaps
the background of graph neural networks and their design variants. Sections 5–7 review
a collection of microservice-based applications using graph neural networks. Section 8
discusses the current challenges and indicates potential research directions in the future
based on the findings of this review work. Finally, Section 9 concludes the paper.

2. Related Survey Papers

This section reviews the current survey papers on GNNs to provide context for our
work. There are several survey articles on GNNs investigating the development of GNNs,
reviewing their corresponding methods, and presenting practical applications in various
disciplines [29,39–42] as shown in Table 1. These surveys highlighted the ongoing interest
in applying GNNs for solving graph-based problems; however, there are still research
challenges that remain. For instance, these aforementioned surveys did not provide a
thorough analysis of each problem. These surveys also did not elaborate on the proposed
GNN algorithms involved therein. In addition, in the survey papers, there is a lack of
comparison between the proposed approaches despite their similar research questions.

Moreover, the existing surveys either focused on the design of microservice-based
applications or cloud-system taxonomy [43,44] without considering applications of GNNs
to cope with existing challenges in the microservice discipline. Others investigated the
application of machine-learning algorithms in cloud structures [14,45] with little focus
on GNN algorithms. For instance, Duc et al. [45] depicted a taxonomic classification
of reliable resource provisioning with details of machine-learning-based methods. Sim-
ilarly, Zhong et al. [14] reviewed state-of-the-art machine-learning-based techniques for
container orchestration for behaviour modelling and prediction as well as resource provi-
sioning. However, none of the aforementioned studies details the application of GNNs
and their variants for the management and resource provisioning of complex microservice-
based applications.
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Therefore, our key objective in this paper is to comprehensively review the state-of-
the-art GNN applications where the GNN algorithms can be applied to microservices in
various ways, including abstracting the service dependencies, forecasting the workload
changes, and supporting refactoring of the monolith applications. We hence aim to establish
an extension of the existing surveys to review recent advances in GNNs for addressing
challenges in microservice-based applications. The settings of GNN models in such appli-
cations are studied in detail in our review. We also outline the datasets and tools associated
with each application.

Table 1. Summary of recent related surveys.

Ref. Microservice
Architecture

GNNs
Classification

GNNs
Applications

Benchmark
Dataset Brief Description

[39] x x x

Wu and colleagues [39] applied GNNs to model
graph-based data from public datasets and

categorised GNNs into four subgroups, including
recurrent graph neural networks (RecGNNs),

convolutional graph neural networks
(ConvGNNs), graph autoencoders (GAEs),
and spatio-temporal graph neural networks

(STGNNs).

[29] x x x

Zhou et al. [29] generalised the design pipeline for
GNN applications and classified GNN variants
using computational modules, graph types, and

training settings. The applications of GNNs were
grouped into two scenarios: structural and

non-structural scenarios. Popular platforms and
open-source codes of referred papers are

also provided.

[40] x x

Sato [40] particularly focused on the mathematical
formulations of GNNs to explain their capability

and applicability more than on
practical applications.

[41] x x x

Waikhom and Patgiri [41] categorised GNNs using
the perspective of supervision and provided a

valuable table of the benchmark dataset for
various GNN applications.

[42] x x x

The authors [42] focused on GNNs from the
computation aspect and provided a

comprehensive overview of software and
hardware support for GNNs.

This paper x x x x

The aforementioned studies did not give
comprehensive reviews on the application of

GNNs to the microservices structure. We aim to
provide a comprehensive survey of existing

research papers that utilise GNNs variants to
resolve microservice-based applications.

3. Review Methodology

We conducted the literature survey process in five phases: planning, researching the
literature, reporting and interpreting the results, highlighting the challenges, and making
recommendations as per the practice in [46]. The following parts of this section detail the
key research questions to be addressed and our process of the literature search.
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3.1. Research Questions

The survey sought answers to the following questions in relation to the application of
GNNs in microservice architecture:

Q1: How many papers have been published regarding GNNs for microservice-based
applications?

Q2: How can GNNs be modelled and designed to cope with microservice applications?
Q3: What are the main purposes of using GNNs for microservice applications?
Q4: What are the main advantages and disadvantages of using GNNs for microservice

applications, particularly in comparison to other machine-learning-based techniques?
Q5: What are the key challenges and research gaps in further advancing GNNs for

microservice applications?

3.2. Literature Search

We collected research papers that used GNNs to address microservice problems from
publications in peer-reviewed research. We screened the relevant papers through an
extensive review of the literature on problems of microservice structure to be solved, the
design of GNN models and problem setups. We used various online databases that index
computer science and technology research—namely, Taylor and Francis, PubMed, ACM
Digital Library, Springer, MDPI, IEEE, Science Direct, Nature, PLOS one, and Elsevier.

