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Abstract: The principal goal of this study is to analyze the evolution of sensor research and technolo-
gies from 1990 to 2020 to clarify outlook and future directions. This paper applies network analysis to
a large dataset of publications concerning sensor research covering a 30-year period. Results show
that the evolution of sensors is based on growing scientific interactions within networks, between
different research fields that generate co-evolutionary pathways directed to develop general-purpose
and/or specialized technologies, such as wireless sensors, biosensors, fiber-optic, and optical sensors,
having manifold applications in industries. These results show new directions of sensor research that
can drive R&D investments toward promising technological trajectories of sensors, exhibiting a high
potential of growth to support scientific, technological, industrial, and socioeconomic development.

Keywords: sensor research; sensor technology; network analysis; technological trajectories;
technological change; scientific change; scientific development; science dynamics; industrial change;
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1. Introduction

The research field of sensors is undergoing a significant change to support the evo-
lution of science and technology in society [1,2]. The goal of this study is to analyze the
scientific ecosystem of sensor research (networks incorporating manifold research fields)
over time to show science dynamics supporting technological trajectories directed to fulfil
human goals and needs and to solve problems in society. In particular, this paper in-
vestigates sensor research from 1990 to 2020 to clarify changes in the scientific structure
(network) of research fields and technologies over these 30 years [3–6]. In general, scientific
change in sensors supports the evolution of technologies as well as industrial and social
change, such as smart or intelligent sensors [7–10] and the Internet of Things [11–14]. The
study here endeavors to explain the dynamics of sensor research using networks or maps
of scientific publications over time that serve as a main unit of analysis to understand the
organization and evolution of science and technology [15–17]. The crux of this study is
rooted in scientometrics (the study of quantitative characteristics of science and scientific
research), and given that this approach is uncommon in this journal that focuses on the
technical and engineering aspects of sensors, a brief background is useful to understand
and clarify it.

Leydesdorff (2007) developed maps of journals, showing centrality measures to clarify
citation environments (small sets of journals where citing is above a certain threshold) [18].
Another approach by Klavans and Boyack (2006) identified a new measure of relatedness
among bibliometric units (e.g., journals, words, etc.) for mapping science and providing
critical aspects for the structure and evolution of science [19]. Relatedness measures also
have a vital role in showing the relationship among data items [20]. Small (1999) argued
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that the network of linkages from document to document and from discipline to disci-
pline can show crossover fields and offer the possibility of exploring extended knowledge
pathways and new technological trajectories [21]. Boyack et al. (2005) maintained that
science maps provide main aspects to analyze fields of research and emerging technologies,
and their interconnectedness [22]. Scholars also argued that emerging general-purpose
technologies and new discoveries induce radical novelty, accelerated growth, and main
socioeconomic impacts [23–27]. Manifold techniques have been developed in scientomet-
rics and studies of innovation to detect and analyze the evolution of research fields and
technologies [16,28–35]. These methods are based on large datasets and computational
approaches that allow the computing of specific indicators for detecting patterns in science
and new pathways of technological trajectories [36]. Quantitative approaches, based on
bibliometric data of publications, are useful techniques to capture information earlier in
the cycle of technology development, whereas patents, in contrast, trail behind [37]. In
this research stream, the study presented here has the purpose of mapping the scientific
ecosystems of sensor research (ecosystem here is a community of research fields and tech-
nologies that interact and evolve over time), on the basis of publications, to analyze the
evolution of science and technology in sensors from 1990 to 2020. This technology analysis,
based on updated data, clarifies the interactions among research fields and technologies
that sustain the evolution of promising sensors directed to next industrial and economic
change. Overall, the explanation here of dynamic relationships of research fields within
sensor networks over time can drive R&D investments and management of technology
to foster the scientific and technological development of sensors towards new directions
having fruitful applications in manifold industries.

2. Materials and Methods
2.1. Data Processing Resources

In this study, we used the Web of Science (WOS) Core collection database 2022 to
retrieve sensor research and technology literature documentations [38].

Web of Science is a main source of data for bibliometric analysis of sensor research [38].
Web of Science includes approximately more than 10,000 journals [39]. Web of Science
is used here because it offers a large amount of scientific information and a variety of
metadata, including abstracts, institutions, citations, etc., which are crucial aspects for
accurate bibliometric analysis of science and technological evolution [40–42].

