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Abstract: In recent years, tremendous advancements have been made in various technologies such as
far-infrared, low-frequency Raman, and two-dimensional (2D) Raman terahertz (THz) spectroscopies.
A coherent method has emerged from numerous experimental and theoretical investigations of molec-
ular dynamics in liquids by comparing linear and non-linear spectroscopic techniques. Intermolecular
hydrogen bond vibration, molecular reorientation motion, and interaction between molecule/ionic
solute and hydrogen bonds have been demonstrated to occur in the THz region, which are closely
related to their physical/chemical properties and structural dynamics. However, precise probing
of various modes of motion is difficult because of the complexity of the collective and cooperative
motion of molecules and spectral overlap of related modes. With the development of THz science
and technology, current state-of-the-art THz sources can generate pulsed electric fields with peak
intensities of the order of microvolts per centimeter (MV/cm). Such strong fields enable the use
of THz waves as the light source for non-linear polarization of the medium and in turn leads to
the development of the emerging THz Kerr effect (TKE) technique. Many low-frequency molecular
motions, such as the collective directional motion of molecules and cooperative motion under the
constraint of weak intermolecular interactions, are resonantly excited by an intense THz electric
field. Thus, the TKE technique provides an interesting prospect for investigating low-frequency
dynamics of different media. In view of this, this paper first summarizes the research work on TKE
spectroscopy by taking a solid material without low-frequency molecular motions as an example.
Starting from the principle of TKE technology and its application in investigating the properties of
solid matter, we have explored the low-frequency molecular dynamics of liquid water and aqueous
solutions using TKE. Liquid water is a core of life and possesses many extraordinary physical and
biochemical properties. The hydrogen bond network plays a crucial role in these properties and is
the main reason for its various kinetic and thermodynamic properties, which differ from those of
other liquids. However, the structure of the hydrogen bond network between water and solutes is
not well known. Therefore, evaluating the hydrogen bond-related kinetic properties of liquid water
is important.

Keywords: terahertz wave; Kerr effect; liquid water; hydrogen bond; aqueous solution

1. Introduction

Terahertz (THz) pulses are characterized by low-photon energy, strong penetrability,
and a frequency range covering the intermolecular vibrational and rotational energy levels
of various organic/biological macromolecules. THz-related spectroscopic techniques play
an important role in low-frequency molecular dynamics research [1–6], semiconductor
and material property investigation [7–15], national defense and security [16–18], infor-
mation technology [19–24], and medical diagnosis [25–30]. The Kerr effect describes the
phenomenon of birefringence that occurs in a dielectric medium excited by an electric field [31].
After the development of the laser, the electric field of light was recognized to induce birefrin-
gence in the medium, which is called the optical Kerr effect (OKE) [32]. Hoffmann et al. later
reported an intense single-cycle THz pulse-induced Kerr effect (TKE) in various liquids [33],
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which is a potential spectroscopic tool for exploring the underlying physical mechanisms.
The successful acquisition of THz pulses with peak intensities above the order of MV/cm
opens up a new field of non-linear THz spectroscopy. The TKE technique provides a solution
for studying the instantaneous evolution of polarizability in media.

Water is the most important aspect of life. It can be combined with a variety of solutes
to form solutions and more complex molecular motions. Aqueous solutions containing
a variety of substances are closely related to various biochemical reactions in important
fields, such as biomedicine and ecology. Low-frequency molecular motions associated
with the hydrogen bond network in water and aqueous solutions play a crucial role in
these biochemical reactions. Many thermodynamic and spectroscopic techniques present
convincing insights and evidence of the bond energy, bond angle, bond length, and spatial
structure of hydrogen bonds in liquid water. However, studying the molecular motion of
liquid water in a higher temporal resolution has become more difficult [34,35]. The observa-
tion of the dynamic structure of hydrogen bonds with a high time resolution is essential for
understanding the transient energy evolution of biochemical reactions in water or aqueous
solutions [36–46]. Therefore, current research based on hydrogen bonds and their applications
is still a promising frontier field. The motions associated with hydrogen bonds in liquid water
are extremely sensitive to THz wave excitation. Therefore, the TKE technique is expected to
achieve ultrafast time-resolved kinetic observations of hydrogen bond networks in liquid
water. In addition, the THz electric field can resonate with a single-molecule rotational
motion or low-frequency molecular motion, which in turn can result in enhanced molecular
responses. Therefore, TKE spectroscopy enables clear fingerprints of low-frequency molec-
ular motion modes in various substances, creating an interesting prospect for exploring
low-frequency molecular dynamics in water and aqueous solutions.