The search keywords were: graph neural networks, microservice, microservice anomaly
detection, microservice resource scheduling, and monolithic decomposition. We also used
synonyms to complete some of the keywords, i.e., we used a cloud-based application in
place of a microservice. Only papers that were written in English were considered in our
search. Additionally, we only used articles using GNNs for microservice applications.
For all papers that shared the same group of authors or the same title, we only used the
most recent papers. Table 2 details the inclusion and exclusion criteria in our process of
screening relevant studies. Through the screening and eliminating process, we found 10
papers (five for anomaly detection, three for resource scheduling, and two for software
decomposition) for review as tabulated in Table 3.

The results show that no existing survey paper in the literature focused on the ap-
plications of GNNs for microservice architecture. The results also indicate that GNNs
have been applied for addressing anomaly detection, resource scheduling, and software
decomposition-related challenges in microservice-based applications. The existing studies
focused largely on the application of GNNs for building graphs connecting individual
services and establishing a correlation among services. All selected papers for review
are relevant in our context, which highlights the applicability of GNNs in dealing with
microservice problems in different aspects.

Table 2. The literature inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

GNN application for microservice architecture GNNs for other applications
Full-text Uncompleted studies

Published at any time Research not published in English
Published in the aforementioned databases Duplicated studies, the same group of authors

Published in workshops, symposiums,
conferences, books, and journals Non peer-reviewed publications
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Table 3. Related papers.

Title Author Type Year Venue

B-MEG: Bottlenecked-Microservices
Extraction Using Graph Neural

Networks
Somashekar et al. [30] Conference 2022

Companion of the 2022
ACM/SPEC International

Conference on
Performance Engineering
(ICPE 2022 Companion)

DeepTraLog: Trace-Log Combined
Microservice Anomaly Detection

through Graph-based Deep Learning
Zhang et al. [31] Conference 2022

44th International
Conference on Software
Engineering (ICSE 2022)

A Spatiotemporal Deep Learning
Approach for Unsupervised Anomaly

Detection in Cloud Systems
He et al. [32] Conference 2020

IEEE Transaction on
Neural Networks and

Learning Systems

Informer: Irregular Traffic Detection for
Containerized Microservices RPC in

the Real World
Chen et al. [33] Journal 2022 High-

Confidence Computing

Anomalous Distributed Traffic:
Detecting Cyber Security Attacks

Amongst Microservices Using Graph
Convolutional Networks

Jacob et al. [34] Journal 2022 Computers & Security

Graph-PHPA: Graph-based Proactive
Horizontal Pod Autoscaling for

Microservices using LSTM-GNN
Nguyen et al. [35] Conference 2022

IEEE International
Conference on Cloud

Networking 2022

GRAF: A Graph Neural Network
based Proactive Resource Allocation

Framework for SLO-Oriented
Microservices

Park et al. [17] Conference 2021

The 17th International
Conference on emerging

Networking EXperiments
and Technologies
(CoNEXT 2021)

AlphaR: Learning-Powered Resource
Management for Irregular, Dynamic

Microservice Graph
Hou et al. [36] Conference 2021

2021 IEEE International
Parallel & Distributed

Processing Symposium

Graph Neural Network to Dilute
Outliers for Refactoring Monolith

Application
Desai et al. [37] Conference 2022

The Thirty-Fifth AAAI
Conference on Artificial
Intelligence (AAAI-2021)

Monolith to Microservices:
Representing Application Software

through Heterogeneous Graph Neural
Network

Mathai et al. [38] Conference 2022
International Joint

Conference on
Artificial Intelligence

4. Graph Neural Networks

In this section, we review the basics of GNNs. A GNN is a type of deep neural network
that is suitable for analysing graph-structured data. A graph is typically represented by
a set of V vertices (nodes) and a set of E edges (links), G = (V, E), where a vertex vi ∈ V
and a directed edge eij = (vi, vj) ∈ E between vi and vj is represented by an arrow as
i → j, forming an ordered pair of nodes (vi, vj) ∈ V × V in a directed graph. Therefore,
the number of nodes is denoted by n = |V|, and the number of edges is m = |E|.

