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Abstract: Fault detection and classification are crucial procedures for electric power distribution
systems because they can minimize the occurrence of faults. The methods for fault detection and
classification have become more problematic because of the significant expansion of distributed
energy resources in distribution systems and the change in their currents due to the action of short-
circuiting. In this context, to fill this gap, this study presents a robust methodology for short-circuit
fault detection and classification with the insertion of distributed generation units. The proposal
methodology progresses in two stages: in the former stage, the detection is based on the continuous
analysis of three-phase currents, whose characteristics are extracted through maximal overlap discrete
wavelet transform. In the latter stage, the classification is based on three fuzzy inference systems
to identify the phases with disturbance. The short-circuit type is identified by counting the shorted
phases. The algorithm for short-circuit fault detection and classification is developed in MATLAB
programming environment. The methodology is implemented in a modified IEEE 34-bus test
system and modeled in ATPDraw with three scenarios with and without distributed generation
units and considering the following parameters: fault type (single-phase, two-phase, and three-
phase), angle of incidence, fault resistance (high impedance fault and low impedance fault), fault
location bus, and distributed generation units (synchronous generators and photovoltaic panels).
The accuracy is greater than 94.9% for the detection and classification of short-circuit faults for more
than 20,000 simulated cases.

Keywords: distribution systems; distributed generation; fuzzy logic inference; wavelet transform;
multi-resolution analysis; short-circuit fault detection; short-circuit fault classification

1. Introduction

Electric power distribution systems (EPDS) have the continuous supply of electric
energy to consumer units as their main objective. However, these systems are exposed to
several factors that can cause disturbances, steady-state faults, or blackouts. The faults are
classified as temporary or permanent. Temporary faults cause a transient disturbance in
EPDS, which automatically returns to its normal operating state (NOS). On the other hand,
permanent faults cause an interruption in the energy supply; thus, EPDS will return to its
NOS after the short-circuit repair. The faults are characterized by impermissible deviation
from the standard operating conditions of EPDS [1].

Distribution systems have changed with the massive insertion of distributed energy
resources (DERs) based on renewable energy [2]. DERs expansion is essential to meet the
growing energy demand. In addition, environmental concerns have been necessary to
encourage renewable energy expansion. The increase in renewable distributed generation
(DG) units reduce greenhouse gases [3].
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On the other hand, the arbitrary and massive insertion of DG units into EPDS causes
significant changes in its configurations. The electrical system loses its radial characteristic
as multiple power sources power it. The main impact of these changes is related to the
conventional protection system, since features such as direction, amplitude, and short-
circuit currents are changed [3,4].

1.1. Literature Review

Several studies in the specialized literature developed tools for fault analysis in EPDS
by inserting DG units. They addressed the impact on the conventional protection system
due to the significant growth of DG units into EPDS. The following studies discussed
different methodologies for fault detection and classification in EPDS.

Rai et al. [5] proposed a convolutional neural network technique for fault classification
in EPDS with DG units. The proposed method does not have the pre-processing phase;
thus, three-phase currents and voltage signals were applied directly as inputs.

A new method for short-circuit faults detection and classification in balanced and
unbalanced distribution systems was presented by Zhang et al. [6]. The current’s positive,
negative, and zero sequence components characterized the faults. The operating modes of
DG units were considered using the Fortescue approach. A softmax regression model was
introduced to minimize the impact of transient signals on the fault classification module
and applied only two resistors with maximum value during the simulations.

The discrete wavelet transform (DWT) was used in [7] on three-phase current signals,
whose values were applied to formulate a decision tree to perform the fault classification.
Decision tree input was formed by a comparison parameter obtained using the maximum
value of three-phase current signals and zero-sequence. Those parameters were applied as
a reference to detect the fault phases. The fault resistance variation was not considered.

In [8], a strategy based on fuzzy logic was used for fault detection and classification.
Chaitanya et al. implemented two fuzzy inference systems (FIS). They were built to detect
and classify low-impedance faults (LIF) and high-impedance faults (HIF). A Teager Energy
Operator (TEO) was applied to extract three-phase current signal characteristics, which
composed the FIS input set.

In [9], fault detection was performed by applying the power spectral density calculated
from the wavelet covariance matrix. The signal information was extracted through a
wavelet transform (WT), where the signals were decomposed into three levels using the
db4 mother wavelet.

Elnozahy et al. [10] proposed a new method for detecting and classifying single-
phase faults using DWT and artificial neural networks (ANN). The transient signals were
analyzed based on the db4 mother wavelet to extract their characteristics.

A method based on DWT and ANN for HIF detection was presented by Silva et al. [11].
The authors focused on incremental learning procedures to find new fault patterns. DG
units were not considered.