The term “sensor” was searched in Web of Science Core Collection (2022) in the section
of topics [38]. The results were refined by document type = (Articles), Language = (English),
Publication years = 1990–2020, and Indexes = (SCI-EXPANDED).

The sample contained 362,745 papers split into three distinguished timespans, given
by 1990–2000, 2001–2010, and 2011–2020.

2.2. Data Processing Procedure and Computational Approach for Network Analysis

To address the main purpose of this study, we used articles original keywords (DEs)
as the basis for building the keywords co-occurrence in networks regarding sensor research
and technologies. We also implemented this approach to visualize the interconnection
among sensor research fields and technologies to analyze and interpret the evolving re-
lationship among in sensor networks. We also used the co-occurrence measurement to
study the interconnection among different sensor sub-technologies [43]. The methodology
of co-occurrences is commonly used for identifying the underlying collaborative structure
among terms. Two terms (keywords, journals, research disciplines, countries, authors,
etc.) co-occur whenever they simultaneously appear in a single document [44]. Scholars
have widely used this approach to analyze the interconnection among different research
fields [45]. In this study, we used the “Original Keywords” as the basis for representing the
sensor research and technologies and creating the interconnection network among words.
These words are known by the DE tag in the Web of Science bibliometric data, and they are
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separated by a semicolon. In particular, the construction of co-occurrence networks among
words is based on following data processing procedure:

� Bibliographic data were downloaded from the Web of Science (2022) database [38]
and split into three periods: 1990 to 2000, 2001 to 2010, and 2011 to 2020.

� All the combined phrases that lacked “sensor”, “sensing”, or “sense” and adjective
clauses were removed. This step focused only on words related to sensor technologies
(for instance, biosensors, wireless sensor networks, gas sensors, etc.)

� We used Python programming language version 3.6.5 [46] and Scikit-learn library ver-
sion 0.23.2 for constructing the co-occurrence matrix [47]. In this step, we determined
a threshold and removed the words with fewer than ten co-occurrences.

� Afterwards, we utilized Gephi software version 0.9.2 to visualize the matrix of co-
occurrences and calculate the network measures [48]. The node indicates the words
related to sensor research and technologies, and a link makes a connection between
two words whenever they appeared in at least ten articles. To put it differently, a link
means two different words co-occurred in at least ten articles. The color of nodes
represents the community: when two nodes have a similar color, they are in the same
community in the classification. The thickness of each edge represents the weight
of co-occurrences. If more than two terms appeared in the same documents; the
connected edge will be thicker.

After creating the networks of word co-occurrences for each period, we applied
measures to analyze the structure and explain the evolving pathways of sensor research
and technologies over time [49]. In particular, measures are:

− Degree centrality (DC) indicates the number of edges a node has [50]. In the word
co-occurrence networks, degree denotes the total number of words that appear with
the node in the same documents. Degree centrality of node v is given by:

DC(v) = ∑n
v,g=1 Edge (g)

where
DC(v) = degree centrality of node v
g = edge

− Betweenness centrality (BC) indicates how essential a node is to create connections
with other nodes in the shortest path. Betweenness centrality of node v is calculated
by following formula [51,52]:

BC(v) = ∑s 6=v 6=t
σst(v)

σst
(1)

where
BC = betweenness centrality measure of node v
σst = total number of shortest paths from nodes s to node t
σst (v) = number of shortest paths from s to t going through v

− A node’s closeness centrality (CC) is an indicator of a network centrality: it is the
number of links needed to connect each node in the network with all the other nodes
in the network or the average number of links required to reach all other nodes in the
network from a node in the network [6].

CC(v) =
1

∑u∈V d(v, u)

where
CC = closeness centrality measure of node v
d(v, u) is a shortest path between nodes v and u
∑ is the sum of the path lengths from node v to all other nodes in the network
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− Finally, community structure represents the categorization of technologies intercon-
nection using the modularity algorithm to distinguish the classifications [53]. The
number of communities calculated by modularity function (Q) is:

Q =
1

2m ∑i,j

[
Aij −

kik j

2m

]
δ
(
ci, cj

)
(2)

where
Q = modularity function
Aij = weight of the connection from i to j
ki degree o f vertex i = ∑j Aij = sum of the weights of the edge attached to vertex i
k j degree of vertex j = ∑i Aij = sum of the weights of the edge attached to vertex j
ci = community to which vertex i is assigned
cj = community to which vertex j is assigned
m = 1

2 ∑ij Aij = number of edges in the graph
δ− function δ

(
ci, cj

)
is 1 if ci = cj and 0 otherwise.

