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Abstract: The measurement of the CO2 concentration has a wide range of applications. Traditionally,
it has been used to assess air quality, with other applications linked to the experimental assessment of
occupancy patterns and air renewal rates. More recently, the worldwide dissemination of COVID-19
establishing a relationship between infection risk and the mean CO2 level has abruptly led to the
measurement of the CO2 concentration in order to limit the spread of this respiratory disease in the
indoor environment. Therefore, the extensive application of this measurement outside of traditional
air quality assessment requires an in-depth analysis of the suitability of these sensors for such modern
applications. This paper discusses the performance of an array of commercial wall-mounted CO2

sensors, focusing on their application to obtain occupancy patterns and air renovation rates. This
study is supported by several long-term test campaigns conducted in an in-use office building located
in south-eastern Spain. The results show a spread of 19–101 ppm, with a drift of 28 ppm over 5 years,
an offset of 2–301 ppm and fluctuations up to 80 ppm in instantaneous measurements not related to
concentration changes. It is proposed that values averaged over 30 min, using a suitable reference
value, be used to avoid erroneous results when calibration is not feasible.

Keywords: building energy; performance gap; in situ measurements; CO2 concentration; long-term
measurements

1. Introduction

Carbon dioxide sensors are widely used in environmental monitoring, indoor air
quality or occupancy estimation. There are a wide variety of carbon dioxide sensor types,
such as optical, electrochemical, thermal conductivity and resistance sensors. One of the
most used, carbon dioxide sensors based on infrared technology, need to achieve high
accuracy at a reasonable cost. The concentration measured by the sensor may differ from
the real concentration due to factors such as light source stability, sensor manufacturing
technology and ambient temperature and pressure. Therefore, the accurate calibration
of carbon dioxide sensors represents a challenge that can provide a basic guarantee for
accurate carbon dioxide measurement.

Some studies have focused on the indoor environment, and combined temperature,
relative humidity and CO2 concentration sensors that can be used in building management
systems ensuring adequate ventilation rates. One of the main objectives of health authorities
in recent times has been to minimise the risk of airborne transmission of SARS-CoV-2.
Villanueba et al. [1] monitored the IEQ conditions in classrooms, assessing one of the
control practices implemented through the contingency plans for schools, which is the
increasing ventilation rates of the classrooms. To do this, the authors positioned CO2 sensors
systematically separated from both the students and the walls and at the same height,
coinciding with the students’ breathing height. However, it is important to emphasise the
relevance of adopting adequate COVID-19-based ventilation strategies to guarantee thermal
and acoustic conditions, while keeping CO2 concentration levels below the recommended
limits [2,3].
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In previous studies, Pei et al. [4] investigated the impact of CO2 sensors located
indoors on the performance of controlled ventilation systems. The authors determined
multiple factors that influenced the sensing performance, such as occupancy and ventilation
rates and strategy. The optimal spatial distribution of sensors for proper data quality
measurements can be performed by applying computational fluid dynamic analysis [5].
Mylonas et al. [6] assessed the limitations and capabilities of indoor environmental sensors
by comparing six different wireless sensors tested in a climate chamber. They used high-
precision reference instruments to compute any deviation from real conditions. They
concluded, as did Petersen et al. [7], that there is no dominant factor related to CO2
accuracy dependency. Other authors evaluated the suitability of low-cost Arduino CO2
sensors for indoor built environments [8]. CO2 concentrations ranging between 400 and
2500 ppm were evaluated and showed non-negligible high deviations in measured values
compared to reference ones.