The time-resolved TKE response, on a sub-picosecond scale, can identify the evolution
of the dynamic properties of various molecular motion modes in liquid water. Some papers
have outlined some of these contributions. However, no comprehensive paper has ad-
dressed the Kerr effect and its challenges and highlights potential applications. This paper
introduces the latest progress and briefly explains the mechanism of TKE spectroscopy,
which excites the third-order non-linear Kerr effect in various substances. This includes the
observation of low-frequency molecular collective/cooperative motions associated with
hydrogen bonds and kinetic theory of microscopic molecular dynamics in liquid water. A
suitable theoretical model is proposed to explain the relationship between the molecular
motion and polarizability anisotropy. The TKE technique is used to further explore the
low-frequency molecular dynamics in aqueous solutions by adding ions and molecular
solutes for analyzing the interaction between solutes and the hydrogen bond network of
water molecules. This shows a new perspective for exploring the coupling and transfer
of energy in the hydrogen bond network of liquid water and the interaction of molecules,
ionic solutes, and hydrogen bond structures in aqueous solutions. It will provide new ideas
to further explore the interaction between biological macromolecules and the hydrogen
bond structure, influence of the hydrogen bond network on biochemical reactions, and
biochemical reactions in aqueous environments within the THz frequency region.

2. TKE Technique Based on a Solid Medium

Terahertz pulses with several MV/cm can be generated routinely through desktop
sources. Such high fields open up the field of non-linear terahertz spectroscopy. Low-
frequency modes of solids are driven into unexplored large-amplitude regions [47–49]. The
dynamic evolution of the dielectric permittivity can be completely controlled by the THz
electric field curve. However, obvious differences exist between the dielectric permittivity,
owing to the optical propagation factors within the medium. Understanding and quantify-
ing the distortion of the TKE response caused by the underlying linear optical parameters,
such as dispersion and refractive index, is crucial for observing the evolution process of the
third-order non-linear polarizability and further analyzing the low-frequency molecular
dynamics in gas and liquid media. Sajadi et al. [50] measured the TKE response of common
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solid windows in the THz band and explored the influence of factors such as the phase
mismatch in the medium. The experimental system and measured results are shown in
Figure 1a,c, respectively. ∆ϕ(t) is the phase difference between two orthogonal polarization
components of the probe field, hitting the sample with a variable time-delay with respect to
the pump [50]. Figure 1b shows the time-domain waveform and frequency spectrum of the
excited THz wave using lithium niobate as a source. The effective frequency coverage was
0.1–2 THz. The measurements of several commonly used optical materials [50] provide
basic data for the application of TKE spectroscopy.
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Figure 1. (a) Schematic of TKE experimental setup. (b) Time-domain waveform and corresponding
spectrum of the THz wave. (c) TKE responses of diamond, low-density polyethylene (LDPE),
polymethylpentene (TPX), silicon nitride (SiN), sapphire and magnesium oxide (MgO) windows [50].

