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Abstract: Computer vision tasks, such as motion estimation, depth estimation, object detection, etc.,
are better suited to light field images with more structural information than traditional 2D monocular
images. However, since costly data acquisition instruments are difficult to calibrate, it is always hard
to obtain real-world scene light field images. The majority of the datasets for static light field images
now available are modest in size and cannot be used in methods such as transformer to fully leverage
local and global correlations. Additionally, studies on dynamic situations, such as object tracking
and motion estimates based on 4D light field images, have been rare, and we anticipate a superior
performance. In this paper, we firstly propose a new static light field dataset that contains up to 50
scenes and takes 8 to 10 perspectives for each scene, with the ground truth including disparities,
depths, surface normals, segmentations, and object poses. This dataset is larger scaled compared
to current mainstream datasets for depth estimation refinement, and we focus on indoor and some
outdoor scenarios. Second, to generate additional optical flow ground truth that indicates 3D motion
of objects in addition to the ground truth obtained in static scenes in order to calculate more precise
pixel level motion estimation, we released a light field scene flow dataset with dense 3D motion
ground truth of pixels, and each scene has 150 frames. Thirdly, by utilizing the DistgDisp and
DistgASR, which decouple the angular and spatial domain of the light field, we perform disparity
estimation and angular super-resolution to evaluate the performance of our light field dataset. The
performance and potential of our dataset in disparity estimation and angular super-resolution have
been demonstrated by experimental results.

Keywords: light field; parallel intelligence; disparity estimation; scene flow; digital twin; virtual real
interaction; angular super-resolution

1. Introduction

Progress in computer vision tasks such as object detection [1], semantic segmentation [2],
optical flow [3], and disparity estimation [4] has been made in recent decades; however, these
tasks mostly rely on monocular or stereo images [5]. The irreversible loss of depth in 2D
images is a flaw in nature, and academics have consistently worked to improve algorithms to
address this issue. For instance, point cloud [6] characteristics are added to object identification
models in autonomous driving to provide a multi-modal framework that makes up for the
absence of depth in images. Multiple tasks sharing comparable cues would improve overall
performance in a heuristic manner, particularly in edges, according to certain research that
combines image disparity estimation and semantic segmentation together [7]. It is obvious
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that datasets with structural information are crucial because all of the methods mentioned
above attempt to employ additional information to generate implicit depth cues.

Recently, some researchers have focused on light fields [8] because, unlike 2D images,
light field images implicitly store the directions of rays. Take into account an array light
field camera as an example. Cameras with known intrinsic parameters are positioned in
a plane or sphere with a specific distance between them. Although views in depth are
condensed on the photosensitive plane of the camera, as in conventional cameras, rays
projected in different directions from various views record the third dimension, which is
perpendicular to the image plane. View images with known intrinsic and extrinsic factors
enable more precise reasoning about scene structures. Overall, light field images with
richer structural information will perform better as they are more adaptable to current
computer vision applications.

However, there are still some difficulties in obtaining a rich and diversified light field
datasets. The most notable one is high cost equipment. The current technical framework of
light field mainly consists of three types: microlens array [9], camera array [10], and encoded
mask [11]. Both of these are too expensive on the market; as an example, the basic edition of
raytrix light field [12] costs almost close to $100,000. Such a high price is beyond the acceptance
of most researchers and impedes the development of light field technology. An approach is
to build a camera array out of inexpensive cameras. These arrays can be placed in a matrix
or a circle on the same surface or sphere. Alternatively, you may build a camera array out
of inexpensive cameras. These arrays can be set up as a circle or a matrix on the same plane
or sphere. Other issues have come up so far, the first of which is the synchronization of
many cameras, which is crucial for the perception of dynamic scenes. Another issue is how
to arrange the cameras to reduce the redundancy of data from various angles even though
images from different views might compensate for one another in dealing with occlusions.