Networks of co-occurrence generated by Gephi were saved in GraphMl format and
imported into SCI2 software version 1.3 to implement the community detection algorithm.

We used degree centrality (DC) to analyze the evolution of nodes over time and
utilized community structuring to detect the classified technologies that had the highest
interconnections to track the transition of linkages between sensor research and technolo-
gies. We also used betweenness centrality (BC) measures to indicate the nodes’ role in
facilitating the connection of sub-technologies at the heart of three networks. Nodes with
the highest score of BC are positioned to be a bridge for connections among the other
network nodes [54].

3. Results and Discussion
3.1. The Ecosystem of Sensor Research and Technologies in the 1990–2000 Period

The ecosystem of sensor research and technologies in the 1990–2000 period shows a
network described in Figure 1A. The total number of articles in this dataset is 30,674 records,
8.45 percent of the total articles. Figure 1A also shows the network of co-occurrences of
these terms from 1990 to 2000. Figure 1A (1990–2000) includes 72 nodes, 194 edges and
5 communities. Table 1 shows that “biosensor”, “gas sensor”, and “optical sensor” have
the highest degree centrality compared with other nodes: these three technologies have a
higher interaction with other technologies. Results of Table 1 also suggest a high centrality
degree for “fiber optic sensor” and “pressure sensor” among all nodes in the network.
There are four communities in Figure 1A, in which “biosensor”, with a centrality degree
score of 23, has a strong relationship with “oxygen sensor”, “ph. sensor”, “immune sensor”,
and “capacitive sensor”. Based on edge weight, these technologies have a high level of co-
occurrence in documents leading to an interconnected community. Moreover, “gas sensor”,
with a centrality degree score of 21, is in the head of community 4, strongly connected
to other sub-technologies, including “humidity sensor”, “potentiometric sensor”, and
“amperometric sensor”. In the second community, the “optical sensor”, with a centrality
degree score of 20,is highly connected to the “fiber optic sensor”, “temperature sensor”,
and “displacement sensor”. The remaining technologies are classified in community 1,
which has the highest number of nodes. In this community, the “pressure sensor”, with
a degree number of 18, is highly interconnected with “chemical sensor”, “micro sensor”,
“smart sensor”, “thermal sensor”, and “integrated sensor”.
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Table 1. Top 20 units of sensor in networks having the highest centrality degree during the 1990–2020 period.

1990–2000 2001–2010 2011–2020

Word Degree
Centrality Community Word Degree

Centrality Community Word Degree
Centrality Community

biosensor 23 3 biosensor 53 2 optical sensor 128 6
gas sensor 21 4 chemical sensor 48 4 biosensor 126 2
optical sensor 20 2 gas sensor 46 4 wireless sensor network 121 3
fiber optic sensor 20 2 optical sensor 46 6 fiber optic sensor 120 5
pressure sensor 18 1 fiber optic sensor 40 5 temperature sensor 111 1
chemical sensor 16 1 wireless sensor network 31 1 gas sensor 109 4
micro sensor 12 1 capacitive sensor 31 3 chemical sensor 83 2
oxygen sensor 12 3 temperature sensor 29 5 capacitive sensor 77 1
humidity sensor 11 4 micro sensor 28 3 pressure sensor 72 1
ph. sensor 11 3 electrochemical sensor 27 2 strain sensor 72 1
smart sensor 11 1 pressure sensor 25 3 humidity sensor 72 4
thermal sensor 11 1 ph. sensor 24 7 electrochemical sensor 71 2
flow sensor 10 1 oxygen sensor 22 6 wearable sensor 70 1
temperature sensor 10 2 wireless sensor 20 1 wireless sensor 59 1
integrated sensor 9 1 magnetic sensor 19 5 ph. sensor 59 2
immunosensor 9 3 remote sensor 19 1 flexible sensor 55 1
capacitive sensor 8 3 strain sensor 18 5 magnetic sensor 53 1
potentiometric sensor 8 4 glucose sensor 17 6 fluorescent sensor 52 6
amperometric sensor 8 4 humidity sensor 17 4 remote sensor 52 7
displacement sensor 7 2 amperometric sensor 17 3 nano sensor 49 4

Note: Some sensor units detected in this table can have different applications, such as oxygen sensor, which can be an electrochemical sensor (device), an optical device, or a “gas sensor”.
In order to identify the type of sensor and its application (e.g., in oxygen sensor), it is necessary to analyze the contents of related articles. However, in the bibliometric approach applied
here, the content of texts cannot be examined due to the structure of the data and the large sample under study.
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3.2. The Ecosystem of Sensor Research and Technologies in the 2001–2010 Period