Decanini et al. [12] presented a method for automatic fault diagnosis. The detection
process was based on statistical and direct analysis of three-phase currents and voltage
signals in the wavelet domain. DWT and multi-resolution analysis (MRA) were introduced
to extract the signal characteristics. The short-phase classification was performed by a set
of Fuzzy-ARTMAP ANN. DG units were not considered in the system modeling.

A combination of maximum overlap discrete wavelet packet transform (MODWPT) and
empirical mode decomposition (EMD) were applied for HIF detection in [13]. That methodology
was based on the estimation of fault current signals inter-harmonic through MODWPT.

In [14], a method based on an adaptive neural fuzzy inference system was proposed
for fault classification. Three-phase currents and voltage signals measured at the substation
output were evaluated. The signal transient components were extracted via WT.

Different fault types were detected and classified in [15] using a combination of wavelet
singular entropy theory (WSE) and fuzzy logic. The algorithm was based on the singular
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wavelet values of each phase, since a phase with an anomaly presents values outside of the
allowed limit.

A proposal based on deep learning and deep belief networks (DBN) was implemented
by Hong et al. [16] for fault classification in EPDS with and without DG units. After
the DBN training with current and voltage signals, it was possible to obtain the signal
characteristics and classify the fault types that occurred in EPDS.

Ola et al. [17] presented an algorithm for fault classification, based on the fault index.
It was calculated from the three-phase current signals, in which the Wigner distribution
function and the decomposition based on the coefficient of alienation were applied. The
anomaly phases were identified from the fault index. The fault classification was carried
out from the count of phases with anomaly.

A methodology for HIF detecting was presented in [18]. The technique was based on
EMD with adaptive noise applied to decompose the zero-sequence current signals to obtain
the intrinsic mode function (IMF). TEO was applied to identify changes in characteristics of
IMF waveforms. HIF identification was performed by calculating the signal WSE. WSE for
faulty signals are higher than that one for normal signals.

Sekar et al. [19] proposed an intelligent method based on WT and data mining for HIF
detection. The main characteristics of three-phase current signals were extracted via WT.

In [20], the authors presented a technique for identifying HIF. A method based in
Adaline ANN was applied to extract the third harmonic angle (THA) from current signals.
Adversarial generative conditional was applied to produce input data from THA. Finally, a
convolutional neural network was applied to separate HIF from others transient events.

Wontroba et al. [21] proposed a methodology based on the analysis of harmonic and
symmetrical components of currents to detect HIF due to cable break. HIF detection
process has two steps: (i) cable break detector and (ii) HIF detector. In the former step, the
identification of a cable break was carried out by applying the phase current phasors. In
the latter step, HIF detection was carried out via application of neutral current and analysis
of its harmonic components.

Yuan et al. [22] presented a method for detecting faulty feeders after a single line-
to-ground fault (SLGF). It was based on waveform recognition, where zero-sequence
voltage (ZSV) on bus and local zero-sequence current (ZSC) were applied. An image for
each feeder was constructed via ZSV and ZSC superposition. Finally, a convolutional
neural network was applied to perform image recognition, where all fault features were
extracted adaptively.

1.2. Contributions

This study presents a robust methodology for fault detection and classification in
EPDS with DG units. The highlights of the proposed approach are described below.

• Development of a simple and effective methodology for short-circuit faults detection
and classification of distribution systems that included the DG units.

• Sensitivity analysis to assess the impacts on fault detection and classification in each
proposed scenario. There are synchronous generators and photovoltaic (PV) panels
with different levels of DG units’ insertions into EPDS.

• Maximum overlap discrete wavelet transforms (MODWT) and FIS for faults detection
and classification, respectively.

1.3. Paper Structure

The rest of this paper is as follows: Section 2 explains the techniques used in short-
circuit fault detection: problem description (Section 2.1), HIF (Section 2.2), MODWT
(Section 2.3), the steps for fault detection (Section 2.4), and the confusion matrix metrics
(Section 2.5). Section 3 addresses the methodology used for short-circuit fault classification:
a FIS for short-circuit faults classification (Section 3.1), FIS rules set (Section 3.2), and the
steps for short-circuit faults classification (Section 3.3). Section 4 presents the results and
discussions. All simulated cases are applied in the modified IEEE-34 bus test system ad-
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dressed in Section 4.1. The results for detection and classification of short-circuit faults and
the validation for both are explained and discussed in Sections 4.2–4.4, respectively. Finally,
Section 5 presents the conclusions.

2. Short-Circuit Fault Detection
2.1. Problem Description

Energy supply interruptions occur due to several factors such as: equipment failures,
atmospheric discharges, human errors, contact of trees with the overhead distribution
network, and fires in the vicinity of the electrical network.