Figure 2a shows the measured TKE responses of diamond (300 µm), low-density
polyethylene (LDPE) (300 µm), Si3N4 (200 nm), and silicon thin film (10 µm) in which the
THz intensity curve (E2

THz) is also shown for comparison. The TKE response curves and
traces of E2

THz have similar shapes. However, the TKE responses of the sapphire (0.5 mm)
and quartz glass (0.5 mm) shown in Figure 2b have significantly different characteristics.
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The maximum value of the transient birefringence was proportional to the square of
the THz electric field for all samples. The normalized TKE responses of the low-density
polyethylene (LDPE) excited by different THz electric field strengths are shown in Figure 3a.
Figure 3b shows that the peak values of the responses were quadratically dependent on the
THz electric field, proving the dominance of THz-induced third-order non-linear Kerr effect.
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In these materials, the third-order polarizability generally originates from the polar-
ization of the electron shell, where the low-frequency dynamics can be ignored. Therefore,
the polarization response of matter can be considered to be instantaneous. The relationship
between the transient birefringence ∆n(z, t) induced by the THz electric field and collected
phase difference ∆ϕ(t) is as follows:

∆ϕ(t) =
2π

λ

∫ l

0
∆n(z, t)dz (1)

where ∆n(z, t) represents the change in the refractive index of the medium in the x and y
directions, and can be defined along the two principal axes as

∆n(z, t) = ∆nx(z, t)− ∆ny(z, t) = n2 ITHz = n2cε0E2
THz(z, t) (2)

where c is the speed of light and ε0 is the vacuum permittivity. The non-linear refractive
index coefficient n2 is derived from the intensity of the non-linear response, which is
linearly related to the third-order non-linear polarizability tensor [52].

However, the measured TKE response could not completely follow the intensity curve
E2

THz(x, t) of the input THz electric field. In particular, the quartz glass and sapphire shown in
Figure 3b had wider response times. This is because Equation (2) describes the local relationship
in an ideal section without considering the propagation of the THz and probe pulses inside
the sample. In addition, the probe pulse had a pulse width. Therefore, signal acquisition
was accompanied by sampling distortion resulting from the medium dispersion, refractive
index, absorptivity, and thickness. LDPE is an ideal sample for THz wave-driven ultrafast
non-linear effects owing to its large bandgap, small dispersion, and high THz transmittance.
Diamond typically achieves ultrafast pulse switching on a femtosecond timescale [53]. The
TKE responses of LDPE and diamond with the same thickness of 300 µm were measured
and compared under the same experimental conditions. The two response curves exhibited
similar temporal shapes, as shown in Figure 4. Compared with the ~102 fs gate time of
diamond, LDPE exhibited a faster gate time of ~86 fs (FWHM) [51,54].
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In addition to the response speed, the extinction ratio is another important factor in
the evaluation of all-optical modulation devices. Compared with absorption modulation,
polarization modulation is easier to achieve high extinction ratio [55,56]. Commonly used
large-bandgap solid materials, such as LDPE (~8 eV) [57], diamond (~5.5 eV) [53], silicon
nitride (>2 eV) [58], and sapphire (~6.7 eV) [59], are driven by strong THz electric fields
(~MV/cm) without causing saturation distortion due to single-photon or multiphoton
absorption in the material. Theoretically, these materials can achieve 90% extinction driven
by a strong THz electric field. This section considered a solid material without low-
frequency molecular dynamics as an example to analyze the measurement and factors that
need to be considered in TKE spectroscopy and provided basic experimental data for the
development of TKE applications.

3. TKE Responses of Liquid Water

Over the past few decades, an understanding of the structure, stability, and rearrange-
ment dynamics of the hydrogen bond network in water has gradually developed [33,60–66].
A large number of experiments and theoretical studies have shown that strong collective
and intermolecular cooperative motions of water are located in the far-infrared to THz
region [67–69]. This provides a kinetic view of the hydrogen bonding structure in liquid
water [33,69–77]. However, non-resonant OKE and Raman spectroscopy weakly perturbs
the hydrogen bond network. Strong electron distortion and Rayleigh scattering background
noise are collected together, which complicate the precise extraction of the hydrogen bond
kinetics. The TKE provides a new way to investigate the ultrafast evolution of the Kerr
effect. Hydrogen bonding vibrations and other molecular motions in aqueous solutions
can also be characterized in the THz frequency region, which plays an important role in
understanding the thermodynamic properties of liquids [78]. In 2015, Penkov et al. [79]
analyzed the THz absorption spectra of liquid water and various aqueous solutions to
characterize the collective dynamics of water molecules. In 2018, Ahmed et al. [80] used
transient THz spectroscopy to study the interactions between hydrogen bond networks and
excited dye molecules. Molecular motion in water has broad and fuzzy spectral lines in the
THz range [6,81]. The analysis and observation of low-frequency molecular dynamics in
liquid water or aqueous solutions using the TKE technique faces following three problems:

(1) Liquid water has a very strong absorption and THz waves have an extremely
short penetration depth in water, resulting in a weak measurement. When the water film
thickness is reduced to approximately 100 µm, the in–out ratio of THz photons to water
can reach 9:1 (as shown in Table 1).
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Table 1. Transmission of THz photons by water films with different thicknesses [82].

Water Film Thickness
d (µm)

Incident Number of THz
Photons

The Exit Number of THz
Photons

500 6 × 104 1
100 9 1
50 3 1

(2) The molecular dynamics, including the restricted translational, rotational, and
diffusional motions of molecules, related to the hydrogen bond network in liquid water
are more complex than those in benzene and carbon disulfide. Multiple molecular modes
cover the entire THz frequency range. This complicates the assignment of these molecular
motion patterns because of the weak signal response.

(3) Previous results [2,5,50,78], showed that common optical material windows exhibit
strong TKE responses when driven by THz waves. This is sufficient to cover the TKE signal
in liquid water, which makes acquiring the signal of water difficult.

Therefore, gravity-driven free-flowing liquid devices have been exploited to generate
thin, continuous, and stable water films [83]. Schematics and images are shown in Figure 5a,b,
respectively. Figure 5c shows a set of bipolar signals with clear oscillatory properties of water
excited by different THz electric field strengths. The responses were scaled with the square
of the THz electric field, as shown in the inset, suggesting the dominance of Kerr effect.
The broadband THz pulses excited two intermolecular motion modes: hydrogen bond
bending and stretching vibrations. The positive signal was attributed to the hydrogen bond
stretching vibration, and the negative signal was due to bending vibrations. Polarizability
perturbation presents the competing contributions of the bending and stretching vibrations.
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The Lorentz kinetic equation was used to simulate molecular motion. The equation
is based on perturbations in the dielectric tensor caused by the intermolecular vibrational
modes. The resulting polarizability anisotropy can be represented by the refractive index
related to the dielectric susceptibility [1,52]:

∑
i=1,2

∆ni =
1

2ε0n0

[
εy − 1

2 (εx + εz)
]
= 1

2n0

(
∂α‖
∂q2

Q2 − ∂α⊥
∂q1

Q1

)
(3)

where ε0 is the vacuum permittivity and n0 is the refractive index of liquid water. Here, use
q1 and q2 to represent the bending and stretching vibration amplitudes of a single hydrogen
bond unit, respectively. Q1 and Q2 represent the anisotropic perturbations induced by
hydrogen bond bending and stretching vibrations, respectively. α‖ and α⊥ denote the
perturbation of the permittivity parallel and perpendicular to the direction of hydrogen
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bonding caused by intermolecular modes, respectively, which result in opposite birefringent
contributions to the overall refractive index, that is, ∆n1 < 0, ∆n1 > 0. Furthermore,
Qi satisfies the Lorentzian dynamics model, which describes the motion of a damped
harmonic oscillator.