CO2-based detection systems have been used in office and residential buildings for
occupancy estimation [9]. One of the main advantages of CO2-based detection systems
over other sensing systems is their ease of implementation in existing building infrastruc-
tures [10]. Using CO2-based sensing systems, several applications in buildings have been
reviewed in the literature, including demand control ventilation [11] and in-line airflow
control [12]. A reliable and robust estimation of building occupancy can be performed
using the potential of the heterogeneous multisensor fusion approach: CO2, temperature,
humidity, light, etc. (Kampezidou et al. [13]). The authors proposed a pattern recognition
machine methodology in order to identify the room’s binary occupancy state based on
limited sensors: CO2 and temperature. Esposito et al. [14] tested dynamic neural networks,
based on sensor outputs limited to several weeks, for stochastic field calibration of low-cost
indicative air quality detection systems, focusing in this case on the estimation of the NO2
concentration. Tekler et al. [15] applied a two-step feature selection algorithm identify-
ing the number of Wi-Fi-connected devices and the indoor CO2 concentrations as crucial
features for predicting occupancy in an office, library and lecture room. The authors also
identified the best model performance for each space type implementing a different deep
learning architecture in this study.

2. Related Work

It is well known that CO2 concentration sensors at fine spatio-temporal resolutions typ-
ically have an offset that drifts throughout time. Borodinecs et al. [16] reviewed the possible
uncertainties in indoor CO2 measurements. They concluded that sensors widely available
in the market are calibrated mainly by using the general assumption on the outdoor air
CO2 concentration. They stated that these limitations are critical for practical application in
rooms without mechanical ventilation and/or with a variable room occupancy profile.

In addition, usually, the measurements carried out with these sensors show fluctu-
ations that do not correspond to actual CO2 concentration variations. So, it is important
that manufactures limit the performance time for low-cost sensors based on a standard
durability test and that advanced methods of rapid and cost-effective calibration of such
sensors be developed.

Spinelle et al. [17] developed a protocol for the evaluation and calibration of low-cost
commercial sensors for the monitoring of air pollution. The authors calibrated the sensors
tested in the same conditions against reference measurements by regression methods and
learning techniques relying on multi-months monitored data. Taking the measurement
uncertainty estimated by orthogonal regressions as an indicator, the latter methodology
shows better agreement between the values recorded by the sensors and the reference
measurements [18]. Mao et al. [19] proposed a deep-learning-based algorithm for rapid
calibration of carbon dioxide sensors characterised by high efficiency, accuracy and low
cost. As a main result, a back-propagation neural network was chosen as the model.
Vajs et al. [20] used machine learning to correct the impact of temperature and relative
humidity on low-cost sensors’ accuracy. Other authors analysed the spatial and temporal
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variability of correction factors obtained from field calibration [21]. They applied three
different methods for calibration: daily updated correction factors, corrections based on
uniform low concentrations and a Bayesian regression model. As mentioned previously,
the behaviour of these sensors can lead to inaccuracies in the assessments based on their
measurements. This could be the case in comparisons of raw measurements with certain
absolute fixed levels, for example, when these sensors are used to detect whether the
CO2 concentration in a space has exceeded a certain level. The calculations that contain a
subtraction of the measurements carried out by different sensors could also be problematic,
for example, in calculations of differences between the CO2 concentrations of different
rooms or in differences between a room and the exterior. In principle, the calibration of
these sensors could be seen as the evident solution to the observed problems, but its cost
could be unaffordable in some applications.

Some previous works have applied strategies to overcome the observed problems.
One of these successful applications has been the assessment of the occupancy patterns
in occupied spaces in office buildings [22,23] and schools [24], from the evolution of the
CO2 concentration related to the metabolic activity of the users. In these cases, the offset of
the sensors did not affect the accuracy of the results, because the analysis was based on
differences of measurements carried out by the same sensor and consequently cancelling
the offset by means of the difference. The fluctuations were smoothed doing 1-h moving
averages. An analogous strategy was applied to assess the infiltration rate of office buildings
from raw measurements of the decay of the metabolic CO2 in the office buildings just after
the users left the rooms [25]. However, in this case, the results were significantly worse than
the results obtained using traditional N2O as a tracer gas technique, suggesting further
research to improve the assessments based on the measurement of metabolic CO2.

