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Abstract: In this paper, a resource allocation (RA) scheme based on deep reinforcement learning
(DRL) is designed for device-to-device (D2D) communications underlay cellular networks. The goal
of RA is to determine the transmission power and spectrum channel of D2D links to maximize the
sum of the average effective throughput of all cellular and D2D links in a cell accumulated over
multiple time steps, where a cellular channel can be allocated to multiple D2D links. Allowing a
cellular channel to be shared by multiple D2D links and considering performance over multiple time
steps require a high level of system overhead and computational complexity so that optimal RA is
practically infeasible in this scenario, especially when a large number of D2D links are involved. To
mitigate the complexity, we propose a sub-optimal RA scheme based on a multi-agent DRL, which
operates with shared information in participating devices, such as locations and allocated resources.
Each agent corresponds to each D2D link and multiple agents perform learning in a staggered and
cyclic manner. The proposed DRL-based RA scheme allocates resources to D2D devices promptly
according to dynamically varying network set-ups, including device locations. The proposed sub-
optimal RA scheme outperforms other schemes, where the performance gain becomes significant
when the densities of devices in a cell are high.

Keywords: device-to-device; resource allocation; deep reinforcement learning; cellular network

1. Introduction

As the demand for mobile and wireless communications grows, a large number of
spectrum resources are needed to accommodate the increasing number of mobile and
wireless users. Since the amount of available spectrum is limited, there are severe short-
ages of spectrum resources in modern wireless communication systems. Consequently,
it is critical for cellular networks to support a high number of mobile users with limited
spectrum resources while maintaining a high quality of services (QoS). Device-to-device
(D2D) communication technology was introduced as a promising solution to resolve the
spectrum shortage problem [1]. By using the D2D technology, mobile users in the proximity
are able to communicate with each other directly without imposing heavy loads on cellular
networks. The scope of D2D communications has been extended to vehicle-to-vehicle
(V2V) and vehicle-to-everything (V2X) systems and the D2D technology is considered a
key technology in fifth-generation (5G) wireless communications. Many researchers have
focused on D2D technology and have conducted a large number of research activities
regarding D2D communications.

Since D2D communications utilize spectrum channels, which are already occupied
by cellular users, it is essential to allocate communication resources to D2D devices in
a way that the performances of D2D links are improved without destroying the QoS
of cellular links. Thus, the resource allocation (RA) for D2D devices in the existence of
cellular devices is an inherent issue of D2D communications in theoretical and practical
aspects. A large number of research studies have been conducted regarding RA for D2D
communications, especially underlay cellular networks [2–13]. When different D2D links
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occupy distinct cellular channels, efficient one-to-one mapping techniques may be applied
to RA [2]. On the other hand, in case multiple D2D links are allowed to share a cellular
channel, the optimal RA problem becomes NP-hard and cannot be solved analytically,
especially when a high number of wireless devices are distributed densely in a cell. Hence,
sub-optimal approaches with reduced complexities have been investigated to implement
RA in practical D2D communication systems [14–16]. In [14], a two-step resource allocation
scheme was introduced to maximize the sum capacity of D2D communications. In [15], a
centralized resource allocation method based on the difference of the convex function (DC)
programming was proposed to solve a weighted sum rate maximization problem. In [16],
an alternating channel assignment–power allocation scheme was proposed to maximize
the sum rate of the cellular and D2D links.

As the scope of D2D is extended to D2D with mobility, we need a dynamic RA scheme
suitable for networks with devices changing their locations continuously. It is clear that
a dynamic RA requires a much higher system overhead and computational complexity
than a static one because the resource allocation needs to be updated whenever a network
setup, including device locations, changes. Data transmissions need to be conducted over
multiple time steps for several reasons, e.g., due to the segmentation of long data frames
into multiple short ones due to limited bandwidth channels. The number of time steps may
be determined by data size, channel bandwidth, battery life of UEs, etc. The RA becomes
more complex and hard to implement if a sequence of resources needs to be allocated
over multiple time steps. Thus, a sub-optimal RA scheme with low complexity is more
demanding in modern communication networks.

Recently, deep learning (DL) and reinforcement learning (RL) have received atten-
tion from a wide range of fields. DL has been actively adopted in optimization, system
identification, recognition, and classification in many applications, including wireless com-
munications. RL is a mechanism of agents that learns what to do, or how to map situations
to actions, in order to maximize a reward through a trial-and-error search. Deep RL (DRL)
incorporates DL into RL, in which agents make decisions from unstructured input data,
where the deep Q-network (DQN) is a well-known example of DRL [17]. DRL has also
been widely applied to various forms of optimization and policy determination problems,
including wireless communication systems. DRL is an efficient mechanism for sequential
decision-making, so it is a natural approach to apply DRL to RA over multiple time steps.
Using DRL is considered a good approach to determining resources for D2D devices in
a sub-optimal manner, with lower complexity in practical communication networks. In
the training phase, artificial neural networks (ANNs) in agents are intensively trained for
as many situations as possible. Then, in an actual operational phase, agents just observe
situations and draw sub-optimal solutions to an RA problem using trained ANNs.

Many research works have applied learning techniques to RA for D2D communi-
cations [18–34]. As a learning principle for training RA units, DL [18–22], RL [23–25],
and DRL [26–34] have been widely utilized. Depending on who determines the re-
source allocations for D2D devices, two types of RA schemes have been proposed: a
centralized RA [18–20,23,26–28,31] and a decentralized RA [20–23,25,29,30,32–34]. In
the case of DRL-based RA schemes, a single-agent framework is used for centralized
RA schemes [26–28,31] while a multi-agent framework is used for decentralized RA
schemes [21–25,29,30,32–34]. In essence, centralized single-agent RA schemes have attained
a high QoS in the communication network by utilizing highly computational complexities.
On the other hand, decentralized multi-agent RA schemes require low amounts of computa-
tion resulting in a degraded QoS. To obtain a high QoS with low computational complexity,
we adopted a multi-agent structure to be used in the centralized RA framework, which is
the main distinction from preceding works.