∂2Qi
∂t2 + γi

∂Qi
∂t

+ ω2
i Qi = aiE2(t), (i = 1, 2) (4)

where γi and ωi represent the damping coefficients and frequencies of the hydrogen bond
bending and stretching modes, respectively. In Raman spectroscopy, the typical values are:
3.45, 1.80, 5.10, and 5.70 THz [62,63]. Here, ai = βi

(
µ2

0/3
√

2kBTm
)

represents the coupling
factor between the square of the THz electric field and driving term in Equation (4). As
shown in Figure 6a, the experimental data were decomposed and simulated into (i) positive
responses of electron (blue line) and hydrogen bond stretching (purple lines) contributions
and (ii) negative responses of Debye relaxation (red lines) and hydrogen bond bending (yellow
lines) contributions [1]. This was verified by changing the THz frequency bandwidth using
different low-pass filters. The simulation results agreed with the measured data. The posi-
tive response mainly originates from high-frequency molecular motion. This weak electron
contribution can be attributed to the small hyperpolarization in water [2,84]. The frequency-
domain Kerr coefficients Keff (F(∆n(t))/F

(
E2(t)

)
/λpr) were extracted from three excited

THz pulses with cutoff frequencies of 18, 9, and 6 THz, as shown in Figure 6b. The Kerr
coefficients mainly originate from the intermolecular modes. A prominent resonance peak
appears around 4.5 THz, which corresponds to the hydrogen bond stretching vibrational
mode. The hydrogen bond bending vibration is approximately a critically damped har-
monic oscillator, resulting in no obvious peaks. The Kerr coefficient (blue line) can be
approximated by the total contribution of the two intermolecular modes (red line).
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Figure 6. (a) Theoretical simulation results of the TKE response with electrons, hydrogen bond
stretching and bending vibrations, and Debye relaxation. The inset shows the comparison between
the sum of all contributions and measurement data. (b) Calculated frequency-domain Kerr coefficient
of hydrogen bond bending (yellow line) and stretching (purple line) modes. The sum of two
theoretical Kerr coefficients (red line) matches the experimental data with a cutoff frequency of
18 THz (blue line). The inset shows the measured Kerr coefficients extracted by cutoff frequencies of
18, 9 and 6 THz [1].

4. Exploration of Molecular Dynamics by TKE Spectroscopy

Sajadi et al. [5] analyzed the collective orientation and relaxation dynamics of molecules
on a sub-picosecond timescale by measuring the anisotropy of liquids, such as toluene,
dimethyl sulfoxide (DMSO), and chloroform (CHCl3), driven by THz waves. The mea-
surement results are shown in Figure 7. The TKE and OKE responses were compared in
detail. The THz field-induced transient optical birefringence was more than one order of
magnitude higher than optical excitation. This enhancement highlights the significance of
THz field coupling to the permanent molecular dipole moments.
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Figure 7. (a) TKE (red line) and OKE signal (black line) of (a) toluene, (b) DMSO, (c) CHCl3 [5].

Kampfrath et al. explored the molecular dynamics of alcoholic liquids [3]. They suc-
cessfully measured the transient TKE response of methanol, as shown in Figure 8a. The
rising peak was mainly attributed to the electronic contribution. Additionally, the relaxation
of several picoseconds, resulting from the molecular response. This signal feature showed
weak coupling between the THz electric field and permanent molecular dipole moment of
the liquid.
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Figure 8. (a)TKE (red line) and OKE (black line) responses of methanol [3]. (b)TKE signals of
water vapor (blue line) and acetonitrile (pink line). The black line represents instantaneous THz
intensity [84].

Kampfrath et al. [84] further reported the TKE response of water vapor and stated
the obvious long-time relaxation properties of the TKE signal of water vapor, as shown
in Figure 8b. The response decreased to approximately half of the peak amplitude after
approximately 5 ps. The relaxation process lasted for hundreds of picoseconds, and the TKE
response of water vapor was mainly attributed to the molecular orientation. Bodrov et al. [78]
compared the TKE responses of polar and non-polar liquids by measuring those of water,
acetone, chloroform, carbon tetrachloride, and benzene. The measurement results are shown
in Figure 9. Although they attempted to observe the molecular motion in liquid water,
the experimental results were not ideal. Effective information on the molecular motion in
liquid water was nearly obscured by the response of the sample cell.
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Zalden et al. observed the transient orientation of the dipole moment of liquid water 
excited by a single cycle THz pulse centered at 0.25 THz generated from lithium niobate. 
Owing to the large TKE response of the sample cuvette, they extracted the response curve 
of water by changing temperature [2]. Figure 10 shows the TKE of water in a cuvette meas-
ured at various temperatures between 23 and 68 °C. Owing to the temperature independ-
ence of the electronic Kerr effect, the temperature−dependent signal originated from the 
molecular Kerr effect of water. The resulting (blue) curve agrees with the molecular con-
tribution to the Kerr effect derived from modelling of the experimental data (black curve). 