The optimal solution to this issue will significantly improve the perception of au-
tonomous driving’s performance while parameter adjustment is time-consuming and
challenging to replicate. Since experiments in the real world are not very efficient, we turn
to the virtual world to find a solid plan. To collect static light field scenes with depth and
dynamic scene flows, we propose a new light field collection approach based on Parallel
Light Fields [13]. The fundamental idea behind Parallel Intelligence is the ACP theory,
where A stands for Artificial Systems for modeling, C is for Computational Experiment for
analysis, and then P is Parallel Execution for control. Parallel Intelligence, which is char-
acterized by virtual and real interaction, was first proposed by Fei-Yue Wang in 2004 [14]
to address management and control of complex systems. Based on the ACP theory, we
conduct our experiment in virtual environments, such as sensors’ simulations [15]. To be
more precise, we build digital twins of the light, camera, and scenario in the virtual world.
By adjusting the parameters of these elements, we can achieve a diverse range of scenarios,
which are then captured as light field images by the virtual light field cameras. We can set
up numerous deployments till we find an approach that works relatively best to verify the
optimum camera arrangement. Our contributions are listed as follows:

1. We present a new large-scale static light field dataset with up to 50 scenes; each scene
contains 8–10 different perspectives, covering interior and outdoor scenes, and ground
truth is produced, including disparities, depths, surface normals, segmentations,
and item postures;

2. Using the free and open-source creation tool Blender [16], we additionally produce a
novel light field video with motion ground truth designed for 3D scene flow estimation; in
addition to ground truth in static scenes, additional motion information is also collected;

3. With spatial and angular information that have been decoupled, we experiment
with disparity estimation and angular super-resolution. Specifically, experimental
results demonstrated our dataset’s potential for disparity estimation and angular
super-resolution despite the fact that they contain notably higher disparities than the
majority of current light field datasets.
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2. Related Works
2.1. ACP Method

Due to its sophisticated concept and domain adaptation, parallel intelligence has re-
cently been used in areas ranging from intelligent transportation, artistic creation, computer
vision, and smart sensors. Parallel intelligence was first proposed by Fei-Yue Wang in 2004
to address management and control of complex systems. The ACP theory, which stands
for Artificial Systems for modeling, Computational Experiments for analysis, and Parallel
Executions for control, is the foundation of parallel intelligence. Shen [17] consulted the
ACP theory and proposed the Parallel Light Fields concept in an effort to find a solution
because the acquisition and control of rays are extremely complex and have significant
meanings. The proposed Parallel Light Fields framework divides light fields into three
parts: digital twins of the light sources, virtual cameras, and light fields, which together
constitute artificial systems. The effectiveness of these experiments was then evaluated
by constructing several scenarios with various illumination by adjusting the intensity and
direction of the light sources; a typical application is shadow detection and removal for
illumination consistency by tuning directions of lights [18].

As we know, light field images implicitly record 3D structural information within mul-
tiple views; however, these viewpoints have a lot in common and cause data redundancy,
which may impede the efficiency of algorithms; therefore, how to arrange light field camera
arrays becomes a significant issue which has never been addressed. In the virtual and real
interactive Parallel Light Fields framework, a lot of hypotheses can be verified that are diffi-
cult to conduct in the real world. On the other hand, to perceive indoor and outdoor scenes,
different scale objects in the environment have different demands on light field cameras.
For example, if you want to estimate depth and perform semantic segmentation, scales of
the scene may be within a few meters, and light field camera arrays with small baseline
distance may be able to meet the demand. However, in autonomous driving, cameras
must be able to see tens to hundreds of meters in front of them. For this purpose, larger
baseline distances are considered necessary, and the optic axes of various cameras must
be adjustable from parallel to intersect such that light field cameras can adapt to a strong
afternoon sun [19]. The aforementioned experiments necessitate a significant amount of
manpower; however, we can leverage parallel systems to do a variety of computational
experiments and verify them in real systems. The convergence of the whole closed system
to the optimal states may be prescripted by interactions between virtual and real systems.