The novelty of the work reported in this paper is the validation, at an experimental
level using long-term campaigns, of the feasibility of using CO2 concentration sensors
in certain CO2-based applications without the need to carry out expensive periodic stan-
dard calibrations to mitigate the effects of offset, drifts and parasitic fluctuations in the
measurements. This work analyses the mentioned problems of the CO2 concentration
sensors (offset, drift and fluctuations not caused by changes in the CO2 concentration). The
behaviour of a set of nine sensors, continuously measuring for a long-term test campaign in
an in-use office building, was analysed. From a qualitative point of view, this work confirms
that the considered set of CO2 concentration sensors behave as expected according to the
technical specifications of the manufacturers and previous research works. Additionally,
the observed behaviour was quantified for more than 14 years of measurements and two
additional benchmark test campaigns. The results highlight the need to calibrate these
sensors periodically. Some alternatives based on the conducted work and its findings are
suggested to skip the problems related to the lack of calibrations, which are useful for
certain applications where standardised calibrations are not feasible.

This document is organised as follows: Section 2 describes the building where the
tests were conducted, the experimental set-up, the data analysed and the applied method-
ology; Section 3 presents and discusses the results; and, finally, Section 4 summarises the
conclusions of this work.

3. Materials and Methods

The materials used in this work are constituted by the building described in Section 3.1,
the measurement devices are described in Section 3.2 and the data are described in Sec-
tion 3.3. The methods are described in Section 3.4.

3.1. Monitored Office Building

The building where the tests were conducted corresponds to an office building located
at the Plataforma Solar de Almería (PSA), in the Tabernas desert, in Almería, Spain. This
area is characterised by a cold desert climate, with low annual rainfall, mean annual
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temperatures around 18 ◦C and high daily thermal oscillations [26]. Its climatic zone,
according to the Köppen–Geiger classification, is BWk.

The building is distributed along a longitudinal axis on a single floor with an area
of about 1000 m2. The predominant facades are oriented to the North and South. The
interior layout of the building is divided into different volumes separated by a corridor.
The offices are located mostly on the south side. The building is continuously monitored
under real conditions of use. The design and implementation of monitoring systems both
inside and outside the building allow a global energy assessment of the building to be
carried out [27]. Figure 1 shows an overview of the building plant. More information is
included in Olmedo et al. [28].
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Figure 1. Overview of the building plant indicating the spaces where the CO2 sensors are installed.
Sensor nomenclature is showed.

3.2. Measurement Devices

Three types of sensors were used in the considered building. These types of sensors
are coded as types 0, 1 and 2 in this work, as indicated in Table 1.

The type 1 and 2 sensors are similar regarding cost, accuracy and other metrology
characteristics. These type 1 and 2 sensors were used to measure the indoor CO2 concen-
tration. The type 0 sensors have better accuracy and are more expensive than the type 1
and 2 sensors. These type 0 sensors were used to measure the outdoor CO2 concentration.
Additionally, one type 0 sensor was installed as a reference in an office of the monitored
building, and it was used as a reference considering that its accuracy is remarkably better
than the accuracy of the other types of sensors.

3.2.1. Sensors Built into the Monitoring System of the Building Being Continuously Monitored

The office building has a comprehensive monitoring system that has been running
continuously since 2008.

A selection of representative offices were identified and monitored in detail. This
monitoring includes measurement of the driving variables that are necessary to obtain all
the energy contributions to the office. This comprises measurements in the selected offices,
their adjacent spaces and outdoors. The work reported in this paper is focused on the CO2
concentration measured in these indoor and outdoor spaces.

Initially, the CO2 concentration in the offices of the building was being measured using
type 1 sensors since 2008. When any of these sensors was damaged or malfunctioned, it was
replaced by a sensor of the same type. Since 2016, some of these replacements introduced
type 2 sensors.
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Table 1. Types of sensors used in this analysis and summary of their characteristics.