This period shows an ecosystem based on a network with a growing number of nodes
(197) and edges (623). This period contains 83,512 records, 23.02 percent of the total arti-
cles. This period has nine communities. Figure 1B shows that the leading technologies in
the ecosystem of the 2001–2010 period are “biosensor”, “chemical sensor”, “gas sensor”,
and “optical sensor”. The most interconnected technologies, considering the edge weight,
are “active pixel sensor” with “CMOS image sensor”, “biosensor” with “immunosensor”,
“strain sensor” with “temperature sensor” and “biosensor” with “chemical sensor”. Table 1
shows that the top five sensor technologies in the 2001–2010 period are “biosensor”, with
centrality degree of 53, included in community 2, which is highly connected to “electro-
chemical sensor”; “chemical sensor”, with centrality degree of 48, is included in the fourth
community with “gas sensor”, having centrality degree of 46, and with “humidity sensor”.
“Optical sensor”, with centrality degree of 46, is highly connected with “oxygen sensor”
and “glucose sensor” as community 6. This result confirms the growing role of optical
sensors as forecasted by Andersen et al. [1]. Moreover, “fiber optic sensor”, with centrality
degree of 40, has the highest interconnection with “temperature sensor”, “magnetic sen-
sor”, and “strain sensor” and is included in the fifth community. These nodes, with the
highest level of centrality degree score among all the nodes, represent a highly diversified
interconnection with other sensor technologies compared with other nodes in this network.
Interestingly, unlike the previous period, the “fiber optic sensor” is a separate element that
acts as a new interconnected network from the “optical sensor” community. Our results
show that during the second decade, the “wireless sensor network”, “wireless sensor”, and
“remote sensor” co-occurrences in documents gained momentum with other technologies
and emerged in the top 20 topics with the highest level of degree centrality.

3.3. The Ecosystem of Sensor Research and Technologies in the 2011–2020 Period

Finally, the ecosystem based on interconnection between sensor research and tech-
nologies in 2011–2020 contains 248,559 records, 68.53 percent of all articles collected in
this study (see Figure 1C). The co-occurrence network of sensor technologies comprises
553 nodes and 2696 edges. “Strain sensor” with “temperature sensor”, “compressed sens-
ing” with “wireless sensor network”, “biosensor” with “immunosensor”, “rechargeable
sensor networks” with “wireless sensor network”, and “colorimetric chemosensor” with
“fluorescent chemosensor” have strong relationships based on their edge weight score
and are classified in eight communities [55–57]. Figure 1C shows that the size of nodes
and network linkage have been growing and creating a large and intense ecosystem on
the basis of complex interconnection communities among manifold sensor research fields
and technologies. The leading technologies in this period are “optical sensor”, with a
centrality degree of 128, “biosensor”, with a centrality degree score of 126, “wireless sensor
network”, with a centrality degree score of 121, “fiber optic sensor”, with a centrality degree
of 120, and “temperature sensor”, with a centrality degree of 111. Table 1 shows the top
20 technologies considering centrality degree values. The top five sensor technologies are
“optical sensor”, with a centrality degree score of 128, included in community 6, which has
a high interaction with “fluorescent sensor”; “biosensor”, with a centrality degree of 126, is
strongly associated with “chemical sensor” and “electrochemical sensor “. Surprisingly,
these two technologies with the highest centrality degree in the previous decade have their
separated interconnection in two different communities with other technologies. In this
decade, although the “chemical sensor” rank based on the degree of centrality decreased, it
began a process of merging with “biosensor” in the same community. The growing role of
biosensor in ecosystem confirms the preliminary study by Andersen et al. (2004), where
the evolution and potential aspects of this sensor are rather ambiguous [1]. The “wireless
sensor network”, with a centrality degree of 121, expands its interconnection community
and obtains the third rank in a degree centrality scoring. Moreover, sensor technologies in
community 3 are not present in the top 20 topics; this vital finding suggests that although
the “wireless sensor” technology increases its interconnection and diversification with
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other related technologies, it is an emerging technology that has not generated strong
relationships with other top technologies. This evolutionary characteristic is also present in
“fiber optic sensor”; moreover, the “optical sensor”, that was the head of the community
including “fiber optic sensor”, has stopped its growth and is not in the top 20 topics having
high degree centrality score. Instead, the “temperature sensor”, which was included in the
same community with “fiber optic sensor”, emerged as a new community in this decade
and started expanding its own technology interconnection community.