Various forms of DL-based RA schemes have been proposed. A hybrid power allo-
cation scheme was proposed to maximize the sum rate of D2D users by mitigating the
QoS constraint violation [18], and a channel and power allocation scheme for overlay D2D
networks was proposed to maximize the sum rate of D2D pairs with a minimum rate
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constraint [19]. The DL framework (for the optimal RA in multi-channel cellular systems
with D2D communications) was proposed to maximize the overall spectral efficiency [20],
and random graph-based sparse–long short-term memory (LSTM) network for joint re-
source management was proposed to maximize the determinacy of latency in cellular
machine-to-machine communications [21]. In [22], the RA scheme in unmanned aerial
vehicle (UAV)-assisted cellular V2X (C-V2X) communications was proposed to maximize
the bandwidth efficiency while satisfying the rate and latency of users.

RA schemes using RL in training phases were also proposed. An energy optimization
technique was proposed in 5G wireless vehicular social networks [23], and a joint power
allocation and relay selection scheme based on Q-learning was proposed to improve energy
efficiency in relay-aided D2D communications underlay cellular networks [24]. A content-
caching strategy based on multi-agent RL with reduced action space was introduced to
maximize the expected total caching reward in mobile D2D networks [25].

An increasing number of research studies are investigating and devising RA schemes
based on the DRL principle. A centralized double-DQN-based RA scheme was proposed
for dynamic spectrum access in D2D communications underlay cellular networks [26],
and a centralized hierarchical DRL-based method was proposed to find an optimal re-
lay selection and power allocation strategy for 5G mmWave D2D links [27]. In [28],
a DRL-based algorithm was proposed to determine the transmit power of D2D and
cellular links for maximizing an overall sum-rate. In [29], each V2V link selects re-
sources with the aid of DQN to satisfy a latency constraint and minimize the mutual
interference between the infrastructure and vehicles in unicast and broadcast scenar-
ios. A deep deterministic policy gradient (DDPG) algorithm was used for the energy
efficient power control in D2D-based V2V communications [30], and an adaptive RL
framework was used to select the appropriate channel selection for a non-orthogonal mul-
tiple access-unmanned aerial vehicle (NOMA-UAV) network [31]. In [32], a distributed
frequency RA framework based on the multi-agent actor–critic (MAAC) was proposed.
In [33], a multi-agent DRL-based distributed power control and RA algorithm was intro-
duced to maximize the throughput of D2D and cellular users. In [34], a DRL-based joint
mode selection and channel allocation algorithm was proposed in D2D communication-
enabled heterogeneous cellular networks to maximize the system sum-rate in mmWave
and cellular bands.

In centralized RA, a central coordinator collects information from all devices in a
cell and determines the resources for all participating devices. On the other hand, in
a decentralized RA, participating devices determine their own resources by using their
locally obtained information. The centralized RA scheme results in a better performance
than the decentralized scheme at the cost of high system overhead and high computational
complexity concentrated on a central unit. On the other hand, the decentralized RA
scheme results in a lower system overhead and distributed computation burden at the
cost of the degradation of the communication performance. As the number of devices
participating in D2D networks grows, the system overhead required to collect data from
devices and deliver RA results to individual devices also increases. This results in increasing
interest in decentralized RA schemes, and recently, various forms of decentralized RA
schemes adopting DRL have been proposed. The basic requirement for implementing
a decentralized DRL-based RA scheme involves sufficient computing capabilities from
participating D2D devices because each one needs to operate its own learning mechanism,
such as ANN. Vehicles and roadside infrastructures are able to supply sufficient computing
power and enough space to mount high-performance devices so that V2X networks can
utilize a decentralized–DRL-based RA scheme. On the other hand, personal hand-held
devices do not have enough power supply and computational capabilities to run their
own learning units so a decentralized DRL is not considered a viable solution for RA.
Consequently, central a RA scheme still has high demands, and an advanced approach to
reducing the computational complexity of DRL adopted for RA by a central coordinator is
highly demanding.
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In this paper, we propose a practically efficient centralized RA scheme based on a
multi-agent DRL for D2D communications underlay cellular networks. We aim to present
a good performance of the centralized RA scheme while reducing the computational
complexity by using a multi-agent structure. Transmit power and the spectrum channel of
D2D links are considered resources of D2D communications, and the objective of RA is to
maximize the sum of the average effective throughput of all cellular and D2D links in a cell
accumulated over multiple time steps. We obtained outage probabilities of cellular and
D2D links in terms of the spectrum channel and the transmit power of the devices. Then,
we define an effective throughput and formulate the optimization problem required for RA.
We introduce a multi-agent DRL framework in which agents reside in a central coordinator
of the cell and conduct constituent learning processes in a staggered and cyclic manner.
Thanks to the segmentation of ANN into smaller ones, the proposed multi-agent DRL
requires lower computational complexities in both the training phase and testing phase than
the joint DRL for RA. The proposed RA scheme promptly allocates resources depending
on the locations of participating devices, which vary dynamically. It was observed from
simulations that the proposed DRL-based RA scheme performs well in various aspects
of D2D communications underlay cellular networks. The usefulness of the proposed RA
scheme is clearer in case the D2D devices are distributed more densely in a cell resulting
in a higher level of mutual interferences among devices. Consequently, the proposed RA
scheme is considered practically efficient in the next-generation communication network in
which a high number of D2D devices with high mobility exist in cellular networks.