2.2. Light Field Data Generation

The preparation of a dataset is the preliminary step in conducting research on light fields.
Common light field datasets include HCI old, HCI new [20], 4DLFVD [21], INRIA lytro [22],
Stanford Gantry [23], as well as others. They can be categorized into three groups based on
how they were acquired: utilizing commercial light field devices, manually building camera
arrays, and using software rendering. Some of these datasets lacking the ground truth are
therefore difficult to utilize for accurate benchmarking. As a passive perception technique,
INRIA lytro creates a light field dataset using the commercial personal lytro light field cameras.
However, due to perspective limitations, only partial views of the scenes may be recorded.
Additionally, since the fundamental characteristics of the light field cameras have already been
calibrated, it is hard to modify them for task-specific scenarios. A high-density 4D light field
video dataset called 4DLFVD was compiled by camera matrices. They construct collection
systems made up of 10 × 10 1080p monocular video cameras distributed uniformly in the
same plane and direction and with a resolution of 1920 × 1056 pixels. Their dataset consists of
nine groups of videos with both interior and outdoor situations. The HCI dataset was virtually
created using the free and open-source software Blender. It is comprised of 20 photorealistic
light field scenes with a resolution of 512 × 512 and 4 stratified scenes.

A recent study has attempted to determine the association between various angulars and
then augment the light field dataset. This is in line with the development of deep learning.
An important concept is angular super resolution. To increase the effectiveness of processing
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light field data, Yu [24] designed a series of disentangling convolutions to split up high-
dimensional light field images into numerous low-dimensional subspaces. By combining
spatial and angular features, they unsampled 2 × 2 light field viewpoints to denser 7 × 7 .

Others include the increasingly popular Neural rendering technique known as NeRF [25],
which outputs a volume density and view-dependent emitted radiance at a given spatial
position using a 5D coordinate system (spatial location (x ,y ,z) and viewing direction (θ ,φ))
as input. Suhail [26] presented a model that may simulate non-Lambertian effects as well as
view-dependent impacts of synthesized perspectives. In order to produce the color of a target
ray, they devised a two-stage transformer-based approach that first aggregates features along
epiploar lines and then aggregates features along reference views.

2.3. Light Field Disparity Estimation

According to epipolar geometry, disparity [27] refers to the displacement of the same pixel
in neighboring views. Since depth and disparity have an inverse proportional relationship,
calculating disparities allows us to determine the scene’s depth. This is one of the main
applications for light fields. The widely used stereo cameras are based on this principle,
and autonomous driving is a typical implementation. Due to the fact that discrepancies between
pixels are determined by locating relevant pixels, stereo matching issues can only occur when
cameras are placed on a rig of the same height. If occlusion then arises, the problem will become
more severe. However, this can be mitigated by employing light field cameras, as in light
field formulation, we can additionally acquire angular dimension, which provides implicit
indications of scene structure. For the purpose of estimating the disparity of light fields, Tsai [28]
presented an attention-based view selection network. They created a view selection module
that produces an attention map that indicates how important each view is.

2.4. Light Field Angular Super-Resolution

Reconstructing light field images from a lower angular resolution to a higher one
is the goal of light field angular super-resolution [29]. Since we are aware that various
viewpoints in a light field image correlate to various disparities, angular super-resolution is
always combined with depth cues and used as an auxiliary task. One technique that makes
use of depth is to implicitly concatenate depth features with extracted angular and spatial
features in different phases and then refine the network to produce upsampled light field
images [30]. Another technique is warping disparities with the reference view and blend
to the target view [31]. To eliminate trade-offs between the spatial and angular domains
and fully utilize the abundant light field data, Cao [32] proposed a multi-model fusion
in light field angular super-resolution estimation. By effectively exploiting the intrinsic
geometry information, Jin [29] developed an end-to-end learning-based approach capable
of angularly super-resolving a sparsely sampled light field with a large baseline.

3. Approaches

The first step in Parallel Light Fields is the construction of Artificial Systems, on top of
the Computational Experiments and Parallel Executions that featured as virtual and real
interaction. In this study, we use a virtual platform called Blender, an open source creation
tool, to carry out light field research. First of all, in the virtual world, we can create a variety
of scenarios tailored for specific tasks such as autonomous driving recognition, indoor
scene perception, factory assembly line for industrial inspection, and so on. An example
indoor scene is as shown in Figure 1; as we can see, the virtual scenes with naturalism
desks, chairs, bowls, ceiling lamp, and others with concrete 3D sizes created within the
Blender virtual environment are observed from the perspective of a camera. Another
view camera is marked in yellow from the left side of the scene. With full scene known
parameters, we can flexibly arrange objects and lights to construct scenes as we need.
Afterwards, since Blender offers a Python API, it is convenient for us to make user-defined
add-ons, as we need to self-define virtual light field camera arrays used to collect light
field images for subsequent tasks. In order to accomplish our objectives, we developed a
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light field add-on that simulates the sampling of light field cameras in real life. To make
it, we adjusted the light field camera array layout to make the baseline distances between
cameras adjustable. To be more precise, a larger baseline is more appropriate for distant
and expansive circumstances, and vice versa; this is in line with how our eyes see. On the
other hand, we can explore reducing redundancy of overlapped camera views by tuning
baseline distances among cameras as a distribution as uniform or exponential. The basic
light field camera parameters we can adjust in Blender are shown as follows in Table 1:

Table 1. Camera parameters set in the Blender platform.

Focal Length Baseline Distance Sensor Size Image Size Angular Resolution

39 mm 0.125 m 36 mm 1024 × 1024 9 × 9

Figure 1. The Blender interface used to generate light field images.

The other two associated elements are digital twin light sources and digital twin scenarios.
Depending on whether a scene is indoors or outside, distinct kinds of light sources are
available, such as spot, dot, area, and sun light. Light field cameras may implicitly record
ray direction; therefore, in addition to color rendering, we can conduct research by taking
ray direction into account. For instance, in autonomous driving, afternoon sunshine shining
straight into the camera lens can cause potential risks. Humans can switch to a different view
to avoid this situation, but an autonomous vehicle cannot. A parallel system is an excellent
setting for these tests. To solve this problem, we consult Parallel Light Fields, and one possible
solution we come up with is spherical light field camera arrays by positioning cameras on
surfaces with variable radii. With the help of some computer vision or graphical algorithms,
we can reason about the variable directions of lights captured by different camera lenses in
different positions and filter noisy lights to obtain final clear light field images.

3.1. ACP Based Optimal Camera Array Deployment

Stereo images, as we are aware, will have better depth estimation accuracy than monocular
images due to the additional 3D structure information provided by a second view. For the same
reason that we use light field images, more viewpoints of the image will provide significantly
more cues for depth inference. Even if we have up to 9 × 9 angular resolution, not every view
has an equal effect on the final depth estimation. Adding more views therefore increases data
volume and the computational burden. Additionally, these additional view images have a
high level of redundancy. As far as we are aware, there is no task that specializes in optimal
view selection and can extract the most information from light field images with the smallest
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number of views. For tasks like depth estimates, some early studies randomly selected a portion
of the viewpoint. It becomes difficult and necessary to figure out how to choose the most
appropriate viewpoints in order to increase efficiency. We discovered that the optimal camera
array deployment may be accomplished by adjusting the distances between nearby cameras
and the camera sphere in order to strike a compromise between scene depth accuracy and view
redundancy. The solution to this issue will have a substantial impact on the creation and design
of light field cameras in practical applications. It would be preferable if we could intelligently
adjust the baselines to make our light field cameras task-specific.

The maximum recovery of 3D structural information of small objects and large-scale
scenes have differing demands on camera array configurations, making the optimal view
selection significant in light field camera design as well. Take camera arrays as an example.
For instance, camera arrays can be placed in a sphere or a plane, and the distance between
neighboring cameras can either be equal, linearly growing, inverse proportional, or ex-
ponential. It is unrealistic to conduct experiments on every single mode to figure out the
optimal deployment for every single case in the real world. Due to the light field camera’s
ability to restore implicit 3D structures, we believe it may eventually replace conventional
cameras. Making the light field camera more adjustable will be a significant and fascinating
challenge. The inflexibility may have been one of the challenges to the development and
popularity of commercial light field camera devices.

We propose a solution in this essay that is based on the ACP theory as shown in Figure
2. The Parallel Intelligent aspect of the ACP theory is abstracted to include both virtual and
real interaction. Create artificial systems that are similar to real systems before conducting
computational experiments there. Small data in the virtual world may then be expanded to
big data for intelligent algorithms, and once smart knowledge has been obtained, it can be
used in real systems for validation. Iteratively repeating this process until a complete closed
loop is achieved, the systems work in an interactive way between the real and virtual worlds
until final convergence. Feedback from actual systems will direct the virtual systems to update
settings iteratively.