3.4. General Discussion of the Evolution of Sensors, 1990–2020 Period

The evolution of the scientific ecosystem of sensors is represented here with a change
of network indicators. In particular, the network’s average degree increased from 5.4 to 10.6
during the 1990–2020 period and suggests growing interconnections. However, the density
of interconnection within structures has been decreasing from the first decade: the degree
of closeness centrality in networks and the interconnection among their elements based on
their co-occurrence have deteriorated. Moreover, the decreasing magnitude of betweenness
centrality demonstrates that there is a lower dependency on some nodes having a bridging
role, such that many sensor technologies have connections directly with other technologies
instead of making connections through intermediate/bridge technologies. Results also
show the increasing level of closeness centrality and the stable number of communities
in networks [52]: technological interconnection in sensors tends to be more centralized,
and the differences among communities tend to gradually increase. Results also show that
the top ten units in sensors have an evolution from three perspectives: direct connection,
interconnection, and diversified interconnection. The centrality degree of a single node
in a network indicates the potential aspect that could facilitate the interaction within
the network [43]. In addition, results reveal that optical sensor, biosensor, fiber optic
sensor, and wireless sensor are central technologies directly linked to other nodes in the
network [57–61]. The wearable sensor, which has emerged later than other technologies,
tends to have a high potential growth and interaction with other sensor technologies
(measured with rapid improvement in degree of centrality). Finally, sensor technologies
tend to have a greater capacity to interact with other technologies [62]; this finding is
consistent with the theory of technological parasitism by Coccia [63–65].

The technologies with a higher closeness centrality score have a low distance from
their community nodes and a high distance from other excluded nodes. The technologies
with a high level of closeness centrality (CC), including “optical sensor”, “biosensor”, “fiber
optic sensor”, “gas sensor”, and “wireless sensor networks”, have a powerful evolution
and create distinct communities. Aside from DC and CC score, the top ten technologies
with higher betweenness centrality have a higher diversification than technologies with the
highest level of closeness centrality.

The evolution of interconnection among items in the top 20 sensors from 1990 to 2020
is in Table 2. Sensors with the highest centrality degree scores in 1990–2000 (biosensor,
gas sensor, optical sensor, fiber optical sensor, pressure sensor, and chemical sensor) have
been expanding over time. Some technologies, such as “strain sensor” had a low centrality
degree score in the first period, but it increased to 18 and ranked 17 in the second period,
reaching, consequently, centrality degree score achieves the level of 70 and rank 10 in the last
period (2011–2020). Moreover, the rank of “temperature sensor” improved from 15—with
an initial degree of 9 (first period), rank 8 and a degree score of 29 in the second period—to
rank 5 with a degree score of 118 in the last period under study. The “capacitive sensor”
ranked initially 18 and elevated ultimately to 8 in the last period, whereas “electrochemical
sensor”, with a degree of 6 and rank 23, improved to rank 13 with a degree score of 69 in
the last period.

These results show that technological positions have evolutionary phases of transition
in the network and converge towards vital nodes with growing levels of interconnections
over time [6,64,66,67].
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Table 2. Top 20 items in sensor research with measures of networks from 1990 to 2020.

1990–2000 2001–2010 2011–2020

Label DC BC CC Community Label DC BC CC Community Label DC BC CC Community

biosensor 23 0.149 0.563 2 biosensor 53 0.135 0.562 1 optical sensor 128 0.122 0.556 5

gas sensor 21 0.128 0.558 3 chemical sensor 48 0.080 0.555 3 biosensor 126 0.137 0.553 1

optical sensor 20 0.131 0.563 1 gas sensor 46 0.090 0.538 3 fiber optic sensor 120 0.126 0.544 4

fiber optic sensor 20 0.113 0.553 1 optical sensor 46 0.067 0.553 5 wireless sensor
networks 118 0.146 0.532 2

pressure sensor 18 0.072 0.525 0 fiber optic sensor 40 0.072 0.525 4 temperature sensor 111 0.079 0.543 0

chemical sensor 15 0.042 0.534 0 wireless sensor
network 31 0.056 0.488 0 gas sensor 109 0.095 0.535 3

microsensor 12 0.063 0.488 0 capacitive sensor 31 0.045 0.487 2 chemical sensor 83 0.044 0.515 1