Sensor Features
Type 0:

GMP343 VAISALA
Vantaa, Finland

Type 1:
GMW115 VAISALA

Vantaa, Finland

Type 2:
EE800-M11A6VN0 E+E

ELEKTRONIK
Engerwitzdorf, Austria

Measurement range 0–2000 ppm 0–2000 ppm 0–2000 ppm

Accuracy after factory calibration with
0.5% accurate gases ±2.5% of reading

Accuracy (including repeatability,
non-linearity and calibration uncertainty) ±(50 ppm CO2 + 3% of reading)

Accuracy at 25 ◦C and 1013 mbar <±(50 ppm + 2% of measuring value)

Long-term stability <±2% of reading/year ±100 ppm CO2/5 years

Response time (T90) 30 s 1 min typ. 110 s

Temperature dependence, typical ±0.3% (<500 ppm CO2) and
±1% (>500 ppm CO2) −0.35% of reading/◦C ±(1 + CO2 concentration (ppm)/1000)

ppm/◦C (−20 to 45 ◦C)

Pressure dependence, typical
700–1300 hPa:
±2% (<500 ppm CO2) and ±3%
(>500 ppm CO2)

+0.15% of reading/hPa

Warm-up time full accuracy ± 0.5%: 10 min; full
accuracy: 30 min 1 min, 10 min for full specification

Calibration interval >5 years

Product lifetime >10 years

A type 0 sensor was being used to measure the outdoor CO2 concentration. It was
installed outdoors, on a meteorological mast installed on the roof of the building. Addition-
ally, one type 0 sensor was installed as a reference in an office, Room 1, of the monitored
building, and it was used as a reference considering that its accuracy is remarkably better
than the accuracy of the other types of sensors.

All the type 1 and 2 sensors installed in the building were replaced in June 2022 by a
set of type 2 sensors calibrated through a benchmark test conducted in 2021. The sensor
nomenclature, position and type are indicated in Figure 1.

3.2.2. Additional Test Set-Up and Measurement Campaigns

Two additional test campaigns were specifically conducted from August 2021 to
October 2021 and from August 2022 to September 2022, complementing the monitoring
data recorded by the built-in data acquisition system of the building. These tests campaigns
were carried out in the office named as Room 1 (R01). There, a set of sensors of the CO2
concentration were installed in the same benchmark test, as shown in Figure 2. This
arrangement was close to the CO2 type 0 and type 1 sensors, already installed in the
built-in monitoring system of the building, whose measurements were being continuously
recorded by this monitoring system. This set-up aims to ensure that all the sensors in the
benchmark test as well as the two sensors already installed in the room are exposed to the
same CO2 concentration.

The benchmark test conducted from August 2021 to October 2021 included nine type 2
sensors. All the sensors calibrated through the benchmark test conducted in 2021 were
installed in the built-in system of the building on 26 July 2022. These sensors replaced six
type 1 sensors and one type 2 sensor that were installed until then. The two remaining
sensors were installed in the monitoring built-in system, measuring the CO2 concentration
in the auditorium and in the meeting room, respectively, where this variable had not been
previously measured.

The benchmark test conducted between August and September 2022 was analogous to
the previous one but included four CO2 sensors that were removed from the other rooms
in the building on 26 July 2022 and four CO2 type 2 sensors never used before.



Sensors 2022, 22, 9403 6 of 15Sensors 2022, 22, x FOR PEER REVIEW 6 of 17 
 

 

  

(a) (b) 

Figure 2. (a) Benchmark set-up 2021. (b) Benchmark set-up 2022. 

The benchmark test conducted from August 2021 to October 2021 included nine type 

2 sensors. All the sensors calibrated through the benchmark test conducted in 2021 were 

installed in the built-in system of the building on 26 July 2022. These sensors replaced six 

type 1 sensors and one type 2 sensor that were installed until then. The two remaining 

sensors were installed in the monitoring built-in system, measuring the CO2 concentration 

in the auditorium and in the meeting room, respectively, where this variable had not been 

previously measured. 

The benchmark test conducted between August and September 2022 was analogous 

to the previous one but included four CO2 sensors that were removed from the other 

rooms in the building on 26 July 2022 and four CO2 type 2 sensors never used before. 

3.3. Data 

Sections 3.3.1 and 3.3.2 hereafter describe the data used to carry out the work re-

ported in this paper that were obtained respectively from the two different data sources 

described in Section 3.2: built-in monitoring system (Section 3.2.1) and benchmark test 

(Section 3.2.2). 