FeedBack

Light Field Camera

Sparse Sub-Aperture array

(𝜃, 𝜑, 𝑥, 𝑦, 𝑧)

Real World

Light Field Camera Light Source

Dense Sub-Aperture Array

(𝜃, 𝜑, 𝑥, 𝑦, 𝑧)
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Figure 2. Framework of ACP based light field generation.

To be specific, the Blender suite is very flexible and a Python API is accessible, which
means we can compile our own light field add-ons. In stereo matching, the depth and
disparity follow the rule as

depth =
f b

disparity
, (1)
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where b is baseline between adjacent cameras, f is the focal length, and, if disparity is fixed,
depth is proportional to baseline distance; this is the same with our eye.

Therefore, in our settings, we choose to focus on closer scenes with cameras that are
closer to the central view and faraway scenes with cameras that are farther from the central
view. By adjusting camera array baseline distances to achieve a full focus mode, we carry
out computational experiments in the virtual space. The scene images are then recorded
using rendered light field cameras.

3.2. Light Field Static Scene Generation

By utilizing the free and open source Blender 3D creation platform, we have published
a new light field image collection in this work. A virtual light field camera in the form of
camera arrays was used to take the scene images with diverse lighting conditions such as
sunshine, spot light, and dot light. To build the scene in Blender, we employed a number of
3D models, including indoor rooms, outdoor houses, and streets.

The 3D model that is used to build the scene in our settings comes from two sources.
First, it may be acquired from a website that provides free 3D models; these models were all
generated using the Blender software. Even though some of them are not very realistic, they
are nevertheless useful because we are aware of all the 3D measurements and may modify
the model to our preference. Second, in order to lessen the impact of natural sunlight on the
rendered scene, we also collected the 3D models of a few additional objects utilizing scanning
devices like RGBD cameras and iPADS. These additional objects, which primarily include
real-world cars, were collected on cloudy days rather than sunny ones. In this manner, we can
produce a variety of scenes in batches to meet the demands of our tasks by completely utilizing
the large real-world and virtual 3D models. We use the cycle engine to imitate natural qualities
of light and increase rendering realism at the expense of rendering time. The depth is generated
using Blender’s Z pass, where the Z pass values correspond to the length of the ray from the
object’s surface point to the camera’s pinhole. In contrast to the Eevee engine, the physical Cycle
engine can track rays and support a variety of complicated materials, producing in more realistic
results. Light field images require containing rays’ directions in addition to their appearance
and intensity, in contrast to conventional 2D images, hence the cycle engine is the ideal option.
The notion behind the volume rendering used in the well-known Neural Rendering network is
comparable to how information along the ray is recorded in the cycle engine. We reduce the
sampling rate, and the maximum light path bounces to a relatively smaller amount with little
loss in rendering quality in order to speed up rendering.

Our light field image has a spatial resolution of 1024 × 1024 and angular resolution up
to 9 × 9. To verify how baseline distance between adjacent cameras will affect the depth
estimation performance, we set two versions of angular resolution with 7 × 7 and 9 × 9
spatial resolution and the lower the spatial resolution, the longer the baseline distance.
In the popular HCI dataset, the training dataset includes 16 simple scenes, and only the
depth/disparity ground truth is available; on the contrary, with the HCI dataset, as depicted
in Figure 3 our captured scene is more complex, and provides ground truth including
the depth/disparity for depth estimation, a normal that indicates the ray direction, and
semantic cues for segmentation. In addition, the HCI dataset focuses on a relatively
simple scene and distances between camera lenses are relatively small; their disparities
are within –4 to 4 pixels, our goal is trying to make a dataset that is suitable for large scale
scenarios, so our light field dataset has disparities ranging from 0 to 200 pixels, which is
similar to current 2D autonomous driving datasets like KITTI. We hope that our light field
dataset is capable of training current perception algorithms by exploiting 3D structural
features more effectively and boosting their performance in tasks like depth estimation and
object detection.
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Depth

Segmentation Normal

Rendered image

Figure 3. Our rendered light field image depth, segmentation and normal groundtruth maps.