oxygen sensor 12 0.032 0.496 2 temperature sensor 29 0.017 0.491 4 capacitive sensor 75 0.035 0.507 0

humidity sensor 11 0.018 0.473 3 micro sensor 28 0.026 0.517 2 strain sensor 70 0.032 0.506 0

ph. sensor 11 0.036 0.484 2 electrochemical
sensor 27 0.028 0.482 1 pressure sensor 72 0.030 0.488 0

smart sensor 11 0.052 0.462 0 pressure sensor 25 0.013 0.472 2 humidity sensor 70 0.029 0.496 3

thermal sensor 11 0.014 0.469 0 ph. sensor 24 0.021 0.486 6 wearable sensor 70 0.034 0.511 0

flow sensor 10 0.032 0.480 0 oxygen sensor 22 0.030 0.478 5 electrochemical
sensor 69 0.049 0.501 1

integrated sensors 9 0.020 0.473 0 wireless sensor 20 0.013 0.461 0 wireless sensor 59 0.025 0.484 0

temperature sensor 9 0.016 0.449 1 magnetic sensor 19 0.021 0.446 4 ph. sensor 59 0.024 0.498 1

amperometric sensor 8 0.008 0.459 3 remote sensor 19 0.020 0.475 0 flexible sensor 55 0.020 0.471 0

capacitive sensor 8 0.013 0.439 2 strain sensor 18 0.014 0.469 4 remote sensor 52 0.038 0.487 6

immunosensor 8 0.010 0.442 2 glucose sensor 17 0.006 0.440 5 magnetic sensor 51 0.018 0.479 0

potentiometric
sensor 8 0.012 0.427 3 humidity sensor 17 0.010 0.456 3 fluorescence sensor 50 0.032 0.458 5

position sensor 7 0.005 0.416 0 amperometric sensor 17 0.010 0.434 3 nanosensor 49 0.019 0.474 3

Note: highlighted grey cells indicate emerging units in sensor research after 2000. DC = Degree centrality; BC = Betweenness centrality; CC = closeness centrality.
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Table 3 shows new items of sensors that emerged in the network after the 1990–2000 period
and started an evolutionary growth of publications. In particular, new items about sensors
increased from 137 in 2001–2010 to 374 in the 2011–2020 period. This finding reveals that
sensor research has a significant and continuous evolution in science and technology.

Table 3. Top 20 items in sensor research emerged in networks from 2001 to 2020.

Top 20 Terms Emerging in Sensor Research

2001–2010 2011–2020

Rank Label/Item Degree Centrality Label/Item Degree Centrality

1 wireless sensor network 31 self-powered sensor 30
2 wireless sensor 20 environmental sensor 28
3 nano sensor 15 biomedical sensor 22
4 conductometric sensor 11 inductive sensor 21
5 distributed sensor 9 paper sensor 26
6 CMOS sensor 9 low-cost sensor 21
7 CMOS image sensor 9 liquid sensor 19
8 electrochemical biosensor 8 printed sensor 19
9 mass sensor 8 textile sensor 19
10 fiber Bragg grating sensor 8 body sensor network 20
11 refractive index sensor 8 light sensor 18
12 fluorescence sensor 8 mechanical sensor 19
13 active sensor 8 aptasensor 16
14 light-addressable potentiometric sensor 6 dual sensor 16
15 active pixel sensor 6 ratiometric sensor 14
16 colorimetric sensor 6 biomimetic sensor 15
17 flexible sensor 6 chemiresistive sensor 17
18 wearable sensor 6 multifunctional sensor 17
19 DNA sensor 6 visual sensor 13
20 biomimetic sensor 6 copper sensor 13

Table 3 focuses on the top 20 items in sensor research that emerged in networks from
2001 to 2020, whereas Table 4 shows strictly those items that are associated with sensor
technologies that have a high growth of publications and that have critical aspects for the
development of sensors. This result demonstrates the significant and ongoing evolution of
sensor research and technology.

Table 4. Top emerging items associated with sensor technologies in networks from 2001 to 2020.