A vertex u is a neighbour of the vertex v in the graph G = (V, E) if there is an edge
(v, u) ∈ E, ∀u ∈ V. We define N(v) as the set of neighbours for the node v in the graph
G. The connection between nodes can be represented by an adjacency matrix An×n with
Aij = 1 if eij ∈ E or Aij = 0 otherwise. We define the node attribute matrix X ∈ Rn×d with
xv ∈ Rd, where d denotes the dimension of xv, representing the feature vector of a node
v. In addition, a graph can be associated with an edge attribute matrix Xe ∈ Rm×c with
xe

v,u ∈ Rc representing the feature vector of an edge (v, u).
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Undirected edges are assumed to have equal weights from both connected nodes,
while the directed graphs have all edges directed from one node to another. A spatial-
temporal graph is a special case as the node attributes change with time, i.e., G(t) =
(V, E, X(t), Xe(t)), where the node attributes and edge attributes can be time-varying.

The GNN architecture can be sorted into four main categories: recurrent graph neural
networks (RecGNNs), convolutional graph neural networks (ConvGNNs), graph autoen-
coders (GAEs), and spatio-temporal graph neural networks (STGNNs) [39]. Except for
RecGNNs, the defined architectures differentiate from each other in how graph convolution
layers and functionality layers are stacked [39]. Regarding RecGNNs, which aim to learn
node representations, they assume that a node in a graph exchanges information with its
neighbours until a stable state is reached. The idea of message passing is a crucial concept
resulting from RecGNNs.

ConvGNNs extract high-level node representation by stacking multiple graph con-
volution layers, which can be used for either node representation or graph representation
problems. A node v representation is generated by aggregating its own features xv and
its neighbouring features xu, where u ∈ N(v). An example model based on ConvGNNs
is shown in Figure 2. GAEs are unsupervised learning frameworks that are used to learn
network embedding and graph generation. This method abstracts the characteristics of
nodes or graphs into a latent vector space. The encoded vector is then used to reconstruct
graph data using the activation function. Hence, the models learn from the minimization of
the discrepancy between the real graph properties and the reconstructed properties, i.e., an
adjacency matrix for network embedding.

Figure 2. Illustration of graph convolutional neural networks.

Dynamic graph neural networks (DGNNs) refer to the use of GNNs for dynamic
graphs where the nodes and edges may vary over time [47]. Dynamic graphs can be
sorted into discrete-time dynamic graphs (DTDGs) and continuous-time dynamic graphs
(CTDGs). A DTDG is represented by a sequence of graph snapshots [G(1), G(2), ..., G(T)]
where each graph at time t is defined by G(t) = (V(t), A(t), X(t)). A CTDG is defined by its
initial state G(t0) and its temporal observations (O) describing the evolution of G(t0) in a
time-dependent manner [48].

STGNNs, which are a special case of DTDGs, target the hidden properties of the
spatial-temporal graphs such that both spatial dependency and temporal dependency can
be captured from the data in graphs simultaneously. This characteristic is particularly
useful to address practical challenges, such as traffic-flow prediction, as data generated in
a traffic network can be easily modelled using a spatial-temporal graph. In this context,
for instance, a graph convolutional network (GCN) layer can be applied to learn the spatial
dependency between nodes, e.g., sensors on the streets, and a long short-term memory
(LSTM) layer can be applied afterward to capture the temporal dependency [49].

A graph instance G with node features (xv) and edge features (xe
(u,v)) are the input of

the GNN model. The hidden state of the nodes is represented by hv. The hidden state of the
edges is denoted by h(v,u). The initial state of the node is assumed as hv = xv. A node or an
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edge representation in a hidden state is recurrently updated by the exchange of information
of the central node with its neighbours by

h(v,u) = fedge(hv, hu, x(v,u)) (1)

h′v = fnode(hv, ∑
u∈N(v)

h(u,v), xv), (2)

where fnode and fedge are recurrent functions [41]. By updating hv ← h′v, GNN models can
provide various graph-level outputs: node-level outputs, edge-level outputs, and graph-
level outputs [39,41].

GNNs can extract high-level node-level outputs, such as representations for node
regression or node classification tasks using a multi-perceptron or a softmax layer as the
output layer. At the node level, the classification tasks aim to sort the nodes of the graph
into classes, while the prediction tasks are to forecast the continuous values of nodes in
the graph. Node clustering groups similar nodes into the same group. For the edge-level
outputs relating to edge classification and link-prediction tasks, GNNs can be utilized to
determine the connection strength of an edge or to predict a link between two nodes.

The edge-level tasks also focus on the classification of edges. At the graph level,
the outputs usually relate to the graph classification task, graph regression, and graph
matching. GNN layers are incorporated with pooling layers and/or readout layers to
abstract a representation on the graph level. In addition, the performance of GNNs can be
significantly improved by integrating the recent advances in attention mechanisms. We
refer the readers to [29,39–41] for a detailed and rigorous review of taxonomy, variants,
and computing perspectives for GNN methods.