Figure 9. (a) TKE signals of water, (b) acetone, and (c) chloroform (red circles). The black lines
represent the fitting curves [78]. Solid lines—theoretical calculation. Dotted and dashed lines in (b)
show fast and slow Kerr responses, respectively. Dotted line in (c) traces THz pulse intensity.

Zalden et al. observed the transient orientation of the dipole moment of liquid water
excited by a single cycle THz pulse centered at 0.25 THz generated from lithium niobate.
Owing to the large TKE response of the sample cuvette, they extracted the response curve of
water by changing temperature [2]. Figure 10 shows the TKE of water in a cuvette measured
at various temperatures between 23 and 68 ◦C. Owing to the temperature independence of
the electronic Kerr effect, the temperature-dependent signal originated from the molecular
Kerr effect of water. The resulting (blue) curve agrees with the molecular contribution to
the Kerr effect derived from modelling of the experimental data (black curve).
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Figure 10. Temperature dependence of the TKE responses of an empty cuvette (left panels) and water
inside the cuvette (right panels) [2].
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They also measured the TKE responses of carbon disulfide (CS2), benzene, heavy water
(D2O), and NaI solutions, as shown in Figure 11. Compared with the reference liquids, the
response of water was extremely weak. They explained the mechanism of the collective
directional movement of molecules based on the Langevin equation combined with the
Kalmykov theory. The model was well supported by experimental data for CS2, benzene,
methanol, and ethanol. However, the measurements of liquid water deviated from the
theoretical speculation. Furthermore, the signal-to-noise ratio of the measured signal in
water was too low to support an accurate kinetic analysis.
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Figure 11. TKE responses of CS2, benzene, H2O, D2O, and NaI solutions [2].

So far, the “direct” excitation of collective modes in Kerr measurements has been
discussed. The technique can be also used to explore “indirect” excitations mediated,
e.g., by anharmonicity. Elgabarty et al. demonstrated that the rotational energy in water
molecules can be rapidly transferred to the confined translational motion of adjacent
molecules under the excitation of a THz pulse (centered at 1 THz). This process can be
explained by the strong anharmonicity of the intermolecular interactions [4]. However, they
are limited by a narrowband low-frequency THz source, which complicates the complete
observation of time-resolved intermolecular motions.

5. Low-Frequency Molecular Dynamics of Aqueous Solutions

Low-frequency molecular motion in aqueous solutions significantly influences biolog-
ical activities, such as solvation, energy transfer, and proton transport. However, various
anomalous properties arising from the underlying molecular motions in aqueous solutions
are not well understood. Although numerous theoretical and experimental studies have
been conducted on the physical properties of liquid water, the microscopic mechanism of
the water hydrogen bond network under ionic perturbation has not been fully elucidated.
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5.1. TKE Response of Salt Ion Solution

The TKE responses of NaCl aqueous solutions were measured, as shown in Figure 12a.
As the ion concentration increased, the characteristics of the TKE response exhibited three
evident changes: (i) the response amplitude increased, (ii) the relaxation time increased, and
(iii) the oscillation characteristics gradually smoothed. The normalized negative polarity
responses of water and 4 M NaCl solution displayed a slight difference in the responses
after 1 ps, as shown in Figure 12b, proving that the ions slow the recovery time of the water
molecular motions.
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Figure 12. (a) TKE responses of NaCl solutions under different concentrations; (b) An enlarged
logarithmic view of the negative polarity responses of water and 4 M NaCl solution [85].