Top Emerging Sensor Technologies

2001–2010 2011–2020

Rank Label/Item Degree Centrality Label/Item Degree Centrality

1 wireless sensor network 31 self-powered sensor 30
2 conductometric sensor 11 biomedical sensor 22
3 distributed sensor 9 inductive sensor 21
4 CMOS image sensor 9 paper sensor 26
5 electrochemical biosensor 8 printed sensor 19
6 fiber Bragg grating sensor 8 textile sensor 19
7 refractive index sensor 8 body sensor network 20
8 fluorescence sensor 8 aptasensor 16
10 light-addressable potentiometric sensor 6 dual sensor 16
11 active pixel sensor 6 ratiometric sensor 14
12 colorimetric sensor 6 biomimetic sensor 15
13 DNA sensor 6 chemiresistive sensor 17
14 biomimetic sensor 6
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3.5. Properties of the Evolution of Networks in Sensor Research

These results suggest some properties of the scientific change of the ecosystem of
sensor research and technologies that can support general principles for the evolution of
science and technology [6,26,28,32,68]:

Firstly, sensor research evolves in networks with complex interactions among different
fields and technologies. In fact, the level of interconnections between sensor-related research
and technologies is increasing over time dramatically.

Secondly, some sensor technologies achieve a critical position in the network, playing
a connective role of master technology for other technologies. For instance, wireless sensor
networks increased exponentially in the ecosystem, fulfilling a bridging and supporting
role compared with other technologies.

Thirdly, sensor research is generating new trajectories of both general-purpose tech-
nologies and specialized technologies during their co-evolutionary pathways over time.

Comparative analysis of maps over time suggests also that the evolution of sensor
research proceeds with the following typologies (Figure 2):

� Total fusion of research fields is when two or more research fields (e.g., A and B)
merge and create a new one (i.e., AB) that evolves as a whole system. For instance,
in sensor research, nano-bio sensor is a fusion of nanosensor and biosensor. In
particular, the combination of these two technologies and research fields created a
new potential field.

� Partial fusion is, during the scientific change, the incorporation of a smaller research
field (e.g., B) into a large research field (e.g., A), generating a super research field A’
(that embodies B). For instance, in sensor research, the “chemical sensor” includes
areas of materials science (e.g., graphene) with the goal of generating ion/molecule
sensors applied in pharmaceutical and food production.

� Total splitting (total fission) is when a research field A (including a sub-research field
B) splits into research fields A and B that have autonomous evolutionary trajectories.
For instance, in sensor research, polymer sensor is a technology born in the chemical
sensor community, which then grew up independently and created its own domain of
study and evolutionary pathway.

� Partial splitting (partial fission) is when research field A (containing sub-research
fields B and C) develops by splitting into a research field A”, also containing B, and
a research field C that splits off from the original set A; both research fields have
autonomous evolutionary trajectories. For instance, in sensor research, both gas
sensors and liquid sensors dawned in the chemical sensors field; eventually, gas
sensors began their evolution independently from chemical sensors and created their
own domain; however, liquid sensors still cannot be considered as a dependent
province of science, and its expansion is intertwined with growth of chemical sensors.

� Master technologies have a connective role for other technologies with an integrated-
based structure by bridging and supporting the development of other inter-related
technologies, such as wireless sensor networks, biosensors, and fiber optic sensors.
They play a vital role in integrating elements of the networks and connecting sensor
technologies to create new paths through evolution of science and technology. Master
technologies increase exponentially in ecosystem of sensor research.
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4. Conclusions, Limitations, and Prospects

The novelty of this study is the examination of the structure and dynamics of sensor
research with networks that show interactions among research fields directed to support
scientific and technological trajectories for development of science and technology in society.
In particular, what sets this study apart from others is that we have used specific sciento-
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metric methods, based on publications from 1990 to 2020, in order to show interactions
between research fields and technologies that explain the evolutionary paths of sensors
over time. Results show that the evolution of sensor research over the last few decades is
unparalleled [1]. Sensor technologies are co-evolving with growing interactions among
fields of research and technologies directed to advance science and technology to fulfil
human goals and needs and to solve problems in society [63]. For instance, the evolution of
smart sensors is associated with the integration of the Internet of Things, through which it is
possible to connect devices and exchange information among people and systems [69]. The
characteristics of evolutionary pathways in sensor research, described here, can improve
the allocation of R&D investments in private and public organizations for beneficial social
impact [70]. Results reveal that the ecosystem of sensor research is rapidly growing from
2011 to 2020 with a dense network of interconnection [62,71]. In this period, more than
300 sensor units (research fields or technologies or new topics) emerged, developed, and
connected to others, such as “biosensor”, “fiber optic sensor”, “wireless sensor network”,
“gas sensor”, and “optical sensor. Moreover, results suggest that in the last decade, sensor
technologies are moving towards pathways of specialization generated by a process of
splitting from other technologies or large research fields. For example, gas sensors are gen-
erating pathways of specialization such as: “metal oxide gas sensor”, “optical gas sensor”,
“electrochemical gas sensor”, “calorimetric gas sensor”, “acoustic-based gas sensor”, etc.
The “smoke sensor”, “LPG sensor”, “carbon monoxide sensor”, “hydrogen sensor”, “am-
monia sensor”, etc., are also the result of the development and specialization of gas sensor
technologies. Consequently, industrial change and manufacturing systems will be directed
to specialized applications of sensors. In fact, the stabilizing number of communities and
the increasing level of closeness centrality in networks here indicate that sensor research
evolves both with processes of specialization and of merging that capture complementary
aspects of different technologies and research fields [63,64,66,72–74]. Hence, this study sug-
gests that sensor research and technologies are in continuous evolution because of recent
advances in different research fields, such as information and communication technologies,
artificial intelligence, internet of things, nanoscience, etc. What this study adds, compared
with other contributions, is synthetized in the following two points.