GNNs have many applications across multiple areas of research involving classifica-
tion, regression, and clustering problems; for example, node classification, node embed-
ding [18], graph classification, graph generation [50–52], node prediction, graph prediction
tasks [53], and node clustering tasks [54]. In this paper, we mainly focus on the study
of GNNs for microservice-based applications, including anomaly detection [30–34,55],
resource scheduling [17,35,36], and refactoring monolith applications [37,38,56]. More
specifically, we detail node and edge representations of the GNN approaches in Table 4.
The table also summarises microservice-based applications and public datasets used in the
literature to facilitate comparative studies in the microservice domain.

To conclude this section, Figure 3 illustrates a general pipeline for applying GNNs
to microservice-based applications. In a nutshell, various performance metrics are first
collected from the microservices in their deployment environment. The gathered data are
then used to construct graphs for GNN-based learning tasks. The trained GNN model
can be integrated with the microservice architecture to make decisions as per the specific
objective of the task. In the following sections, we shall discuss GNNs for microservice-
based applications in the three identified categories in detail.

Figure 3. High-level flow diagram of GNN applications for microservices.
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Table 4. Graph structure and dataset.

Ref. Year Nodes Edges Task Graph Toolkit Applications and
Dataset

[30] 2022 Microservice Calls Node-level Unweighted NA

DeathStarBench [57];
TrainTicket [58];

FIRM public
dataset [59]

[31] 2022 Span events Calls Graph-level Weighted PyTorch Geo-
metric [60] TrainTicket [58]

[32] 2020 Services Calls Graph-level Weighted PyTorch Geo-
metric [60]

Hipster shop [61];
HiBench [62]

[33] 2022
Remote

procedure
calls (RPCs)

RPC
dependency Graph-level Weighted TensorFlow [63] Authors

in-house data

[34] 2022 RPCs RPC
dependency Graph-level Weighted TensorFlow [63] DeathStarBench [57]

[35] 2022 Microservice Calls Node-level Weighted PyTorch Geo-
metric [60] Bookinfo [64]

[17] 2021 Microservice Calls Node-level Unweighted PyTorch Geo-
metric [60]

Online Boutique [65],
Social Network [57]

[36] 2021
APIs/

function
services

The
dependencies

of API
microservices
and function
microservices

Graph-level Weighted Python
programs

TrainTicket [58];
DeathStarBench [57];
Alibaba trace dataset

2017 [66]

[37] 2022 Classes of
function

Calls between
two classes Graph-level Weighted Python

programs

Daytrader [67],
Plantsbyweb-
sphere [68],

Acme-Air [69], Diet
App [70]

[38] 2022 Classes of
function

Calls between
two classes Graph-level Unweighted PyTorch Geo-

metric [60]

Daytrader [67],
Plantsbyweb-
sphere [68],

Acme-Air [69]

5. GNNs in Anomaly Detection

Anomaly detection is a critical mechanism for identifying abnormal behaviours in
system states or application performance. Table 5 describes the reviewed approaches
regarding anomaly detection. ConvGNN and RecGNN models were applied in several
studies [30,31] to generate the node representation by aggregating the central node features
and its neighbouring features. In addition, STGNNs were utilised in [32–34] to consider
both the temporal and spatial dependencies of dynamic microservice-based applications
and characters of the nodes, edges, and graphs.

The anomaly detection problem is modelled as a graph problem in which the microser-
vice graphs with nodes and edges are regularised differently (i.e., a node is a call between
RPC in [34], or a node is a log event in [31]). A high-level workflow abstraction from the
related studies is shown in Figure 4.
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Table 5. Summary of anomaly-detection approaches.

Ref. Methods Mechanism Category Objectives Advantages Limitations

[30] DGCNN Classification ConvGNNs

• Classifying potential
anomalous traces.

• Detect anomaly mi-
croservices in such
traces.

• Improved prediction
accuracy.

• Better performance
with a fairly im-
balanced dataset
without any feature
engineering.

• Static model.
• Only used one data

feature: service time.
• Hierarchical error.

[31]
Gated-
GNN-
SVDD

Classification RecGNNs

• Building trace event
graph (TEG) consists
of the log events
and span events of a
trace and their rela-
tionships.

• Microservice trace
anomaly detection.

• Unified application
graph using traces
and log events.

• Improved detection
accuracy.

• Limited microservice
structure.

• Insufficient eval-
uation of real-life
application-level
anomalies.