3.3.1. Continuous Monitoring 

Continuous monitoring has been running since 1 August 2008. Measurements have 

been read and recorded every minute. Data corresponding to more than 14 years are avail-

able and have been used in this work. The availability of such a long test period provides 

robustness to the applied analysis approach. 

All sensors have provided continuous records throughout the 14 years; however, 

there are some periods of time when data are missing due to sensor damage, malfunction, 

repairs or substitutions. For the reference sensors, on the one hand, the exterior reference 

sensor (Ext) was installed in 2010 and stopped recording data in 2017. On the other hand, 

the measurements of the interior reference sensor of Room 1 (R01 Ref) cover a period from 

2013 to 2020. Consequently, both sensors only provide data simultaneously from 2013 to 

July 2017. 

Records are saved in text format files from the data acquisition system to later extract 

them using data processing tools. 

3.3.2. Intensive Measurement Campaigns: Benchmark Tests 

Two intensive test campaigns were conducted between August and October 2021 

and August to September 2022 in Room 1. Different occupancy patterns can be distin-

guished in these periods: 

R01 Ref

Benckmark

sensors

2021

R01 R01 Ref

R01

Benckmark

sensors

2022

Figure 2. (a) Benchmark set-up 2021. (b) Benchmark set-up 2022.

3.3. Data

Sections 3.3.1 and 3.3.2 hereafter describe the data used to carry out the work reported
in this paper that were obtained respectively from the two different data sources described
in Section 3.2: built-in monitoring system (Section 3.2.1) and benchmark test (Section 3.2.2).

3.3.1. Continuous Monitoring

Continuous monitoring has been running since 1 August 2008. Measurements have
been read and recorded every minute. Data corresponding to more than 14 years are
available and have been used in this work. The availability of such a long test period
provides robustness to the applied analysis approach.

All sensors have provided continuous records throughout the 14 years; however, there
are some periods of time when data are missing due to sensor damage, malfunction, repairs
or substitutions. For the reference sensors, on the one hand, the exterior reference sensor
(Ext) was installed in 2010 and stopped recording data in 2017. On the other hand, the
measurements of the interior reference sensor of Room 1 (R01 Ref) cover a period from
2013 to 2020. Consequently, both sensors only provide data simultaneously from 2013 to
July 2017.

Records are saved in text format files from the data acquisition system to later extract
them using data processing tools.

3.3.2. Intensive Measurement Campaigns: Benchmark Tests

Two intensive test campaigns were conducted between August and October 2021 and
August to September 2022 in Room 1. Different occupancy patterns can be distinguished in
these periods:

• First half of August 2021 and 2022, first half of September 2021 and first week of Septem-
ber 2022: Room 1 was empty, but other rooms of the building could be occupied.

• Second half of August 2021 and 2022: There were no occupants in the entire building
except for the 2 or 3 last days of August when some offices could be occupied.

• Since 16 September 2021 and since 5 September 2022: Room 1 and all the rooms in the
building are regularly in use along the working schedule of the centre (Monday to
Friday, 8:30 to 16:30 except 1 h that users take to have lunch).

3.4. Data Analysis

A systematic analysis including the following aspects was conducted:

1. Analysis of the agreement between the measurements obtained using the two type
0 sensors and the time evolution of this agreement, discussing the suitability to use
them as a reference for calibration.
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2. Spread between the measurements recorded by the different sensors and offset of
each sensor regarding the one taken as a reference. The following set of sensors
was analysed:

a. Built-in sensors for different years in periods when the building is empty
b. Benchmark sensors for the test campaigns conducted in 2021 and 2022

3. Trend shown over time by the spread between the measurements recorded by the
different built-in sensors in the building.

4. Adjust of the measurements of the benchmark with respect to the reference sensor
considering the minutely recorded data and filtered series gathered applying different
average periods: 2 min, 5 min, 10 min, 30 min, 1 h, 2 h and 1 day.

5. Analysis of the dependence of the adjustment quality and the average period.

These analyses of the mentioned aspects are described in detail in Sections 3.4.1 and 3.4.2 hereafter.