This paper is organized as follows. In Section 2, the system model of D2D commu-
nications underlay cellular networks is presented and the optimal resource allocation is
formulated to maximize the sum of the average effective throughput of cellular and D2D
links accumulated over multiple time steps. In Section 3, we provide a short introduction
to the deep reinforcement learning algorithm. In Section 4, we propose a multi-agent DRL-
based RA scheme, in which multiple agents conduct constituent learning in a staggered
manner with a timing offset in a cyclic manner in a training phase. In Section 5, we analyze
the performance of the proposed scheme in various aspects and compare it with other RA
schemes. Finally, we conclude this paper in Section 6.

2. System Model

We consider a single cell, in which an evolved Node B (eNB), K cellular user equipment
(CUE), and M D2D pairs exist, as shown in Figure 1. A D2D pair is formed by the transmit-
ting D2D user equipment (DUET) and the receiving D2D user equipment (DUER), where
D2D communications occur during a cellular uplink period. Note that RA decisions are
made centrally by eNB and delivered to corresponding DUETs during a cellular downlink
period. Each CUE occupies a dedicated channel while D2D links use channels already
occupied by CUEs, where multiple D2D links are allowed to share a channel. We index
CUE and the channel occupied by CUE as k = 0, 1, · · · , K− 1. We also index the D2D pair
and its DUET and DUER as m = 0, 1, · · · , M− 1.

Figure 1. System model of D2D communications underlay cellular networks.



Sensors 2022, 22, 9459 5 of 19

Let sm and s̃k denote a transmit symbol of DUET m and CUE k, respectively, each of
which has the power of pm and p̃k, respectively. We let the transmit power of each DUET be
chosen out of L discrete values, i.e., pm ∈ {p(1), p(2), · · · , p(L)} for each m. We also let dxy
denote the distance between user equipment (UE) x and y, where dxB denotes the distance
between UE x and eNB. We let h̃k

kn denote a small-scale fading gain of the channel between
CUE k and DUER n, and let hk

mn denote a small-scale fading gain of the channel between
DUET m and DUER n over the channel k. We suppose h̃k

kn and hk
mn are independent and

are identically distributed (i.i.d.) zero-mean circularly symmetric complex Gaussians with
unit variances. We use a log-distance model for large-scale fading in the channel between
UEs x and y, which are determined by d−α

xy with a path loss exponent α. We define a D2D
channel access indicator δmk as δmk = 1 if a D2D pair m uses the cellular channel k, and
δmk = 0 otherwise.

The received signal at DUER m over the channel k is written as

yk
m = δmksmhk

mm

√
d−α

mm + ∑
l 6=m

δlkslhk
lm

√
d−α

lm + s̃k h̃k
km

√
d−α

km + wm, (1)

where wm denotes the additive noise at DUER m, which is a zero-mean circularly symmetric
complex white Gaussian with a variance σ2

w. The signal-to-interference-and-noise ratio
(SINR) of yk

m is determined by

γk
m =

δmk pm|hk
mm|2d−α

mm

∑l 6=m δlk pl |hk
lm|2d−α

lm + p̃k|h̃k
km|2d−α

km + σ2
w

. (2)

Similarly, the SINR of the received signal at eNB over the channel k, denoted by γk
B, is

defined as

γk
B =

p̃k|h̃kB|2d−α
kB

∑m δmk pm|hk
mB|2d−α

mB + σ2
w

. (3)

We declare a link outage when the achievable data rate does not meet a target rate. Let
Rc and Rd denote target rates of the cellular link and D2D link, respectively. We also let γc
and γd denote values of the SINR of the cellular link and D2D link, respectively, by which
corresponding target rates are achieved. Note that γc = 2Rc − 1 and γd = 2Rd − 1, where
log2(1 + γc) = Rc and log2(1 + γd) = Rd. Then, γc and γd represent the SINR threshold
for declaring outages of the cellular link and D2D link, respectively. We also let ρk

B and
ρk

m denote the outage probabilities of the cellular link k and D2D link m over a channel k,
respectively. Then, we obtain

ρk
B = Pr

{
log
(

1 + γk
B

)
< Rc

}
= Pr

{
γk

B < γc

}
= 1− exp

(
− σ2

wγc

p̃kd−α
kB

)
·

M

∏
m=1;δmk=1

(
1 + γc

pm

p̃k

(
dmB
dkB

)−α
)−1 (4)

and

ρk
m = Pr

{
γk

m < γd

}
= 1− exp

(
− σ2

wγd

pmd−α
mm

)(
1 + γd

p̃k
pm

(
dkm
dmm

)−α
)−1

· ∏
l 6=m;δlk=1

(
1 + γd

pl
pm

(
dlm
dmm

)−α
)−1

, (5)

whose derivations are provided in Appendix A. Note that ρk
m is defined only when δmk = 1.

We define an effective throughput of the D2D link m over the channel k as a target rate
multiplied by the probability of the successful transmission, i.e., Rd(1− ρk

m). In the same
manner, the effective throughput of the cellular link k is defined by Rc(1− ρk

B). The goal of
RA is determining the channel and transmitting power of all D2D links at each time step
to maximize the cumulative sum of the average effective throughputs of the cellular and
D2D links over multiple time steps T. Multiple D2D links are allowed to share an identical
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cellular channel. A D2D link occupies a single cellular channel during data transmission.
Then, RA can be expressed as

max
δmk,t ,pm,t ,∀t,k,m

T−1

∑
t=0

{
1
K

K−1

∑
k=0

Rc

(
1− ρk

B,t

)
+

1
M

M−1

∑
m=0

K−1

∑
k=0

δmk,tRd

(
1− ρk

m,t

)}

subject to
K−1

∑
k=0

δmk,t = 1, for each m = 0, · · · , M− 1 and t = 0, · · · , T − 1

0 ≤
M−1

∑
m=0

δmk,t ≤ M, for each k = 0, · · · , K− 1 and t = 0, · · · , T − 1,

(6)