EPDS are susceptible to four fault types: line-to-ground fault (SLGF), double line-
to-ground fault (DLGF), line-to-line fault (LLF), and three-phase-ground fault (LLLGF).
SLGF is the most frequent fault type, with 70% of classified cases [1]. Figure 1 shows an
example to illustrate the fault types, where there are 12 cycles (200 ms) of three-phase
currents with a frequency of 60 Hz. Figure 1a shows an SLGF fault, where a short-circuit
is applied at t = 66 ms (4th cycle) in phase C with ground: Cg. After the disturbance, the
fault phase current has its value increased. Thus, it is easy to note the difference in current
magnitude between the normal phases A and B with respect to phase C where there is
an anomaly. Figure 1b shows a DLGF fault where the phases A and B are short-circuited:
ABg. We observe that the magnitude of phase C current in NOS is lower than that ones in
phases A and B, because they have anomalies. Finally, Figure 1c shows an LLLGF fault. At
t = 66 ms (4th cycle) a three-phase short-circuit is applied, which causes an increase in the
current magnitude after the disturbance.
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2.2. High-Impedance Faults

HIFs are caused by direct contact of electrical wires from the distribution network
with high-impedance objects or surfaces such as concrete, sand, asphalt roads, and tree
branches. They are characterized by low magnitudes of fault currents, which may be
insufficient to excite an overcurrent relay. Thus, fault detection becomes very difficult,
since the conventional protection devices are based on overcurrent. During HIF, the short-
circuit current presents values equivalent to the rated current of the electrical system at
the fault location [11,23]. On the other hand, LIFs can be detected easily by established
methodologies in specialized literature.

In this study, we apply a HIF model with two diodes in parallel [23]. As shown in
Figure 2, the model is composed of two DC sources, Vp, and Vn, and two resistors, Rp and
Rn, that represent the fault resistances.
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2.3. Maximum Overlap Discrete Wavelet Transform

A MODWT performs a linear filtering operation, where a series is transformed into
coefficients associated with variations over a scale set. It was developed to act similarly to
DWT [24]. Unlike DWT, MODWT can be applied to all sample sizes and it has flexibility in
the initial point selection, where the coefficients do not change as a result of changes in the
initial point [25].

The filtering process consists of applying a high-pass wavelet filter at a given decom-
position level j to produce a set of wavelet coefficients and a low-pass scaling filter to
produce a set of scaling coefficients [26]. After the filtering process, the data size becomes
twice the size of original signal.

On the other hand, DWT is applied in a simplified filtering process. This process is
performed through the down-sampling operator whose objective is to reduce the number
of samples at the filter output. MODWT does not apply the down-sampling operator; thus,
at each level j of decomposition, the wavelet coefficients will have the same length as the
original signal as shown in Figure 3 [26,27].
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The MODWT scale filter h̃j,` and the wavelet filters g̃j,` are defined in (1) and (2) based
on the DWT filters gj,` (low-pass) and hj,` (high-pass) [24–27]:

h̃j,` =
hj,`√

2
(1)

g̃j,` =
gj,`√

2
(2)

where ` = 0, . . . , L− 1 and L represents the filter length. The subscript j is the level to
which the signal will be decomposed.

For a given level j, the MODWT coefficients can be defined as the convolution of the
time series Xn according to (3) and (4) [25]:

W̃j,n =
L−1

∑
`=0

h̃j,`Xn−` mod N (3)

Ṽj,n =
L−1

∑
`=0

g̃j,`Xn−` mod N (4)

By means of (5) and (6), we obtain for the nth signal sample at the jth decomposition
level the approximation and detail components Ãj and D̃j respectively [25]. Where g̃0

`

and h̃0
` are periodized of g̃ and h̃ to length N, respectively. N corresponds to the signal

sample size:

Ãj,n =
L−1

∑
`=0

g̃0
j,`Ṽj, n+` mod N (5)

D̃j,n =
L−1

∑
`=0

h̃0
j,` W̃j, n+` mod N (6)

Figure 3 shows a filtering process via MODWT, in which the original signal is de-
composed into three levels of resolution. At each level j, the approximation and detail
coefficients Aj and Dj are the same size as the original signal, because there is a reten-
tion of reduced values at each level of decomposition which are normally discarded by
the down-sampling operator applied in DWT. Therefore, these values are preserved in
MODWT [22].
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2.4. Fault Detection Methodology

The fault detection is based on the real-time monitoring of three-phase current signals
measured at the substation output. The signal sample characteristics are extracted via
MODWT, where the detail and approximation coefficients are obtained from signal decom-
position. Signals are decomposed into three levels of resolution by applying a fourth-order
filter from Daubechies family: db4. There are high and low-frequency signals in detail and
approximation coefficients.

NOS of electrical system is defined via normalized energy of detail coefficients at
the third level and by means of current signals. The difference between NOS and a fault
condition is determined via a comparative analysis of energies and a normalized mean with
a previously established threshold of variation for each phase. If the normalized energy or
normalized mean of at least one phase exceeds the threshold, then an anomaly or fault was
identified in the electrical system.