Our light field image has an angular resolution of up to 9 × 9 and a spatial resolu-
tion of 1024 × 1024. We set up two versions of angular resolution with 7 × 7 and 9 × 9
spatial resolution, and the lower the spatial resolution, the greater the baseline distance,
to investigate how baseline distance between neighboring cameras will affect the depth
estimation performance. The popular HCI dataset only has depth/disparity ground truth
available for 16 simple scenes in the training dataset. In contrast, our captured scene has
depth/disparity for depth estimation, a normal that shows the ray direction, and semantic
cues for segmentation. In addition, the HCI dataset focuses on relatively simple scenes
and camera lens distances are relatively small; their disparities are within −4 to 4 pixels.
Our goal is to create a dataset that is appropriate for large scale scenarios, so our light
field dataset has disparities ranging from 0 to 200 pixels, as presented in Figure 4, which
is similar to current 2D autonomous driving datasets like KITTI. We anticipate that, by
more efficiently exploiting 3D structural features, our light field dataset will be able to
train current perception algorithms and improve their performance in tasks like depth
estimation and object detection.

Figure 4. Our light field image and depth ground truth rendered by Blender.
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3.3. Light Field Dynamic Scene Generation

Videos are merely 2D frame sets with depth discarded, making them unsuitable for
3D motion estimates. In order to examine dynamic characteristics of the scene, we require
3D models with time-varying motions. We must therefore create dynamic light field videos
for studying scene flow, as we do with static scenes. Comparing dynamic scenes to static
scenes, merely making every object move over time is insufficient for the creation of a
dynamic scene; instead, the objects in the scene must be connected by correlation relations
for the scene to have any semantic significance. These semantic signals will be useful in
tasks like object tracking based on light field scene flow prediction. For instance, a man
should run on a road instead of on the river, as well as a boat should float on the river
instead of fly in the air.

Thanks to the availability of large-scale, free 3D animated models in full 3D sizes,
we are now able to create dynamic sceneries in the form of optical flow. We can render a
whole scene animation and capture a dynamic full scene using our light field camera after
importing 3D dynamic human models into our static scenes. In Blender, the vector pass in
the data module can generate relative pixel displacement between adjacent frames, which
can subsequently be used to acquire optical flow. The generated flow dataset is shown
in Figure 5. The upper row depicts a dynamic scene rendered with a moving person in
a static environment, and the lower row depicts comparable flows of the dynamic scene.
The colors in the flow images denote the directions and magnitudes for speeds, respectively.
Our dynamic scene light field images have the same spatial and angular resolution as
our static scene light field images, and each scene’s whole 6D light field dataset spans
150 × 9 × 9 × 1024 × 1024 × 3 dimensions, with 150 being the frame. For the purpose of
future light field image-based perception, we also obtained ground truth of segmentations,
depths, normals, and object poses in addition to flows.

Frame1 Frame2 Frame3 Frame4

Flow1 Flow2 Flow3 Flow4

Figure 5. Rendered images and corresponding flows.

4. Experiments
4.1. Light Field Disparity Estimation

Our light field dataset is more suitable to transfer to various 2D image-based deep
learning algorithms since it is indoor and outdoor focused, with large depth compared to
many other public datasets. We trained the widely used light field disparity estimation
network DistgDisp using our light field dataset and the HCI light dataset, respectively,
to validate our proposed dataset in depth estimation. In the DistgDisp [24] benchmark,
the subaperture input images are first rearranged into a macro pixel image, and fed to
eight spatial residual blocks for spatial information incorporation; afterwards, a series of
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disparity-selective angular feature extractors were introduced to disentangle the disparity
information from the macro pixel image. Similar to conventional stereo matching, the ex-
tracted features are merged to generate a cost volume. The aggregated cost is then used
to regress the final disparity using 3D convolutions. Although the network used in this
method is not particularly complex, which is simply a fully convolutional extractor without
an attention module, it achieves a mean square error (MSE) value of 0.01896 and Badpix0.01
values of 23.328 on the HCI light field dataset, and, as of the time they submitted their
results, it was ranked second:

MSE =
1

H ∗ W

H

∑
i

W

∑
j
(dispesti(i, j)− dispgt(i, j))2 (2)

The smaller disparity of the HCI dataset, on the one hand, is thought to be responsible
for their strong performance. The HCI dataset has a maximum disparity of 4 pixels,
which indicates that the 9 × 9 view photos have a lot in common and that redundant
information improves network efficiency. However, compared to monocular or stereo
pictures, the combination of spatial, angular, and epipolar properties offers significantly
more structural information and contributes to enhancing the disparity results.