where the time step t is specified in δmk, pm, ρk
B, and ρk

m as δmk,t, pm,t, ρk
B,t and ρk

m,t, respec-
tively, with a slight abuse of notation. Constraints in (6) imply that each D2D link utilizes
only one cellular channel while a cellular channel can be used by multiple D2D links. A
mathematical technique to solve (6) is not available, so we need to rely on a brute-force
search approach to obtain optimal solutions of (6), which are δmk,t, pm,t for all m, k, t. Since
there exist LK possibilities of the pair of δmk,t and pm,t for given m and t, the overall number
of possible combinations of δmk,t and pm,t is (LK)MT . Thus, in a brute-force search, the
objective function needs to be evaluated for each (LK)MT candidate to obtain an optimal
solution. As a result, the optimal RA is too complex to be implemented in a practical
system especially when the number of participating D2D links M is high. If distinct cellular
channels are assigned to different D2D links, the channel allocation can be performed
by a low-complexity one-to-one mapping algorithm, e.g., the Hungarian algorithm [2].
However, in case multiple D2D links are allowed to use an identical cellular channel, the
high computational complexity becomes a large constraint in regard to using a brute-force-
search-based RA scheme in a practical communication system. Thus, in this paper, we
devise a low-complexity RA scheme based on DRL, which can be utilized in practice.

3. Deep Reinforcement Learning Preliminaries

Reinforcement learning (RL) is a mechanism of learning what to do, or how to map
situations to actions, in order to maximize a reward through a trial-and-error search. It
is known that the Markov decision process (MDP), represented by a model-free learning
scheme, is useful for studying optimization problems solved by RL. MDP can formalize
sequential decision-making, in which agents interact with the environment, observe states,
and take actions affecting not only immediate rewards but also subsequent situations.
MDP is represented by (S ,A,P ,R), where S is a set of states, A is a set of actions that
the agent can take based on a given state, P : S ×A× S → [0, 1] is a transition function
characterizing the probability that a given state and action are mapped to the next state,
andR is a set of possible rewards obtained by an agent. If the cardinalities of S , A, andR
are finite, the MDP is called a finite MDP.

In the RL, at a certain time step t, an agent observes a state st ∈ S of the environment
and accordingly takes an action at ∈ A based on a policy π. The policy is a mapping
from states to probabilities of selecting each possible action. Following the action at,
the state st transits to a new state st+1 and the agent obtains a reward rt and computes
a return as Gt = ∑∞

k=0 βkrt+k+1, where 0 ≤ β ≤ 1 is a discount factor adjusting the
impact of future rewards. The agent evaluates the expected return obtained by starting
from a state s and following a policy π, thereafter, as vπ(s) = E{Gt | st = s, π} and the
expected return obtained by starting from a state s, taking an action a, and following a
policy π, thereafter, as qπ(s, a) = E{Gt | st = s, at = a, π}. Note that vπ(s) and qπ(s, a) are
called a state-value function and an action-value function, respectively, under a policy π.
Then, the agent determines the optimal policy for a given state s by π∗ = argmaxπ vπ(s),
through which optimal state-value function and action-value function are also defined by
v∗(s) = maxπ vπ(s) and q∗(s, a) = maxπ qπ(s, a), respectively.
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Q-learning was developed as an off-policy RL algorithm for a temporal-difference
control of a finite MDP. It handles problems with stochastic transitions and resulting
rewards without requiring a model of the environment. At each time step t, the agent
staying at a state st ∈ S selects an action at ∈ A based on an action selection rule, which
is designed to balance the behaviors of exploration and exploitation by agents. Greedy,
ε-greedy, and soft-max methods are widely-used examples of the action selection rule. The
quality of the pair of state st and action at is evaluated by a function Q : S ×A → R, whose
result Q(s, a) is called a state–action value. After taking an action, the agent observes a
resultant reward rt and the next state st+1, and then updates the state–action value by

Q(st, at)← (1− µ)Q(st, at) + µ
(

rt + β max
a

Q(st+1, a)
)

, (7)

where µ is the learning rate. This procedure is repeated from the initial time step up to
the final time step. This series of steps is called an episode. At the beginning of each
episode, the environment is set to an initial state and the agent’s reward is reset to zero. We
directly approximate the optimal action–value function, q∗(s, a), by using the state–action
value Q(s, a), independent of the policy being followed. It is known that in MDP, the
state–action value converges with probability 1 to the optimal action–value function if each
action is executed at each state during the infinite run times and the learning rate µ decays,
appropriately. The optimal policy π∗ can be found once the optimal action–value function
q∗(s, a) is determined. After a sufficient number of updates, the state–action values for all
states and actions converge.

In the case of a large state space S , evaluating the state–action values Q(s, a) for all
states requires high computational complexity. We can speed up the learning process by
using a function approximator, obtained from earlier experiences, to compute the state–
action values. DeepMind introduced a deep Q-learning, or deep Q-network (DQN), which
uses a convolutional neural network (CNN) or generally an artificial neural network (ANN)
as a function approximator [17]. DQN has two phases, the (i) training phase and (ii) testing
phase. In the training phase, an agent trains its state–action value approximator through a
sufficient number of learning iterations. Then, the system enters a testing phase, in which
the trained state–action value approximator is used to draw the best actions for a given set
of observations.