[32] GCN-GNN-
LSTM Classification GAEs

• Anomaly detection
and prediction on
application metrics.

• Including system
topological infor-
mation to organize
metrics.

• Capturing the tempo-
ral dependence of the
resource metrics.

• Including the topo-
logical information to
represent a system
state.

• Static model.
• Anomalies were in-

jected randomly dur-
ing the experiments.

[33] DCRNN Classification STGNNs

• Predicting future
traffic.

• Detection of unusual
changes in RPC.

• Various robustness
analysis.

• Construction of
spatial-temporal
graph convolution
network DCRNN
models for all possi-
ble critical RPC chain
patterns.

• Computational cost
due to the generation
of models.

[34] DCRNN Classification STGNNs

• Prediction of future
traffic activity.

• Detecting cyber secu-
rity attacks.

• A spatial-temporal
graph convolution
network DCRNN
model for all critical
RPC chain patterns.

• Improved detection
accuracy and time-
consumption.

• Static graph model.

Figure 4. General procedure for an anomaly-detection algorithm using GNNs for microservice
architecture [30–34].

Somashekar et al. [30] classified anomalous microservice using a two-stage approach.
The first stage uses a four-layer GNN model to classify potential anomalous traces. The pre-
dicted potential traces are then used as the input for the second prediction model. The sec-
ond model is comprised of three GCN layers to detect bottleneck microservice in these
potential anomalous traces. The only feature is the service time, which correlates well with
the bottleneck occurrences. The proposed approach was validated with dynamic workload
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profiles and microservice test bed applications [57,58,71], and the numerical results were
compared with [71] for three datasets of various complexity.

However, the splitting structure of the proposed algorithm is prone to hierarchical
errors, since the results of the second model are dependent on the classified outputs from
the first model. This was shown in the predicted results provided by the classification
models with a better prediction if the number of anomalous traces was large in the dataset,
i.e., the number of traces in the dataset with bottleneck microservice was larger than the
number of traces without bottlenecks. This also might result from the semi-supervised
framework of the bottleneck prediction model. On the other hand, the prediction models
were proposed with empirical numbers of GCN layers, which might not be applicable for
other datasets or problems. In addition, the model is static so it is trained using offline data
and cannot adapt to online data for continuous updates on the model.

Gated GNNs (GGNNs) were utilized to learn the trace representation—namely, a trace
event graph (TEG), constructed using both the log events and span events of a trace and
their relationships [31]. The GGNN algorithm computes the vector latent representation
of each node (event) using node attributes (event vector) and, consequently, the graph
representation of the TEG. From that, the unsupervised model calculates an anomaly score
of the TEG using the graph representation to classify whether the trace is anomalous.
The proposed method was tested with data collected from Train Ticket [58], a microservice-
based application, and its fault cases. This study illustrates the advantage of GGNNs
in abstracting the node and graph representation for a complex microservice structure.
The proposed method relies on the construction of a unified graph representing traces
and logs rather than the improvement of the GNN method itself. On the other hand,
the applicability of this approach is dependent on the preprocessing task where the traces
and logs are used to generate an overall graph, which might not be possible for a real-life
microservice structure.

He et al. [32] proposed an unsupervised anomaly-detection algorithm combining
GNN and LSTM for predicting anomalies in cloud systems. The proposed model mod-
ifies LSTM cells with additional GNN gates to replace fully connected layers in LSTM
to construct a GraphLSTM cell. This design extracts a temporal dependence among con-
taminated data (with both normal data and abnormal data) using the LSTM structure,
while added GNN gates utilise predefined topological representations containing features
of each node. The GNN gates provide an edge topology characteristic array to incorpo-
rate the spatial properties of the service architecture. By sliding the monitoring window
through the collected metrics, the temporal and spatial dependence are considered in the
prediction results.

Data for training and testing are collected from the microservice-based application,
i.e., Hipster Shop [61]. There are clear effects of utilizing GNN to model the spatial depen-
dence among components in a cloud system as illustrated by comparing to free GNN-based
models. Although the combination of two advanced machine-learning methods provided
promising results, it is worth noting that the topological information was represented by a
static edge set array, which, in turn, constrained the applicability of the proposed method
to static applications. A possible improvement is a real-time topology, which could change
with a dynamic workload and requests.

Another two-step approach was proposed by Chen et al. [33]. First, the authors
proposed an identifier to determine the RPC chain pattern using density-based clustering
techniques. A static RPC graph was generated by a set of related RPCs at a given time step.
The second task was the construction of a prediction model for each critical RPC chain
pattern given a time series of graphs. Each node of the static graph represents an RPC with
the node attribute being RPC traffic, i.e., the number of calls in a fixed time period.