The magnitudes of faulted phase currents are significantly higher than the ones in
NOS as shown in Figure 1. Thus, the current means that belong to defective phases will be
greater than the ones that belong to normal phases.

The algorithm for faulted phase detection is divided into five steps: (i) signal decom-
position; (ii) energy signal calculation; (iii) three-phase currents mean; (iv) normalization;
and (v) faulted phase detection.

2.4.1. Step 1: Signal Decomposition

The data window consists of one post-fault cycle, and it is decomposed as follows:

1. Data window is decomposed into three resolution levels j via MODWT using db4
mother wavelet of Daubechies family.

2. Applying the fourth order filter of Daubechies family, we obtain the detail coefficients
with three resolution levels.

2.4.2. Step 2: Signal Energy

The energy of current signals for each phase is obtained via (7) according to the
Parseval’s theorem [29]:

Ei,j =
N

∑
n=1

∣∣∣dn
i,j

∣∣∣2 with j = 3 (7)

where Ei,j is the energy for the detail coefficients to phase i current signal and dn
i,j rep-

resents the nth sample of detail coefficients for the phase i at the third level of signal
decomposition—j = 3.

Figure 4 shows an illustrative example of normalized energies obtained for all fault
types considered in this study. The energies values of phases with a disturbance present
are greater than phases without anomaly.

The energy vector is shown in (8). It is composed by energies of Ia, Ib, and Ic three-
phase currents:

E =
[

Ea,j Eb,j Ec,j
]

with j = 3 (8)
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2.4.3. Step 3: Three-Phase Currents Mean

The currents mean of each phase are obtained via (9) from a data window composed
of three cycles with 180 samples (one cycle) extracted from post-fault current signals. The
vector of three-phase currents mean is shown in (10). Figure 5 shows an illustrative example,
where the defective phases present a higher mean of normalized current signal than that
ones for normal phases.

Mi =
∑ Mi
180

, with i ∈ {a, b, c} (9)

M =
[

Ma Mb Mc
]

(10)

2.4.4. Step 4: Normalization

The normalization Mi and the mean of energy signals Ei are performed via (11) and
(12), respectively.

Mi =
Mi

max(M)
, with i ∈ {a, b, c} (11)

Ei =
Ei,j

max(E)
with j = 3 (12)

2.4.5. Step 5: Detection

The system operation state is defined via (13):

Electrical System =

{
With Anomaly, if Max

[
E
]
> LDi and Max

[
M
]
> LDi

Without Anomaly, if Max
[
E
]
≤ LDi or Max

[
M
]
≤ LDi

(13)

where the Max[·] function returns the maximum value in an array. The limit for detection
(LDi) is that one allowed for the phase i current.
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Figure 5. Illustrative example with the means of normalized current signals. Short-Circuits:
(a) single-phase; (b) two-phase; and (c) three-phase.

2.5. Detection Validation

In this section, the well-known confusion matrix and the metrics obtained from its
elements are presented to evaluate the efficiency of the short-circuit fault detection stage.

2.5.1. Confusion Matrix

The confusion matrix metrics are applied to evaluate the detection stage performance.
It is worth pointing out that the confusion matrix application is feasible because the output
of the detection stage is binary (absence or presence of short-circuit faults).

Table 1 shows the structure of confusion matrix adapted for this study.

Table 1. Confusion matrix structure.

Confusion Matrix
Predicted State

N (Normal) F (Fault)

Real State
N (Normal) QNN QNF

F (Fault) QFN QFF

Follow below a description of confusion matrix elements:

• QNN : number of normal cases (without fault) and whose detection was correct (true-
positive cases);

• QNF: number of normal cases (without fault); however, they were incorrectly detected
as fault (false-negative cases);

• QFN : number of fault cases; however, they were incorrectly detected as normal (with-
out fault)—false-positive cases;

• QFF: number of fault cases and whose detection was correct (true-negative cases).

2.5.2. Confusion Matrix Metrics

In this section, the accuracy, precision, recall, and f1-score metrics obtained from the
confusion matrix are presented to evaluate the short-circuit detection stage.
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Accuracy in (14) is the ratio between the number of hits (true-positive and true-
negative cases) and the number of all simulated cases. This metric alone is insufficient for
evaluating problems where there is an imbalance between the simulated cases (normal and
fault cases). Therefore, other metrics such as precision, recall and f1-score are evaluated
together with the accuracy to support the evaluation of the short circuit detection stage
proposed in this study.

Precision in (15) is the ratio between the number of real cases without fault (true-
positive) and the number of erroneously predicted cases by detection algorithm as without
fault (false-positive). That metric evaluates the algorithm’s coverage, i.e., its ability to
identify faults.