In the training phase of DQN, the agent utilizes two ANNs, called Q-networks, which
are a prediction network and a target network. In Q-networks, states are defined by obser-
vations obtained by the agent and are fed to input nodes. With a given state s, the prediction
network computes Q(s, a) approximately for each realization of action a ∈ A at each out-
put node. The action of an agent is chosen by the action selection rule and applied to the
environment or emulator. Then, a reward r, as well as a new state s′, are obtained, and the
transition vector {s, a, r, s′} is stored in the experience replay memory. Since observations
at consecutive iterations are highly correlated, small updates of state–action values may
significantly change the policy and the data distribution, which may result in the instability
of RL. To overcome this problem, deep Q-learning utilizes an experience replay. Random
samples of prior transition vectors are picked from an experience replay memory and used
to evaluate a loss function through the prediction network and target network, where a
batch of transitions may be used. This removes correlation in the observation sequence and
smooths changes in the data distribution. The prediction network is updated at every time
step by using the obtained loss function while the target network is updated periodically or
updated softly at every time step. This process is composed of one learning iteration, which
is summarized in Figure 2. After a training phase is completed by a sufficient number of
iterations, the testing phase begins, in which the agent takes an action a corresponding to
the output node of ANN having the greatest Q(s, a) for given states s fed to input nodes
of ANN.
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Figure 2. Summary of one learning iteration in the training phase of DQN, where the circled numbers
denote orders of the learning process.

4. DRL-Based Resource Allocation for D2D Communications

We propose a DQN-based RA scheme for D2D communications underlay cellular
networks. First, we consider a joint RA scheme by which resources for all D2D links are
determined simultaneously. A central coordinator at eNB is considered a single agent of
DQN, which conducts RA for all DUEs. We define an episode as a time duration T for
which a sequence of data transmissions from DUET to DUER is complete. We count the
time steps inside each episode, i.e., the time step t is defined between 0 and T − 1. At
time step t, the state st is defined by locations of all UEs in the cell, indices of channel
resources, and transmit power levels of D2D links at the time step t. Let zt denote the
vector of locations of all UEs, i.e., CUEs, DUETs, and DUERs, and let ct and pt denote
vectors of allocated channel indices and transmit power levels of all D2D links at time step
t, respectively. Then, the state is expressed as

st = { zt, ct, pt}. (8)

We define the action (at) at time step t by the determination of the transmit power
levels and channel indices to all D2D links at time step t. The instantaneous reward at time
step t, denoted by rt, is defined as the sum of the average effective throughput of D2D and
cellular links in the cell at time step t, i.e.,

rt =
1
K

K−1

∑
k=0

Rc

(
1− ρk

B,t

)
+

1
M

M−1

∑
m=0

K−1

∑
k=0

δmk,tRd

(
1− ρk

m,t

)
, (9)

and the accumulated reward up to the time step t− 1, denoted by r̃t, is obtained as

r̃t =
t−1

∑
i=0

ri, t ≤ T. (10)

The reward accumulated over the time steps in an episode will be called a benefit and
expressed as

r̃T =
T−1

∑
t=0

rt. (11)

The goal of RA is to maximize the benefits under existing constraints as introduced in (6).
In DQN, the state st is fed to input nodes of ANN and each output node of ANN is

dedicated to each action. As introduced in (8), a state is defined by a (K + 4M)-tuple vector,
which are (K + 2M) entries of zt and M entries for each of ct and pt. Each M D2D link can
be allocated a channel index and a power level out of K and L possible values, respectively,
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so that there exist (LK)M possible realizations of action at each time step. It follows that
ANNs in the prediction network and target network have K + 4M input nodes and (LK)M

output nodes, as shown in Figure 3a. Suppose ANN has Lh hidden layers, each of which
has Nh nodes. We also suppose neighboring layers are fully connected. In the testing
phase, ANN performs the forward propagation from the input layer to the output layer.
We consider the computational complexity of the forward propagation of ANN in terms of
floating point operation (FLOP) [35]. A forward propagation from a layer with Ni nodes
to a layer with Nj nodes requires approximately 2Ni Nj FLOPs where the computational
complexities of the activation functions of nodes are negligible. Then, FLOPs required
for forward propagation over ANN is approximately 2

{
(K + 4M)Nh + LhN2

h + Nh(LK)M}.
In the training phase, ANN is updated through multiple pairs of forward and backward
propagations. It is known that FLOPs of backward propagation are typically 2–3 times the
FLOPs of forward propagation [35]. Thus, it is sufficient to focus on forward propagation
when comparing computational complexities of ANNs. When L, K, and M are high, (LK)M

is much higher than K + 4M and Nh so that the computational complexity of ANN is
dominated by Nh(LK)M. Since Nh(LK)M FLOPs are too high to be executed in real time,
the RA scheme based on a single-agent DQN is practically infeasible with high L, K, and M.

(a) (b)

Figure 3. Structure of artificial neural network (ANN) implemented in DQN. (a) Joint DQN, (b) Multi-
agent DQN.

To resolve this problem, we utilize a structure of multi-agent DQN, in which each
agent corresponds to each D2D link and operates its own DQN. Note that agents exist
physically in a central coordinator at eNB. Agents have ANNs in prediction and target
networks with segmented structures as depicted in Figure 3b. Agents share a state, which
is identical to the state of a single-agent DQN defined in (8). The action of an agent is
reduced to the allocation of transmit power and spectrum channel of the corresponding
D2D link only. Thus, the action chosen by the agent m at time step t, denoted by am

t , is
defined by

am
t = {cm

t , pm
t } (12)

where cm
t ∈ {0, . . . , K − 1} and pm

t ∈ {0, . . . , L − 1} denote the index of channel and
transmit power level of the D2D link m at the time step t, respectively. Since each D2D
link has LK possible realizations of action, the ANN in each DQN has LK output nodes as
shown in Figure 3b, where the number of input nodes remains as K + 4M. Then, the overall
FLOPs required for forward propagations over M segmented ANNs is approximately



Sensors 2022, 22, 9459 10 of 19

2M
{
(K + 4M)Nh + LhN2

h + Nh(LK)
}

. If LKM >> Nh, the computational complexity
of multiple-segmented ANNs is dominated by NhLKM, which is M/(LK)M−1 of the
complexity of a single-agent ANN. On the other hand, if Nh >> LKM, the complexity
is dominated by MLhN2

h , which is MLhNh/(LK)M of the complexity of a single-agent
ANN. In both cases, a significant level of complexity reduction is observed by using the
multi-agent DQN.