The edges are set with each edge representing an RPC dependency. The model,
therefore, predicts anomalies based on the observations of the RPC traffic from the previous
time history. To generate the prediction for attributes of each node, the spatial-temporal
GCN model is used. The author utilised the diffusion convolution recurrent neural network
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(DCRNN) to model RPC chain graphs to learn the hidden patterns from the spatial-temporal
graph and to make predictions.

The predictions are made on the selected RPC graph, which differentiates this method
from DeepTraLog [31] whose graph is built for a unified graph of the overall microservice
structure. This makes this approach compact since it only considers a static RPC chain at a
time instance, instead of the whole RPC chain patterns. On the other hand, the RPC chain
pattern must be assumed to be static during a sufficiently long time period to construct the
RPC graph. Therefore, the predicted results for each RPC depend on the assumed RPC
graph instance and, thus, ignore the dynamic inter-cluster dependencies.

Jacob and colleagues [34] also proposed a prediction model using a DCRNN, a spatial-
based ConvGNN, for cyber security attacks in a microservice-based applications. This
study was motivated by [33]; however, only one learned model was used to learn the entire
microservice-based application, while the former required an updated model periodically.
The main difference between this method and the former is that the topology of the
application is represented as a weighted directed graph, where a node is a call from one
RPC to another RPC. To represent the directed graph, the adjacency matrix is predefined
prior to forecasting the traffic. The method leverages the DCRNN model to capture the
temporal dependencies of the microservice traffic. The proposed model then can predict
the number of times an RPC is called; however, this removes the adaptivity of the [33] due
to its predefined adjacency matrix.

6. GNNs in Resource Scheduling

In this section, we discuss various resource provisioning techniques proposed to dy-
namically adjust the system resource in response to the workload and cloud environments.
Table 6 shows various GNN algorithms to solve the scheduling issues.

For resource scheduling, various GNN algorithms are utilised for different purposes,
i.e., learning the characteristics of different microservices for forecasting resource consump-
tion. The GNN-based proactive algorithms yield much more accurate results compared
to the reactive rule-based scheduling methods in these cases—that is, system resources in
the cloud systems can be scheduled dynamically and allocated to the workload prior to
changes. Figure 5 illustrates the general steps for the development of resource-allocation
algorithms using GNNs for microservices in the literature.

Table 6. Summary of scheduling approaches.

Ref. Methods Mechanism Category Objectives Advantages Limitations

[35] LSTM-GCN Regression ConvGNNs

• A two-stage proac-
tive resource-
allocation frame-
work.

• Resource utilization
and cost saving

• Numerical sim-
ulations with
practically dynamic
workload profile

• Optimize container
deployment time

• Only considered the
vCPU usage.

• Without compar-
ison with other
algorithms.

[17] MPNN Regression STGNNs

• Derivation of a
proactive resource-
allocation frame-
work.

• Predicting expected
end-to-end tail
latency for the
front-end workloads
and possible CPU
resource allocations.

• Accounting for cas-
cading effect.

• Allocating required
resources while sat-
isfying latency SLO.

• Implicit computa-
tional cost.

• Simple workload
profile.

[36] Bi-GNN Classification ConvGNNs

• Abtracting
microservice-based
application using
bipartite graph.

• Resource utilization
optimization.

• Various resource fea-
tures.

• Manage resources
adapting the load
variation.

• Insufficient analysis
of computational
costs and time
complexity.
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Figure 5. General procedure for resource-allocation algorithms using GNNs for microservice-based
cloud applications.

Park et al. [17] proposed an autoscaler that allocates resources to every microservice
according to the change in the front-end workload. In the microservice graph, a node repre-
sents a microservice, and the workload and allocated CPU resources are the node features.
The GNN model comprises a message-passing neural network (MPNN) for graph node
embedding and fully connected layers for latency prediction. By utilising GNN to elicit
node embedding, a vector that implies information from all neighbouring nodes, the model
updates the node states by recurrently exchanging neighbouring microservice information.

The two consecutive fully connected layers predict the latency of each microservice and
make resource allocation for every microservice. The end-to-end latency of an application
was computed based on the longest microservice chain of the application. Only the in-line
microservices in the longest chain were considered. Therefore, the cross-line microservices
(i.e., the microservices out of the longest chain) were neglected. A two-stage predictive
algorithm—namely, Graph-PHPA—was recently proposed by Nguyen et al. [35] in 2022.