Recall or sensitivity in (16) is the measure of normal cases (without fault) over the
number of real cases without faults. This metric allows evaluating the algorithm’s ability
to detect real cases of faults. It is related to the ‘false alarm’, i.e., the fault assignment to
normal cases.

Finally, f1-score in (17) is a metric that incorporates both precision and recall. It is a
harmonic mean between these two metrics.

Accuracy =
QNN + QFF

QNN + QNF + QFN + QFF
(14)

Precision =
QNN

QNN + QFN
(15)

Recall =
QNN

QNN + QNF
(16)

F1− Score =
2(Precision× Recall)
(Precision + Recall)

(17)

3. Short-Circuit Faults Classification

The fault classification algorithm is activated after the fault identification by the
detection algorithm. The characteristics of different fault types are applied in a classification
process. They are obtained from the signal samples of three-phase post-fault currents [30].
NOS and the disturbance state of each phase are determined from the properties of fault
types. Thus, the fault phases are identified, and the short-circuit types are calculated via
count of fault phases.

The relationships with the currents are calculated according to (18)–(20), where the
maximum absolute value of currents for each phase is applied [30]:

r1 =
max{abs(Ia)}
max{abs(Ib)}

(18)

r2 =
max{abs(Ib)}
max{abs(Ic)}

(19)

r3 =
max{abs(Ic)}
max{abs(Ia)}

(20)

The normalization of the relationships with the currents is performed in (21) [30]:

rin =
ri

max{r1, r2, r3}
with i ∈ {1, 2, 3} (21)

The behavior indices with the properties of three-phase currents are obtained via
(22)–(24) [30]. The indices C1, C2, and C3 contain the characteristics referring to the currents
of phases A, B, and C, respectively [30]:

C1 = r1n − r2n (22)
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C2 = r2n − r3n (23)

C3 = r3n − r1n (24)

3.1. Fuzzy Inference System for Short-Circuit Faults Classification

The FIS allows us to intuitively incorporate the empirical knowledge of fault experts
via fuzzy rules set. In this work, the short-circuit faults classification is performed via three
FIS; therefore, an FIS is implemented for each fault type. FIS has three input variables:
phasea, phaseb, and phasec. Each input variable is associated with three membership
functions of triangular and trapezoidal types with intervals [0, 1] as shown in Figure 6a.
Each input variable is represented by three linguistic variables: low, medium, and high. The
absolute values of short-circuit behavior indices obtained in (18)–(20) are the FIS inputs.
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The operating state of each phase is determined through the FIS’s outputs. The FIS
contains three linguistic output variables: Phasea State, Phaseb State, and Phasec State.
The FIS’ outputs are represented by two trapezoidal membership functions: Normal and
Short-Circuit as shown in Figure 6b.

3.2. Fuzzy Inference System Rule Set

A rule set is defined for each FIS, where linguistic variables are applied to identify the
fault phases. The rules are built from the absolute values of C1, C2, and C3 behavior indices
of currents in (18)–(20). They are calculated from of three-phase current signals measured
at the substation output.

Table 2 shows a rule set to classify a single-phase short-circuit. When there is a fault
in phase A, the C1 index associated with that one phase has medium or high values. The
C2 index has low values because the phases B and C have no disturbance. Finally, the C3
index has a negative sign, since it is obtained by subtracting between r3n and r1n, and r1n
has a high value, because phase A is shorted.

The behavior indices associated with the phases with disturbances normally present
medium and high values in two-phase short-circuits, while the phases without anomaly
have low values. Thus, a rule set is elaborated considering these characteristics as shown in
Table 3. Finally, Table 4 shows the rule set for three-phase short-circuits, where the behavior
indices have high or medium values.
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Table 2. FIS rules set to classify single-phase short-circuit.

Rules Short-Circuit
Behavior Indices of Three-Phase Currents

C1 C2 C3

1st Ag High Low High
2nd Ag Medium Low High
3rd Ag High Low Medium
4th Bg High High Low
5th Bg High Medium Low
6th Bg Medium High Low
7th Cg Low High High
8th Cg Low Medium High
9th Cg Low High Medium

Table 3. FIS rules set to classify two-phase short-circuit.

Rules Short-Circuit
Behavior Indices of Three-Phase Currents

C1 C2 C3

1st ABg High High Low
2nd ABg High Medium Low
3rd ABg Medium High Low
4th ACg High Low High
5th ACg Medium Low High
6th ACg High Low Medium
7th BCg Low High High
8th BCg Low Medium High
9th BCg Low High Medium
10th AB High High Low
11th AC High Low High
12th BC Low High High

Table 4. FIS rules set to classify three-phase short-circuit.