3.4.1. Assessment of the Spread and Offset of the Measurements and Their Drift over a
Long-Term Period

Considering the type 0 sensors (Ext and R01 Ref) as potential reference sensors, their
difference and the drift of this difference from 2013 to 2017 were quantified by subtracting
the mean of the first and the mean of the second. Each one of these values corresponds to
the mean of the daily mean values of the CO2 concentration on days when no occupancy
is assured. Data were selected for summer periods, when the building is closed due to
holidays, winter periods concerning Christmas vacation and, for the year 2016, a set of
weekends. The number of days used for each period varies from a minimum of 7 days to a
maximum of 19.

To quantify all sensors’ spread and its drift throughout the 14-year period, their
standard deviation was considered. The values used in the calculation correspond to the
mean of the daily mean values from the days in August when the building is not occupied
for all available sensors.

A calibration of all the indoor sensors regarding the sensor R01 Ref was conducted
for non-occupancy periods during the summer holidays. The only exception is the year
2020, for which a period of the lockdown in Spain due to the pandemic SARS-CoV-2 was
selected, compensating for the lack of data in summer. To calibrate the sensors, firstly, the
mean of the data registered by each one was calculated. Secondly, the mean of the reference
sensor and the mean of each sensor were subtracted, obtaining different offsets. Finally, the
calibrated value was the result of adding the offset of each sensor to its originally registered
data. The same process was applied to the filtered data at 2 min, 5 min, 10 min and 30 min.

3.4.2. Signal Smoothing and Identification of the Suitable Averaging Step

To smooth the peaks resulting from the CO2 concentration signals measured every
minute, the means for intervals of 2 min, 5 min, 10 min, 30 min, 1 h, 2 h and 1 day were
calculated.

The benchmark sensors placed in Room 1 were calibrated regarding the R01 Ref sensor
through a linear regression. Periods containing occupancy and non-occupancy, from 28
September to 13 October 2021, were used. The chosen parameter under consideration
was the linear regression coefficient (r2), calculated for raw data and for the previously
mentioned average intervals.

A plot representing r2 versus the mean interval was created. If an asymptotic trend
was observed, i.e., an increase in the coefficient was not significant compared to the increase
in timing, the appropriate average step was easily identified.

4. Results

The obtained results are described in Sections 4.1 and 4.2 hereafter.
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4.1. Assessment of the Offset in the Measurement and Its Drift over a Long-Term Period

The difference between the reference sensors and the drift (Ext and R01 Ref) from 2013
to 2017 are summarised in Table 2 and Figure 3. It must be considered that the origin of
the x-axis of this figure corresponds to the year 2008 and the red and blue points represent
calculations based on summer and winter periods, respectively. The observed differences
were low (Table 2), starting around 2 ppm for 2014 and showing an increasing tendency
with time (Figure 3). However, the values remained low even for the last years when
comparison was possible (2016–2017). These observations led us to assume a low difference
also before 2014. Considering this issue, the exterior device was used as a reference when
the indoor reference sensor was not available, which was also before 2014.

Table 2. Difference between the outdoor and the reference CO2 concentration measurements, consid-
ering their averages in periods when both records were available and the building was not occupied.

Period CO2 ext − CO2 ref (ppm)

14 August 2014–16 August 2014
13 September 2014–14 September 2014
20 September 2014–21 September 2014

2.2

24 December 2014–31 December 2014 −2.6

13 August 2015–30 August 2015 8.6

6 February 2016–7 February 2016
13 February 2016–14 February 2016

28 February 2016
5 March 2016–6 March 2016

12 March 2016–13 March 2016
19 March 2016–20 March 2016

−2.5

10 August 2016–28 August 2016 11.1

24 December 2016–1 January 2017 10.9Sensors 2022, 22, x FOR PEER REVIEW 9 of 17 
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Figure 3. Difference in daily mean values of the CO2 concentration between Ext and R01 Ref sensors
during unoccupied periods of summer (red) and winter (blue), and spread of the measurements
(grey) obtained as the standard deviation of the mean daily mean values of the CO2 concentration
between R13, R01, R02, R12, R13, R14, SR, CR13, CR19 and R01 Ref CO2 sensors during unoccupied
periods in August. The 0 in the x-axis corresponds to the year 2008.