To improve the resource allocation quality of the horizontal autoscaler, the proposed
approach aimed to investigate the dependence of the microservices chain effect with
a strong focus on resource allocation from the perspective of cloud service providers.
More specifically, the approach investigated the graphical dependence of microservices on
resource consumption with respect to their workloads.

The approach focused on addressing the resource SLO challenge, which is a funda-
mental difference compared to [17]. The author integrated the predicted workloads using
LSTM and the resource consumption model based on GCN to proactively best estimate the
desired amount of resources for each microservice. The scaling algorithm, which considers
the real-time workloads and the available resources in the cluster, could make an accurate
scheduling decision on optimal vCPU resources to be provisioned for microservices in
the cluster.

A bipartite graph neural network (Bi-GNN) with a bidirectional message-passing
mechanism was utilized by Hou et al. [36] to infer the time-varying characteristics of
microservices. The GNN model was applied to extract the node representation in terms of
the dynamic graph of the microservice. The graph is represented by two disjoint sets of
vertices (two microservice sets) and a set of directed edges from one vertex set to another.
The microservice feature is their resource requirement. Each application is considered a
bi-particle graph that represents the basic characteristics, such as unevenly distributed
resource demands and interactions of the component microservices of an application.

The authors also proposed a bi-partite attention mechanism that iteratively updates the
inferred features to reflect the uneven effects on each other between the API and function
microservices. Based on a set of inferred features that specify the required resources the
microservice requires, the optimal resource managing strategies allocate the resource to
effectively adapt to resource requirements from all possible allocation strategies. This
method’s advantage is that the resource classifier was trained offline. However, as a bi-
particle graph can change dynamically with time due to real-life workload, the classification
model must be retrained to adapt to the workload profile.

7. GNNs in Software Decomposition

As depicted in Table 7, GNNs are also utilized for software decomposition, a comple-
mentary mechanism for refactoring monolith applications to microservice-based applica-
tions in cloud environments. By characterizing monolith programs and their relationships
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in the application as a graph and using GCN layers to derive node representation, microser-
vice decomposition becomes a clustering task leveraging graph representation learning.
Figure 6 depicts a high-level description for application refactoring algorithms with GNNs
in the reviewed studies.

Figure 6. General procedure for application refactoring algorithms using GNNs for microservice
architecture.

Table 7. Summary of software decomposition approaches.

Ref. Methods Mechanism Category Objectives Advantages Limitations

[37] CO-GCN Clustering ConvGNNs

• Refactoring a mono-
lith application into
microservices.

• Utilizing GNN to
group nodes into
clusters.

• Representing appli-
cations using graph
structure.

• Using the node rep-
resentation for clus-
tering.

• Neglecting applica-
tion data resources.

• Implicit computa-
tional cost.

[38] CHGNN Clustering RecGNNs

• Refactoring a mono-
lith application into
microservices.

• Using a heteroge-
neous graph to
represent software
structure with data
entities.

• Resource contention
consideration.

• Lack of considera-
tion on load balanc-
ing.

To refactor a monolith structure to a microservice structure, Desai et al. [37] designed
a software-decomposition method considering the class in the application as a node. There
is an edge between two nodes if a class directly calls a method of another class. Assisted
with a modified loss function in the fundamental GNN model—namely, CO-GCN—their
approach produced a more accurately unified node representation, outlier node detection,
and node clustering for refactoring four examples of monolith applications. To be specific,
a two-layered graph convolution encoder was used to obtain a representation of each node.

Then, a GCN-based decoder mapped the node embeddings to the input feature space.
Finally, the nodes in the graph were clustered into a predefined number of clusters by
minimizing a proposed loss function. In such a way, the proposed approach became an
optimization problem by minimizing the total loss function comprised of three components:
loss with respect to the structural outlier, loss of the reconstruction of node attributes,
and loss to cluster the nodes in the graph. While the authors proposed a novel framework
that generated candidate microservices, the algorithm still requires human interference with
a predefined number of clusters, where each cluster performs a well-defined functionality.

To further extend the Desai et al. [37] approach, Mathai et al. [38] further included
application resources for recommending a microservice architecture. The refactoring
monolith application problem was treated as a heterogeneous graph model with function
nodes and resource nodes. The complete network included four GCN layers to find a
network embedding for each node: the first two layers as encoders (compressing the
feature space) and the next two as decoders. The design was to exchange features between
nodes and edges and update the vector representation for both.
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Therefore, an attribute matrix was generated using aggregated features from all related
function nodes into the resource nodes to form the resource attribute matrix, and this
enabled the representation of application data resources and programs of the monolith
application. The final set of node attributes included an attribute matrix for the program
node, a resource attribute matrix, and an edge attribute matrix. Then, community-aware
heterogeneous graph neural network (CHGNN) was chosen to find the optimal complete
microservice network with a desired number of microservices through the GNN training
process. An encountered problem is that the empirical number of predefined clusters was
still not dealt with in this study.