Rules Short-Circuit
Behavior Indices of Three-Phase Currents

C1 C2 C3

1st ABC Medium Medium Medium
2nd ABCg High Medium Medium
3rd ABCg High Medium High

3.3. Short-Circuit Classification

The short-circuit classification is performed after the identification of the phases with
anomaly. The fault type is determined from the count of defective phases. The FIS outputs
belong to the range [0, 1]. Thus, there is a post-processing step, where FIS outputs become
binary via application of (25). Bit 0 indicates the normal state phase, while bit 1 indicates
the shorted phase.

Si =

{
0, Phasei State ≤ LCi where i ∈ {a, b, c}

1, otherwise
(25)
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where: subscript i represents the abc phases. Si are the FIS outputs associated with the
Phasei and LCi are the limits for abc phases classification. The short-circuit types are
identified using (26):

Short Circuit Type =



single−phase, if
3
∑

i=1
Si = 1

two−phase, if
3
∑

i=1
Si = 2

three−phase, i f
3
∑

i=1
Si = 3

Absent, if
3
∑

i=1
Si = 0

(26)

Figure 7 shows a flowchart with an overview of the proposed methodology, addressing
the steps for detection and classification of short-circuit faults.
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4. Results and Discussions
4.1. Test System Modelling IEEE-34 Bus

Different fault configurations are simulated in IEEE-34 bus test system. It consists
of an extensive, lightly loaded North American real feeder with 24.9 kV nominal voltage.
Its main feeder has three-phase branches, single-phase side branches, and single-phase
and three-phase loads. The IEEE-34 bus main characteristics are listed as [31]: (i) two
voltage regulators, (ii) an in-line transformer for voltage reduction from 24.9 kV to 4.16 kV,
(iii) unbalanced distributed loads and balanced concentrated loads, and (iv) shunt capacitors.
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The modified IEEE-34 bus is modeled in ATP/EMTP and its ATPDraw graphical
interface. All fault combinations are simulated with 10.8 kHz sampling rate. The loads are
modeled with a constant impedance model [32]. Short-circuit detection and classification
algorithms are developed in MATLAB® environment. All simulations are performed on a
computer with an Intel Core i7 processor; 1.8–1.99 GHz and 8 GB of RAM.

Three different scenarios are modeled in the IEEE-34 bus system to evaluate the
proposed methodology. Different short-circuit conditions are performed considering the
variation of the parameters: fault resistance, insertion angle, short-circuit type, fault location
bus, and DG units.

In the first scenario, IEEE-34 bus test system is modeled without DG units as shown
in Figure 8a. In the second scenario, according to Figure 8b, two synchronous generators
described in [33] are inserted at buses 840 and 848 with 220 V and 480 V of nominal
voltage, respectively. Finally, Figure 8c shows the third scenario, where a PV generator is
introduced at bus 848. The PV model applied in this study is based on [34] with 1 MVA of
installed power.
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Eleven types of simulated short-circuits are considered in several buses along the
feeder. The system parameters applied for different fault scenarios are presented in Table 5.
Short-circuits with resistance values greater than 40Ω are considered as HIF, where a
specific model for it is introduced as shown in Figure 2.

Table 5. IEEE-34 bus test system parameters for fault simulations.

Parameters Configurations

Fault types Ag, Bg, Cg, AB, AC, BC, ABg, ACg, BCg, ABC, ABCg
Fault Location bus 806, 810, 814, 824, 828, 830, 840, 850, 854, 860

DG Units Two synchronous generators and PV panels
Fault resistance 1 Ω to 40 Ω (LIF) and 40 Ω to 300 Ω (HIF)

Fault insertion angle 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, and 150◦
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4.2. Short-Circuit Fault Detection

The fault state can be determined by comparative analysis of energies and normalized
mean with a variation limit for each phase. They are empirically determined from a test
set, in which a discrepancy between the phase values under NOS and with disturbance
is observed. The accuracy and the number of simulated cases are shown in Figure 9 for
each scenario.
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Figure 9. Short-circuit detection for three scenarios: (a) without DG units (scenario 1), (b) with two
synchronous generators (scenario 2), and (c) with PV panels (scenario 3).

The input signal is evaluated at a sampling rate of 10.8 kHz which is equivalent to
180 samples per cycle. The simulation time for each short-circuit type is 0.2 s; therefore,
there are 12 cycles and 2160 signals. Lower and upper limits are established for each data
window to ensure the reliability of the acquired samples; thus, approximately 5% of initial
and final data are removed.

The number of simulations and the accuracy for short-circuit fault detection are shown
in Figure 9. Single-phase, two-phase, and three-phase short-circuits are detected for the
scenarios 1, 2, and 3. Noteworthy that after the insertion of DG units, there is a reduction
in accuracy.

The values obtained for normalized energy or for normalized mean of three-phase
currents in some phases with NOS are high in some parameter combinations; therefore, the
pre-established variation limit LDi is exceeded in some simulated cases. Consequently, the
algorithm wrongly identifies some perturbations.