Since our dataset has much greater disparity than the HCI dataset, we modified the
refocus augmentation to adapt to our disparity range in the data augmentation stage,
and the initial learning rate and decay are recalculated as 1 × 10−4 and 0.75, respectively.
As a result, we use DistgDisp as our baseline to evaluate our light field dataset. We
have not masked out transparent or reflective parts, in contrast to the training on the
HCI dataset, even though they might impair the performance of disparity estimation.
Finally, we reach an MSE of 2.352, which is 120 times greater than on the HCI dataset.
Given that the maximum disparity on our dataset is up to 200 pixels, we believe this is a
reasonable threshold.

As can be seen, the estimated disparity map in Figure 6 can recover certain structural
elements beyond the captured depth ground truth.

Figure 6. From left to right are rendered images, disparity ground truth, and estimated disparity.

On the other hand, we also conduct experiments on the epipolar plane images based
light field disparity estimation method named EpiNet [33] on our dataset. We make some
modifications: the initial learning rate and decay are recalculated as 5 × 10−6 and 0.5,
respectively; different from that trained on the HCI dataset, we do not mask out any
reflection region pixel but train the whole area. We finally adopt 40 scenes and each with
eight perspective light field images for training, the results are shown in Table 2 the mean
square error (MSE) is used as a metric, and our result is 1.245. Since our dataset has a
disparity of up to more than 100 pixels and is larger than [−4,4] in the HCI dataset, in
addition to the baseline distance also being larger and there being no other light field
dataset similar to ours, it is hard to make a relatively fair comparison.
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Table 2. Disparity estimation results comparision between HCI dataset and uur dataset.

Model HCI (MSE) Our Data (MSE)

DistgDisp 0.01896 2.352
EpiNet 0.01280 1.245

4.2. Light Field Angular Super-Resolution

The angular super-resolution experiment, often known as viewpoint synthesis or
reconstruction, is another fundamental light field experiment. In order to evaluate on our
dataset, we additionally use the DistgASR disentangling strategy. To take advantage of per-
formance in scenes with large disparities, we conduct light field angular super-resolution.
To effectively exploit correlations within each domain, DisgtASR [24] also introduces two
additional horizontal and vertical epipolar plane images (EPIs) feature extractors in ad-
dition to the spatial feature extractor and angular feature extractor. The angular feature
extractor takes in an angular resolution of 3 × 3 and dilation by 1 to calculate correlations
between different views, and the spatial feature extractor with a kernel by 3× 3 and dilation
by angular resolution, respectively, to extract features within each subaperture image as
conventional convolutions. Features extracted from these four modules are concatenated
to input to two spatial feature extract modules, and the aforementioned modules together
composite the Disentangle Block (Distg-Block). After a few Distg-Blocks, a 1 × 1 convolu-
tion aggregate features in to dimensions of 1 × 1 × β2 A2C where β is the upsampling rate,
A is original angular resolution, and C is the feature channels. A pixel shuffle module was
finally used to obtain the final upsampled result with a size of βA × βA × C; here, we set β
as 7

2 and A is 2. We follow the training strategy in DistgASR and use the Peak Signal Noise
Ratio (PSNR) and Structural Similarity (SSIM) as the metric to evaluate our result.