The learning process of multi-agent RL is executed as described below. Let us define
constituent learning as a sequence of operations by a single agent, i.e., observing a state
s, taking an action a, observing a reward r and a new state s′, updating weights of predic-
tion/target networks θ and θ′. If all agents conduct constituent learning simultaneously, it
is impossible to evaluate explicitly the influence of individual agent actions on the change
of the environment. Since the reward and the next state fed back to each agent do not reflect
explicitly the contribution of the corresponding agent to the environment, the multi-agent
RL may not converge well or may not improve performance through iterations. Thus,
it is a reasonable approach to devise a sequential operation of constituent learning by
multiple agents.

We let agents conduct constituent learning in a cyclic manner with the timing offset as
depicted in Figure 4. Without loss of generality, labeling agents is based on the order of
performing constituent learning. This order is randomly selected at the beginning of the
training phase and is maintained. After completing one constituent learning procedure,
each agent keeps idling until its turn comes around again, by which each agent performs
constituent learning periodically. We define a time step as a time interval corresponding to a
period of learning by agent 0 as depicted in Figure 4. All UEs may change their locations at
the beginning of every time step. After an agent m takes an action, a new state is observed
by this agent as a result of environmental change. This newly observed state is also used as
a state initiating constituent learning by the next agent, i.e., sm

t = s′m−1
t , if m 6= 0. On the

other hand, agent 0 does not use a newly observed state s′M−1
t−1 of agent M− 1 as an initial

state s0
t because UEs may change locations at the beginning of the time step. All agents

complete starting constituent learning processes within a time step. Note that sm
t 6= s′mt−1

due to the existence of the idling period between adjacent constituent learning of each
agent, which is a modification from the conventional DQN. In this manner, the overall
cyclic learning procedure is operated during a training phase. The collection of constituent
learning of all agents composes a learning iteration. We let sm

t , am
t , rm

t , and s′mt denote state,
action, reward, next state of the agent m at time step t. Even at the same time step, different
agents have different values for these variables.

Figure 4. Learning of multiple agents in a cyclic manner.

The learning procedure of each agent over multiple time steps and episodes is de-
scribed as follows, which is also summarized in Algorithm 1. For a simple description,
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we focus on the operation of a specific agent indexed by m, where m = 0, . . . , M− 1. This
corresponds to a single timeline of a single agent in Figure 4. First, we initialize weights of
prediction networks θm by randomly generated small numbers, and set weights of target
networks as θ

′
m = θm. Experience replay memory Dm is initialized by running a random

policy. The agent m observes a state sm
t and takes an action am

t based on the ε-greedy policy
as an action selection rule to affect the environment. This implies that the agent m selects
an action am

t resulting in the maximum state–action value Q(sm
t , am

t ; θm) with probability
(1− ε) or selects an action randomly from other candidates with probability ε. Note that
we use the expression Q(s, a; θ) to declare that the state–action value Q(s, a) is obtained by
ANN with weights θ. Affected by action am

t , the environment changes and the agent m ob-
tains a reward rm

t by (9) and observes a next state s′mt . The transition vector
{

sm
t , am

t , rm
t , s′mt

}
is stored in the experience replay memory Dm. The batch of transition vectors, which have
been previously stored in Dm, are sampled randomly and used to evaluate a loss function
as the following. Suppose

{
sm

j , am
j , rm

j , s′mj
}

is one sample included in a batch B picked up
from Dm, where we use subscript j to represent an index at which the transition vector is
stored in Dm with a slight abuse of notation. The predicted state–action value Q(sm

j , am
j ; θm)

is obtained from the output node corresponding to the action am
j in ANN of prediction

network with weight θm. The target state–action value ym
j is obtained by a target network

with weight θ′m as

ym
j =

rm
j , if sm

j is a terminal state

rm
j + β maxa Q(s′mj , a; θ

′
m), otherwise.

(13)

Then, the loss function Lm is computed as the mean squared error between the target
state–action value and predicted state–action value by

Lm =
1
|B| ∑

j∈B

(
ym

j −Q(sm
j , am

j ; θm)
)2

, (14)

where |B| represents the size of batch B. We update the weights of the prediction network
θm by using a stochastic gradient descent algorithm as

θm ← θm + η
∂Lm

∂θm
, (15)

where η is a learning rate, and update weights of target network θ′m softly as

θ
′
m ← (1− τ)θ

′
m + τθm, (16)

where τ << 1. We repeat the above process over the time steps in each episode and repeat
the whole process over E episodes.

After the training phase is completed through multiple episodes as introduced above,
the RA scheme enters a testing phase which corresponds to an actual operation of DUEs
underlay cellular networks. At every time step, observation obtained by eNB is used by
each agent as a state, which is input to the trained prediction network. Then, the action
resulting in the maximum state–action value at the output nodes of the prediction network
is chosen for each agent. The chosen action is reported to DUET and used as resources
for the corresponding D2D communication. In the testing phase, resource allocation for
all agents may be executed simultaneously, not in a staggered manner, at each time step.
The environment is influenced by D2D communications performed in this manner, and
new observation is obtained by eNB. This procedure repeats over all time steps of the
testing phase.
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Algorithm 1 Training Phase of Agent m in a Multi-Agent DRL-Based RA
Initialization:
Randomly initialize weights of prediction network θm.
Initialize weights of the target network by θ

′
m ← θm.

Initialize experience replay memory Dm.
for e = 1, . . . , E do

for t = 0, . . . , T − 1 do
Observe state sm

t = {zm
t , cm

t , pm
t }.

Determine action am
t = (cm

t , pm
t ) based on the action selection rule.