The TKE responses of the aqueous halide solutions were measured and are shown in
Figure 13a. For the same concentration, the positive TKE response amplitude evidently
increased in the order Cl− < Br− < I−, along with a decrease in the surface charge density
of the anion. Notably, the NaI solution exhibits a higher anisotropic response because,
for anions with low surface charge densities, such as I−, the formed OH···I− hydrogen
bond has a longer bond length and lower binding energy than the OH···Cl− and OH···Br−

hydrogen bonds. The simulated inherent frequencies and damping coefficients of the
OH···X− (X−: Cl−, Br−, I−) hydrogen bond vibrational modes based on TKE spectroscopy
are shown in Figure 13b. The obtained inherent frequencies and damping coefficients are
consistent with the results obtained by non-resonant OKE spectroscopy [86]. Figure 13c
shows the TKE responses of 1 M aqueous solutions of CaCl2 and MgCl2 and 2 M aqueous
solutions of NaCl and KCl. Even though the molar concentrations of K+ and Na+ were twice
those of Ca2+ and Mg2+, the increase in TKE response amplitude could still be arranged
in the order of K+ < Na+ < Ca2+ < Mg2+. This implies that the effect of the cations on the
TKE response was smaller than that of the anions. Figure 13b shows the TKE responses of
1 M Na2SO4 and MgSO4 aqueous solutions. The influence of Mg2+ was greater than that of
Na+, even though the molar concentration of Na+ was twice that of Mg2+. This implies that
the THz field couples more easily with the rotational and restricted translational motions of
water molecules under the influence of strongly hydrated ions, such as in MgSO4 solution.
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Figure 13. (a) TKE responses of water and 4 M NaCl, NaBr and NaI solutions. (b) Inherent frequency
ω and damping coefficient γ [85]. TKE responses of (c) 1 M CaCl2 and MgCl2 aqueous solutions and
2 M NaCl and KCl and (d) 1 M Na2SO4 and MgSO4 aqueous solutions [87].

5.2. TKE Responses of Ethanol-Water Mixtures

Ethanol is considered a representative molecule for investigating intermolecular inter-
actions in biochemical processes. Exploring molecular motions in ethanol–water solutions
with different mixing ratios is crucial for understanding the hydrogen bonding dynam-
ics [88–90]. Figure 14a shows the TKE responses of ethanol excited by different THz electric
field strengths. The signal has two characteristics: (i) a large response peak on a sub-picosecond
timescale, and (ii) a slow decay process extending to tens of picoseconds. Usually, features
(i) and (ii) mainly originate from the electronic and molecular responses, respectively. The
simulated electronic response to ethanol [91] is indicated by the green line in Figure 14b.
Moreover, the sum (red line) of simulated two kinds of responses is in good fit with the
measured data (blue line). This means that the electron contribution plays a major role in
the evolution process of sub-picosecond time scale, while the molecular contribution is
dominant in the tens of picoseconds.
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The TKE responses of the ethanol–water mixtures at different concentrations were
further explored. To analyze the relative effects of ethanol and water molecules in the
mixture, the TKE responses of ethanol–water mixtures with different molar concentrations
were fitted using Equation (5).

∆ϕt = ai∆ϕwater(t) + bi∆ϕethanol(t) (5)

where ∆ϕethanol(t) represents the TKE response of pure ethanol (C=100 mol%). Under the
same conditions, it can achieve approximately 10 times the TKE response of pure water
∆ϕwater(t). On a sub-picosecond timescale, Figure 15a shows the fitted values of ai and bi.
As the number of water molecules increased, their contribution to the total response increased,
implying that the restricted translational motion of adjacent water molecules gradually con-
tributed to the TKE responses of the mixture. A small number of ethanol molecules cannot
affect the hydrogen bond network of water molecules in the mixture. However, the TKE
response of the mixture is attributed to the water–water intermolecular hydrogen bond
motion with the addition of ethanol molecules, indicating that the water intermolecular
hydrogen bond network still contains anisotropy in the ethanol-rich region. These measure-
ments of the ethanol–water mixture observed in the sub-picosecond time window were
consistent with low-frequency Raman studies, showing that the intermolecular vibrational
modes are independent of ethanol and water in the mixtures [92,93].
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Figure 15. (a) The relationship between different molar concentrations and coefficients ai and bi