8. Research Directions and Challenges

Although GNNs have proven their advantages in learning microservice-based appli-
cations, there are still challenges due to the complexity of microservice graphs and the
limitations of GNN models. Thus, in this section, we suggest some future directions to
indicate potential research gaps in GNN models for microservice applications. Our key
findings are summarised and illustrated in Figure 7. More specifically, we identify several
open questions that might inform future research regarding GNN models, the deployment
of GNN models, microservice applications, and public microservice datasets.

As the internal structure of microservice applications is complex and dynamic with
continuously growing demands for more accurate predicted results, lower response times,
and better computational costs, this requires robust and efficient GNN models to be trained
and deployed in real-world scenarios.

Figure 7. The challenges and opportunities for GNNs for microservice architecture.

First, the success of an application lies in the proposed GNN models. As can be seen
from Tables 5–7, most of the current works have utilized ConvGNNs for microservice tasks;
however, there are a limited number of works employing RecGNNs, STGNNs, and GAEs
despite having achieved promising results in other domains. It is worth considering apply-
ing these GNN variants to tackle the challenges arising in microservice-based applications
from different perspectives. Furthermore, attention-based mechanisms have been widely
applied in other application domains with strong links to GNN-empowered designs as
they have demonstrated promising results in performance improvement; see papers, such
as [23,49,72–75]. However, limited efforts have been made regarding integrating attention
mechanisms with GNNs for microservice-based applications. Our review demonstrated
that [55] is perhaps the only work in this endeavour.
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Another design aspect is the tuning of the model hyperparameters. For instance,
as indicated in [76], an increasing number of hidden layers might degrade the performance
of a ConvGNN dramatically. Therefore, how to determine the optimal hyperparameters to
deal with a learning task whilst considering both performance metrics and computational
resource consumption is an important area for GNNs applied to microservices. Last,
but not least, the selection of a directed or an undirected graph is an important decision
variable particularly when the data to be analysed is collected from an application in a less
observable environment, i.e., the logical structure of the application is not known a priori.
Thus, an effective modelling tool is required to understand the structure of the graph before
a detailed analysis can be implemented.

Finally, according to the studies that we reviewed in this work, the microservice graph
is always assumed to be static. However, real-time interconnection among microservices
is often ignored leading to less-accurate modelling of the graph for real-world scenarios.
For this purpose, a dynamic graph may be useful, and currently more research efforts are
required to dive into this challenging area.

Secondly, microservice architecture has attracted significant attention due to its flex-
ibility and adaptability. The application structures are also flexible and complex, which,
in a generalized graph, can contain different types of definitions for nodes/edges as well
as various forms of inputs for nodes/edges. For example, a node may represent a service
deployed on a cluster and the call between two services is the edge in [32]. Although certain
works have been found that deal with the challenges in heterogeneous graphs, more novel
GNN architectures and solutions are required to deal with increasingly complex scenarios,
such as temporal graphs and multi-dimensional input metrics.

Finally, microservice-based applications are dynamic in nature. Nodes and edges may
exist or disappear depending on the functionality of calls; therefore, node/edge inputs
may vary with time. This requires an instant update on the graph structure to capture the
actual connectivity and attributes of nodes. Although STGNNs may be used to address
this challenge (for instance, by considering the inputs to the graph during every fixed
time window), the dynamic characteristics remains to be modelled, which may otherwise
lead to performance degradation in certain learning tasks. Furthermore, future works are
required for modelling the continuous-time dynamic graph of microservice networks; for
instance, the application of CTDGs, which offer the ability to model finer-grain temporal
graph changes in continuous time [47].

9. Conclusions

In this paper, we reviewed works in the literature where GNNs were applied for
microservice-based applications. Depending on the architecture of the GNNs, each variant
had particular advantages for use in specific applications to further improve the modelling
and prediction results. We summarized the GNN models and their key benefits linked
to microservice-based applications in three key areas, which were identified as anomaly
detection, resource scheduling, and software decomposition.

In these areas, GNNs have shown their ability to perform well in various tasks, such as
node classification, node prediction, and graph construction. Finally, we made suggestions
for future research directions, where we remark that there has been little focus in applying
STGNNs and DGNNs for microservice applications, which may help to further improve
such systems in a variety of practical scenarios.
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