Report the chosen action to DUET and DUET takes an action accordingly.
Observe reward rm

t and next state s′mt .
Store the transition vector {sm

t , am
t , rm

t , s′mt } in Dm.
Randomly sample the batch of transition vectors B from Dm.
Obtain Q(sm

j , am
j ; θm) from the prediction network.

Obtain ym
j by (13) in the target network.

Compute the loss function Lm by (14).
Update θm and θ

′
m by (15) and (16), respectively.

end for
end for

5. Numerical Results

We consider a single circular-shaped cell, in which eNB is located at the center, and K
CUEs as well as M DUE pairs exist, where DUERs are placed around the corresponding
DUETs within a distance of 5 [m]. The distribution of CUE and DUET in the cell and the
distribution of DUER around the DUET follow the binomial point process (BPP) model [36].
All UEs change their locations at every time step. Simulation parameters used in numerical
experiments are listed in Table 1 and hyperparameters used for DRL are listed in Table 2.
Simulation software used for numerical experiments were Python 3.6.12 and PyTorch 1.4.0.
The transmit power of each CUE was determined such that the corresponding SNR at eNB
resulted in an outage probability of 0.1 %. We consider various values for Rc and r̄c for the
analysis of RA schemes in various aspects.

Each ANN in the prediction and target networks has five fully connected layers, the
middle three of which are hidden layers. Each hidden layer has 300 neurons equipped with
the ReLU activation function; a stochastic gradient descent optimizer is used for updating
the weight of ANNs. Experiences replaying memories are initially filled with experiences
obtained by running random policies. The training phase is completed in 5000 iterations
(500 episodes and 10 iterations/episode), and the ε-greedy policy with linear annealing is
applied as an action selection rule. It is observed from Figure 5 that DQNs are updated
well during the training phase.

Table 1. Simulation parameters for D2D communications underlay cellular networks.

Parameter Value

Number of CUEs, K 4
Number of D2D pairs, M 2, 4, 6, 8, 10, 12, 14, 16

Radius of the cell, r̄c 50, 100, 200, 300 [m]
Path loss exponent, α 3.5

Number of transmit power levels, L 8
Minimum and maximum transmit power −60 [dBm] and 10 [dBm]

Power gap between the adjacent power levels 10 [dBm]
Noise power, σ2

w −104 [dBm]
Target rate of the cellular link, Rc 4, 6, 8, 10 [bits/s/Hz]

Target rate of the D2D link, Rd 2 [bits/s/Hz]
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Table 2. Hyperparameters for DRL.

Parameter Value

Learning rate, η 0.001
Discount factor, β 0.1

Length of the episode, T 10
Number of episodes, E 500

Batch size, |B| 64
Experience replay memory size 50,000

Initial and Final exploration rate, ε 1.0 and 0.1
Soft target update parameter, τ 0.01

Figure 5. Evolution of average benefit for Rc = 8 [bit/s/Hz], r̄c = 300 [m] and M = 16, where
average values of benefit over every 5 episodes are plotted.

We evaluate the performances of RA schemes in terms of average benefits and compare
performances of the proposed DRL-based RA, random RA, and greedy RA schemes. A
random RA allocates the spectrum channel and transmits the power of the D2D links
randomly. In a greedy RA, the channel and transmit power of D2D links are determined
through a greedy search to maximize the sum of the average effective throughput for
each time step. We consider a scenario that every time step, locations of UEs change, and
resources of all D2D pairs are allocated simultaneously.

In Figure 6, we plot the average benefits obtained by various RA schemes under
comparison with respect to the number of D2D pairs M existing in the cell, where various
radii of cell r̄c and target rates of cellular link Rc are considered. It is observed from Figure 6
that the proposed DRL-based RA scheme shows better performance than others in all
situations. As the number of D2D links M in the cell grows, all RA schemes show lower
average benefits due to resulting severer mutual interference among UEs. However, the
performance degradation of the proposed DRL-based RA scheme is less sensitive to the
growth of M than other RA schemes. Thus, the performance gain of the proposed RA
scheme over others becomes significant as the number of D2D pairs in the cell increases. It
is also observed that the performance gain of the proposed DRL-based RA scheme over
others increase as the radius of cell r̄c decrease. From these observations, it is obviously
inferred that the proposed RA scheme is quite useful especially when DUEs are distributed
densely in a cell and suffer from a high level of mutual interference from other UEs.
Since the demand for D2D communications is continuously growing, the proposed RA
scheme would be a meaningful solution to resolve the spectrum shortage problem in the
next-generation wireless communication systems.
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(a) (b)

(c)

Figure 6. Average benefit of the proposed and other RA schemes with respect to M for various r̄c.
(a) Rc = 6 [bits/s/Hz], (b) Rc = 8 [bits/s/Hz], (c) Rc = 10 [bits/s/Hz].

It is additionally observed that the proposed DRL-based RA scheme attains highly
improved average benefit with higher Rc compared with other RA schemes, which is clear
from Figure 7. This is explained by the property that the proposed RA scheme balances
well effective throughputs of both D2D links and cellular links, while a greedy RA scheme
has a priority in maintaining the QoS of D2D links at a required level. Consequently, the
proposed DRL-based RA scheme obtains a significant performance gain over others in case
the DUEs are distributed densely in a cell and CUE has a higher target rate than DUE.