within the sub-picosecond. (b) Relative amplitudes of the two Debye relaxation processes in mixtures
of different molar concentrations [91].

The coupling between the permanent molecule dipole moment and THz electric
field can be assigned to two fast Debye relaxation processes. The D1 process involves
the formation and breakage of hydrogen bonds with a relaxation time τ1 = 1–2 ps. The
D2 process is related to the fluctuation of the terminal monomers of the hydrogen bond
chain with τ2 = 7–12 ps. The molecular contributions to the TKE responses are described
by a double exponential decay model, as shown in Figure 15b. The blue line represents
the relative amplitude of the D1 process with respect to the molar concentration of the
mixtures. A relatively enhanced D1 process was observed when a small number of water
molecules were added to ethanol molecules. As the number of water molecules increased,
the amplitude decreased. An inflection point appeared near a concentration of 70 mol%,
which was attributed to the equilibrium of the molecular motions associated with the hydrogen
bond breakage and formation of ethanol. The relative amplitude of the D2 process, depicted
by the red line, increased as the molar concentration of ethanol decreased in the range of
C =100–70 mol%. The addition of a small number of water molecules caused the long
hydrogen bond chain of ethanol to break into several short chains, thereby increasing the
number of terminal ethanol monomers in the chains and probability of the formation and
breakage of ethanol intermolecular hydrogen bonds. As the number of water molecules
increased (in the range of C = 70–30 mol%), the amplitude gradually decreased. The number
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of free ethanol monomers isolated by water molecules increased, resulting in a decrease in
the proportion of terminal ethanol monomers in the chain. When the molar concentration
of ethanol was less than 30 mol%, the amplitude of the D2 process quickly dropped to the
noise level. This is primarily because ethanol molecular clusters are dissolved by water
molecules, which makes it difficult to maintain the chain-like structure of ethanol. For more
details, please refer to [91].

6. Conclusions and Outlook

TKE spectroscopy serves as a novel tool for directly observing the ultrafast time evolu-
tion of intermolecular hydrogen bond dynamics in water and various aqueous solutions.
This paper reviews the related work on the development of the TKE technique from solid
media to liquids. These studies realized the effective observation of hydrogen bond motion
on the sub-picosecond timescale and proposed a theoretical model to explain the anisotropy
caused by molecular motion. The TKE responses excited by intense broadband THz pulses
provide a time-resolved perspective to explore the collective or cooperative motion of
molecules in liquid water and aqueous solutions. This has promoted the development of
microscopic mechanistic research on biological macromolecular dynamics. Research on the
TKE technique mentioned in this paper lays the foundation for probing the birefringence
induced by complex low-frequency molecular motions in matter.

Research on the low-frequency molecular motion of liquid water and aqueous solu-
tions excited by THz waves is expected for future applications. For example, solvated
water around biomacromolecules controls several important biological reactions. TKE spec-
troscopy can resonantly excite intermolecular hydrogen bonds, and the induced transient
birefringence can reveal the intermolecular dynamics in water. Therefore, the TKE tech-
nique promises to directly observe kinetic features such as ligand–protein binding in
aqueous protein solutions. The detection of THz waves in solids, gases, and plasmas has
been extensively studied for decades. However, THz wave detection using liquids has not
yet been achieved. In this study, the transient birefringence response of water driven by in-
tense THz waves is reviewed, and the physical mechanism of the interaction between THz
waves and liquid water is analyzed. This provides a new idea for the detection THz waves.
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