4.1. Contribution to Theory

The study suggests various theoretical properties that can clarify the evolution of
science and technology in sensors:

a. Sensor technologies evolve with increasing interactions among different research
fields and innovations.

b. Sensors evolve with technological trajectories directed to specialized innovations
that solve problems.

c. Sensor research evolves with processes of:

− Total fusion of different inter-related research fields
− Partial fusion with the incorporation of a smaller research field into a large

research field
− Total splitting (total fission) when a research field splits up in different research

fields
− Partial splitting (partial fission) when a research field develops by splitting

part of its elements in a new research field having an autonomous trajectory of
growth

− Master technologies that have a connective role for other inter-related technolo-
gies, thus supporting a systemic evolution.

4.2. Management and Policy Contribution

Policymakers, managers, and scholars know that financial resources can be an acceler-
ating factor of progress and diffusion of science and technology to support the scientific
and technological development in society [17,70]. This study provides critical information
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with network analysis to guide innovation management to allocate economic resources
with effectiveness towards research fields and technologies that have a growing centrality
degree and specific levels of closeness and betweenness (e.g., wireless sensor networks) to
foster the technological development for positive industrial and impact societal. In fact,
these findings can support policymakers and funding agencies in making appropriate
decisions regarding sponsoring specific research fields and technological trajectories in
sensors that have a high potential growth and promising applications in industries with
fruitful effects for the current and future economic and social change.

Although this study has provided some interesting, albeit preliminary results, it has
several limitations that future research should reduce with new data and approaches to
reinforce proposed results here.

4.3. Limitations

First, a limitation of this study is that sources under study may capture only certain
aspects of the ongoing dynamics of sensor research. Second, there are multiple confound-
ing factors that could have an important role in the evolution of sensor research to be
further investigated in the future, such as discoveries, high R&D investments, collaboration
intensity, openness, intellectual property rights, etc. Third, the computational and statistical
analyses in this study focus on a specific period that can be extended in future investiga-
tions. Fourth, some technologies detected, such as oxygen sensor, can be an electrochemical
sensor (device) or an optical device or a “gas sensor”. In order to identify the type of sensor
(e.g., in oxygen sensor), it is necessary to analyze the contents of related articles. However,
in the bibliometric approach applied here, the content of texts cannot be examined due to
the structure of data and the large sample under study, which is one of the drawbacks of
the method.

4.4. Future Research

Future development of this study should be directed to design new indices of tech-
nometrics on the basis of measures of betweenness, closeness, and degree centrality of
networks to assess and predict the evolution of new technological trajectories in sensors,
as well as to support implications of innovation management. An additional approach
for future inquiries can be a content analysis to examine articles’ content and provide a
coherent understanding of hidden patterns in unanalyzed texts as part of a systematic
review of the literature in sensor research [75–77]. In short, the content analysis of articles
and their systematic review with the PRISMA protocol can support complementary results
to further explain the evolutionary dynamics of sensor research and technologies [78].

To conclude, the results presented here clearly illustrate the evolutionary paths of
sensor research that are based increasingly on growing interactions among research fields
and technologies directed to science advances and technological change for supporting
industrial and socioeconomic development [79–82]. However, a continuing and detailed
examination is needed for improving technological forecasting and supporting appropriate
strategies of innovation management of sensor technologies directed to foster technological
and economic change for better economies and societies.
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