4.3. Short-Circuit Fault Classification

The classification process is performed after the identification of a fault by the detection
algorithm. The classification consists of identifying the phases involved in short-circuit.
The operational status of each phase is obtained from FIS outputs. The fault classification is
obtained from the number of defective phases.
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As shown in Figure 6, the input variable Phasei Input assumes one among three
linguistic values represented by membership functions, where two that are trapezoidal
are named “low” and “high”, and the other one is triangular, named “medium”. The
parameters of these membership functions applied for short-circuit classification are shown
in Table 6.

Table 6. Membership functions parameters for FIS input variables.

Fault Types
Membership Functions Parameters

Low Medium High

Single-Phase [0.00, 0.00, 0.1, 0.4] [0.20, 0.34, 0.50] [0.35, 0.50, 0.85, 1.00]
Two-Phase [0.01, 0.10, 0.20, 0.35] [0.3, 0.40, 0.50] [0.40, 0.50, 0.80, 1.00]

Three-Phase [0.00, 0.00, 0.10] [0.00, 0.10, 0.50] [0.20, 0.45, 0.55, 1.00]

The phase operational state is obtained from the FIS outputs. It is represented by
the variable Phasei State that assumes two linguistic values associated with two trape-
zoidal membership functions: “Normal” and “Short-Circuit”. The parameters of these
membership functions are shown in Table 7.

Table 7. Membership functions parameters for FIS output variables.

Fault Type
Membership Functions Parameters

Normal Short-Circuits

Single-phase [0.00, 0.00, 0.10, 0.40] [0.200, 0.400, 0.850, 1.000]
Two-phase [0.00, 0.00, 0.30, 0.40] [0.300, 0.400, 0.700, 1.000]

Three-phase [0.00, 0.00, 0.10] [0.046, 0.094, 0.600, 0.950]

Table 8 shows the number of simulations performed for each scenario. For each fault
type, thousands of simulations are performed along the feeder for both LIF and HIF.

Table 8. Number of simulations per scenario and fault type.

Fault Type Class
Number of Simulations

Scenario 1 Scenario 2 Scenario 3

Ag/ Bg/Cg
LIF 840 840 580
HIF 1620 1585 1620

AB/ ABg
LIF 560 560 520
HIF 540 540 540

AC/ ACg
LIF 560 560 520
HIF 540 540 540

BC/ BCg
LIF 560 560 520
HIF 540 540 540

ABC/ ABCg
LIF 560 560 560
HIF 540 540 540

Total 6860 6825 6480

Figure 10a shows the results for the short-circuit classification for scenario 1. In
total, 6860 simulations were carried out, with 2460, 3300, and 1100 FIS simulations for
classification of single-phase, two-phase, and three-phase short-circuits, respectively. The
proposed methodology presents satisfactory performance for LIF and HIF.
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Figure 10. Short-circuit classification for three scenarios: (a) without DG units (scenario 1), (b) with
two synchronous generators (scenario 2), and (c) with PV panels (scenario 3).

The results obtained for the short-circuit classification for scenario 2 with two syn-
chronous generators DG units are shown in Figure 10b, where 6825 simulations are per-
formed with 2425, 3300, and 1100 SIFs’ simulations for classification of single-phase, two-
phase, and three-phase short-circuits, respectively.

Finally, Figure 10c shows the results for scenario 3, where DG units with PV panels are
considered and 6480 simulations are performed with 2200, 3180, and 1100 SIFs’ simulations
for classification of single-phase, two-phase, and three-phase short-circuits, respectively.

According to Figure 10, there is a drop in accuracy for the faults at scenarios 2 and 3,
where DGs units are introduced: two synchronous generators and PV panels.

Additionally, in some parameter combinations, especially that ones with high resis-
tances for single-phase and two-phase short-circuits, the behavior indices of normal phases
present high values; therefore, they exceeded the limit established LCi for each phase.
Consequently, the classifier erroneously identifies a normal phase as defective phase in
some cases.

On the other hand, the classifications with error occur in three-phase short-circuits
due to behavior index with low values for the phases with disturbance; therefore, the
classifier identifies them as normal, since the tolerance limits LCi are not violated. It is
worth noting that the same FIS set is used for all simulated scenarios (with and without
DG units); therefore, there are no changes in membership functions parameters.

4.4. Methodology Validation for Detection and Classification of Short-Circuits Faults

This section presents metrics for evaluating the proposed methodology for detecting
and classifying short-circuit faults for scenarios 2 and 3. It is noteworthy that scenario 1 has
an accuracy of 100% for short-circuit fault detection and classification; therefore, it is not
mentioned in this section.
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4.4.1. Detection Stage Validation

The short-circuit detection stage performance is evaluated in this section for scenarios
2 and 3 for single-phase, two-phase, and three-phase short-circuit faults. In this sense, cases
with short-circuit absent (NOS) and short-circuit fault are simulated to obtain the confusion
matrix and its metrics to evaluate the detection stage performance.