To reconstruct the other 45 views, we choose the four corner views from the 7 × 7 views
as our input. We achieve a PSNR and SSIM of 30.135487 and 0.942329 in the 2 × 2 to 7 × 7
angular super-resolution task show in Table 3. On the contrary, the DistgASR trained on
the HCI dataset achieved scores of PSNR 34.7 and SSIM 0.974, which are better than in our
dataset. We attribute this to our larger scale disparity, which results in significant displacement
of pixels in adjacent views. As illustrated in Figure 7, we chose the upper left 15 views for
demonstration, with View_01_01 acting as the input and the remaining views being the
reconstructed views. To illustrate our finding that the reconstruction perspective becomes
blurrier the farther away it is from the input perspective, we depict the same spatial location in
red and yellow boxes drawn from several perspectives. As we can see, the mirror and its edge
are becoming blurry in the red boxes from upper left to lower right, and in the yellow boxes
as well. We believe this is because of the low roughness and shallow depth. We also trained
DistgASR on the HCI dataset with two disparity ranges for verification and depict the bigger
disparity ranging from −3.6 to 3.5 in Figure 8 and the smaller disparity ranging from −1.6 to
1.2 in Figure 9. The blurred areas in larger disparity inputs frequently occur in the lower depth
region. We believe that this is because the lower depth corresponds to larger disparities, which
means there is greater movement between adjacent view images and may result in errors.
In contrast, in small disparity areas, the network is better capable of reconstructing the scene.
In conclusion, we think that larger disparity may be the reason for performance degradation
in angular super-resolution, since disparities in our dataset are much larger than in the HCI
dataset; even though the PSNR and SSIM in our dataset are lower than in the HCI dataset, we
think our performance is better. In addition, since no dataset currently exists with a relative
disparity range as wide as ours, we expect that using our dataset would significantly improve
the performance of existing algorithms developed using monocular or biocular datasets and
expand their application to autonomous driving perception scenarios.
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Table 3. Results comparision between HCI dataset and our dataset.

Dataset PSNR SSIM

HCI 34.7 0.974
Our data 30.135487 0.942329

PSNR = 10 log10(
(2n − 1)2

MSE
) (3)

MSE =
1

H ∗ W

H

∑
i

W

∑
j
(Re fimg(i, j)− Recimg(i, j))2 (4)

View_01_01 View_01_02

View_02_01

View_03_02

View_02_02

View_03_03 View_03_05View_03_04

View_01_03

View_02_03

View_01_04

View_02_04 View_02_05

View_01_05

View_03_01

Figure 7. Results of light fields angular super-resolution on our dataset.
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View_01_01

View_02_01 View_02_02 View_02_03

View_03_01 View_03_02 View_03_03

View_03_04

View_01_04View_01_03View_01_02

Figure 8. Results of light fields angular super-resolution on HCI dataset with high depth.

Light fields’ angular super-resolution is the inverse of light fields capturing, and the PSNR
and SSIM can be seen as an indicator of correlation between the reference view image and
the reconstructed view image. Based on these observations, we can choose views with the
least redundancy by adjusting the baseline distances; to be concrete, if the recovered views
are blurred, the PSNR and SSIM are low; then, we think a camera lens should be deployed
in that position to provide some complementary cues. We will conduct such research in the
future work.

View_01_01

View_02_01 View_02_02 View_02_03

View_03_01 View_03_02 View_03_03
View_03_04

View_01_04

View_01_03View_01_02

Figure 9. Results of light fields angular super-resolution on HCI dataset with low depth.

5. Conclusions

In this paper, we produce a brand-new synthetic light field dataset specifically designed
for static scene depth estimation and dynamic scene flow estimation by compiling an add-on
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using the free and open-source Python API of the Blender suite. Our static light field scene
images include both indoor and outdoor scenarios. When compared to other light field
datasets, our dataset is larger in terms of scene scale and depth, and it explores the potential
of light field images for indoor 3D reconstruction. With the help of the Python API, light field
research may be applied to the context of autonomous driving, which will, in our opinion,
significantly enhance the effectiveness of visual perception algorithms. Additionally, since
it is challenging to collect ground truth for 3D dynamic models, we also create a dynamic
3D motion dataset for exploring scene flow. Thanks to Blender’s virtual environment, where
sizes and motion parameters are known, ground truth is also much easier to collect.

We also evaluate main stream disparity estimation and angular super-resolution
algorithms on our static scene dataset, with little modification on the training strategy of
the network, even though results trained on our dataset are not as good as those trained
on the HCI dataset, we think it is because our dataset is more complex and has a larger
disparity which is more suitable for algorithms designed for current autonomous scenarios,
and our future work will fully exploit large scale scenes.
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