In Figures 8–10, we plot the average transmit power of DUETs, the average outage
probability of D2D links, and the average outage probability of cellular links with respect
to M, respectively, where various Rc and r̄c are considered. It is observed that the proposed
DRL-based RA scheme adapts the transmitting power sensitively with respect to M and
r̄c, to achieve high benefits while maintaining the QoS of the cellular links. For larger M
and smaller r̄c, the proposed RA scheme prevents benefits from decreasing by using a
lower transmitting power of DUET at the cost of a higher outage probability of the D2D
links. The overall performance is maintained at the sacrifice of the D2D link because
the cellular link has a higher contribution to the overall performance than the D2D link
when Rc is high. Although a greedy RA scheme also adapts the transmit power of DUET
depending on M, higher transmit power is allocated to D2D links with growing M and
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thus the average outage probability of D2D links is maintained at the cost of increasing the
average outage probability of cellular links. For higher Rc, this way of power allocation
results in higher degradation in the average benefit so the performance is outperformed
further by the proposed RA scheme. Figure 11 shows clearly that a higher ratio of Rc/Rd
results in lower transmitting power of DUET and, thus, a higher outage probability of
D2D links by the proposed DRL-based RA scheme, which is different from a greedy RA
scheme. The performance gain of the proposed RA scheme over others comes from the fact
that each agent was trained to know implicitly how other agents will act at the next time
step for a given set of observations. In other RA schemes, on the other hand, D2D links
determine their resources only depending on the current observation. Since each agent in
the proposed RA scheme takes an action based on the prediction of other agents’ future
actions, the proposed RA scheme works much better than others especially in case a high
level of mutual interference among UEs exists.

(a) (b)

Figure 7. Average benefit of the proposed and other RA schemes with respect to M for various Rc.
(a) r̄c = 100 [m], (b) r̄c = 200 [m].

(a) (b)

Figure 8. Average transmit power of DUET with respect to M for various r̄c. (a) Rc = 6 [bits/s/Hz],
(b) Rc = 8 [bits/s/Hz].
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(a) (b)

Figure 9. Average outage probability of D2D links with respect to M for various r̄c. (a) Rc =

6 [bits/s/Hz], (b) Rc = 8 [bits/s/Hz].

The proposed DRL-based RA scheme allocates adaptively communication resources
depending on the locations of UEs, the cell size, and the target rate of the cellular link by
using the pre-trained allocation rule, which enables a fast RA in the actual operation of
communication networks.

(a) (b)

Figure 10. Average outage probability of cellular links with respect to M for various r̄c. (a) Rc =
6 [bits/s/Hz], (b) Rc = 8 [bits/s/Hz].
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(a) (b)

Figure 11. Average outage probabilities of cellular and D2D links and average transmit power
of DUET with respect to M for various Rc, where r̄c = 200 [m]. (a) Proposed DRL-based RA,
(b) Greedy RA.

6. Conclusions

We proposed a DRL-based RA scheme for the communications of D2D pairs underlay-
ing cellular networks, where the spectrum channel for the D2D link and the transmit power
of DUET are considered communication resources to be determined. Multiple D2D pairs
are allowed to share a cellular channel, which results in high computational complexity
when determining channels for D2D links. Moreover, ANNs used in DRL for joint RA have
a high number of output nodes resulting in high computational complexity. To resolve this
problem, a multi-agent DQN is adopted in the proposed scheme, resulting in segmented
ANNs and, thus, reduced computational complexity. In the testing phase corresponding to
the period of actual operation, the proposed scheme allocates communication resources
adaptively in a real-time manner depending on the network setup by using the pre-trained
ANNs. The proposed RA scheme outperforms others, especially when UEs are distributed
densely, resulting in a high level of mutual interferences and the QoS of the cellular link
has a higher priority than the D2D link.

Author Contributions: Conceptualization, S.Y. and J.W.L.; investigation, S.Y.; writing—original draft,
S.Y. and J.W.L.; writing—review and editing, S.Y. and J.W.L.; supervision, J.W.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was supported by the Chung-Ang University Research Scholarship Grants in
2019 and by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2022-RS-2022-00156353) supervised by the IITP (Institute for
Information & Communications Technology Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of Outage Probabilities

Consider the exponentially distributed random variable αi, i = 0, · · · , N, whose
probability density function (pdf) is given by fαi (ai) = λie−λiai with mean λ−1

i and variance
λ−2

i . Let us define γ as
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γ =
α0

∑N
i=1 αi + b

. (A1)

Then, its cumulative distribution function (CDF) is obtained by

Pr{γ < r} = Pr

{
α0

∑N
i=1 αi + b

< r

}

= Pr

{
α′0 <

N

∑
i=1

αi + b

}

=
∫ ∞

0
· · ·

∫ ∞

0

(∫ ∑N
i=1 ai+b

0
fα′0

(a′0)da′0

)
N

∏
i=1

fαi (ai)dai.

(A2)

where α′0 = α0
r and fα′0

(a′0) = λ′0e−λ′0a′0 with λ′0 = rλ0. Since
∫ ∑N

i=1 ai+b
0 fα′0

(a′0)da′0 =

1− e−λ′0(∑
N
i=1 ai+b), we rewrite and expand (A2) as

Pr{γ < r} =
∫ ∞

0
· · ·

∫ ∞

0

(
1− e−λ′0(∑

N
i=1 ai+b)

) N

∏
i=1

fαi (ai)dai

= 1−
∫ ∞

0
· · ·

∫ ∞

0
e−λ′0(∑

N
i=1 ai+b)

N

∏
i=1

λie−λiai dai

= 1− e−λ′0b
∫ ∞

0
· · ·

∫ ∞

0

N

∏
i=1

λie−(λ
′
0+λi)ai dai

= 1− e−λ′0b
N

∏
i=1

∫ ∞

0
λie−(λ

′
0+λi)ai dai.

(A3)

Since
∫ ∞

0 λie−(λ
′
0+λi)ai dai =

λi
λ′0+λi

, we can rewrite (A3) as

Pr{γ < r} = 1− e−λ′0b
N

∏
i=1

λi
λ′0 + λi

= 1− e−λ0rb
N

∏
i=1

λi
λ0r + λi

= 1− e−
b

µ0
r

N

∏
i=1

(
1 +

µi
µ0

r
)−1

,

(A4)

where µi = E{αi} = λ−1
i .
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