Table 9 shows the confusion matrix elements and its metrics to evaluate the detection
stage performance. It is noteworthy that the accuracy and precision have high values for
all cases simulated. Therefore, the detection stage has a good coverage, i.e., it identifies
most short-circuit faults.

Table 9. Confusion matrix metrics to evaluate the detection stage for scenarios 2 and 3.

Detected Fault Scenarios
Confusion Matrix Elements

Accuracy Precision Recall F1-Score
QNN QNF QFN QFF

Single-Phase 2 290 17 0 2591 99.4% 100.0% 94.5% 97.2%
3 241 57 0 2200 97.7% 100.0% 80.9% 89.4%

Two-Phase
2 461 122 6 3284 96.7% 98.7% 79.1% 87.8%
3 616 56 57 3143 97.1% 91.5% 91.7% 91.6%

Three-Phase
2 196 2 0 1100 99.8% 100.0% 99.0% 99.5%
3 210 70 0 1100 94.9% 100.0% 75.0% 85.7%

On the other hand, the recall has a lower value than the accuracy and precision
metrics. Thus, in some cases, there is the fault assignment to normal cases or “false alarms”,
especially for the three-phase short-circuit at scenario 3. F1-score metric incorporates the
outcomes of precision and recall metrics.

The insertion of synchronous generators (scenario 2) and PV panels (scenario 3) DG
units changes the short-circuit currents of IEEE 34-bus test system and, in some cases, the
detection stage assigns fault in normal cases, resulting in “false alarms”.

4.4.2. Classification Stage Validation

The short-circuit classification stage performance is evaluated in this section for scenar-
ios 2 and 3 for single-phase, two-phase, and three-phase short-circuit faults. Classification
stage is applied after the fault detection stage.

There is an FIS classifier for each single-phase, two-phase, and three-phase fault type.
Table 10 shows the FIS classifier performance for scenarios 2 and 3. For example, the FIS
classifier for single-phase faults has 2365 hits (faults classified correctly) and 94 errors
(faults classified incorrectly) for scenario 2. Thus, its accuracy is 96.2%. There are 52 faults
classified incorrectly as single-phase. In this sense, suppose that there is a fault at phase
A; however, according to FIS classifier, the fault is in B or C phases. Therefore, that is an
illustrative example of single-phase fault classified incorrectly.

Table 10. FIS classifier performance for scenarios 2 and 3.

Scenario FIS Classifier Hits
Errors: Faults Classified Incorrectly

Accuracy
Single-Phase Two-Phase Three-Phase

2
Single-Phase 2365 52 0 42 96.2%
Two-Phase 3154 0 138 5 95.7%

Three-Phase 1096 0 3 1 99.6%

3
Single-Phase 2112 52 14 20 96.1%
Two-Phase 3050 0 122 26 95.4%

Three-Phase 1075 1 24 0 97.7%

It is worth pointing out that the accuracy metric has high value, and it is greater than
95.4% for all simulated cases.



Sensors 2022, 22, 9418 19 of 21

5. Conclusions

A methodology for detection and classification of short-circuit faults in electric power
distribution systems (EPDS), considering the insertion of distributed generation (DG)
units, was presented in this work. The fault detection algorithm was based on continuous
analysis of current signals measured at the substation output, and whose characteristics
were extracted through the application of maximum overlap discrete wavelet transform
(MODWT) and the mean of current signals. The system operating state was defined via
comparative analysis of the normalized energy and mean values of currents, with variation
limits previously established for each phase. Three fuzzy inference systems (FIS) were
implemented to classify the faulty phases. The behavior indices of three-phase currents
were the inputs of each FIS.

The proposed methodology was evaluated in the modified IEEE 34-bus test system and
represented in ATPDraw. The proposed methodology was evaluated via 20,000 simulated
cases considering three scenarios with and without DG units and considering variations
of the following parameters: type of fault (single-phase, two-phase, three-phase), angle of
incidence, fault resistance (high impedance fault (HIF) and low impedance fault (LIF)), fault
location bus, and types of DG units (synchronous generators and photovoltaic (PV) panels).

In the fault detection stage, greater than 94.9% of short circuits were correctly detected
in all scenarios with and without DG units. On the other hand, in the fault classification
stage, the classifier achieved a high accuracy percentage, where 100% of short-circuits were
classified correctly for scenario 1 (without GD units). In scenarios 2 and 3 (with GD units),
the accuracy was greater than 95.4% for all simulated cases. The insertion of DG units
increases the short-circuit current; therefore, in some cases, the classification system may
erroneously indicate faults on a feeder in normal operating state (NOS).

The proposed methodology is efficient. It presented accuracy greater than 94.9% for
detection and classification of all short-circuit faults, even after the insertion of DG units.
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