Sensors 2022, 22, 9403 9 of 15

The spread and the drift of the spread of all the sensors are shown in Figure 3. The
drift of the offset of all the sensors regarding the exterior until 2016 and regarding R01
Ref since 2014 is shown in Figure 4. The spread, offsets and their drift are summarised in
Table 3 and clearly increased. The spread went from 19 to 101 ppm, and an average drift in
the spread of 28 ppm per 5 years was identified. The offset ranged from 2 to 301 ppm.
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Figure 4. Offset regarding the reference sensor for all the sensors, considering periods when the
building was not being used from 2008 to 2021: periods of each year in August and March 2020. From
2008 to 2016, the reference sensor is Ext (purple). Since 2014, the reference sensor is R01 Ref (green).
The 0 in the x-axis corresponds to the year 2008.

4.2. Signal Smoothing and Identification of the Suitable Averaging Step

Once the measurements were corrected from the offset, oscillations up to 80 ppm
were shown by the raw data minutely recorded (Figure 5b). When all the sensors were
filtered applying different average intervals, the signal improved as its noise remarkably
reduced. This behaviour can be observed in Figure 5. This figure also shows an improving
accordance between all the indoor measurements and the reference sensor as the average
interval increased. The oscillations in the measurements reduced as the average interval
increased, being 20 ppm for 30 min averages (Figure 5j).

Considering the 2021 benchmark, an enhancement of r2 was observed with higher
values of average intervals (Table 4). Figure 6 shows that the curve started to flatten,
reaching its maximum value approximately at the 30 min interval. In addition, a decrease
in r2 was registered when using 1-day means. The results of the linear regression parameters
considering 30 min averages are summarised in Table 5. The spread of the measurements
and their offset before and after being adjusted using the parameters from these regressions
are shown in Table 6.

According to the observed behaviour, 30 min was selected as a suitable period in
which the increase in r2 did not imply a significant improvement with respect to longer
time intervals (Figure 6).
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Table 3. Offset regarding the reference sensors and spread of all the measurements, considering
periods of each year in August and March when the building was not being used from 2008 to 2021.
From 2008 to 2016, the reference sensor is Ext (second row when both references are available). Since
2014, the reference sensor is R01 Ref (first row when both references are available).

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 * 2021

Spread (ppm) 38 23 19 20 32 47 38 55 77 75 92 69 60 101

Offset R02 (ppm) 61 105 89 131 142 161 134 253
−37 −8 −7 −4 −2 62 57 114 100

Offset SR (ppm) 71 83 96 86 109 115 - -
43 60 39 45 5 77 66 91 107

Offset R12 (ppm) 45 - 79 117 41 63 18 131
−7 6 −11 5 −13 43 40 90

Offset R13 (ppm) 120 157 157 203 215 226 91 175
−4 28 34 34 32 100 116 165 168

Offset CR13 (ppm) 53 65 74 65 76 87 51 136
13 16 6 13 −9 46 49 73 85

Offset R14 (ppm) 32 37 43 62 73 88 42 146
−14 −18 −11 −9 −15 46 28 46 54

Offset R19 (ppm) 10 21 45 122 127 143 125 54
23 20 −8 −5 −36 15 5 30 56

Offset CR19 (ppm) 84 106 252 248 301 191 168 317
93 29 19 28 73 198 80 114 263

* Data from 2020 correspond to March due to the lack of data in summer.

Table 4. Relationship between the average period and the agreement between the reference and other
sensors. Assessment based on r2. Benchmark test conducted in August 2021.

Sensor 1 min 2 min 5 min 10 min 30 min 1 h 2 h 1 day

78CE 0.970 0.970 0.982 0.985 0.988 0.989 0.990 0.985
2823 0.966 0.967 0.979 0.982 0.986 0.987 0.987 0.979
814A 0.969 0.970 0.985 0.988 0.991 0.993 0.993 0.993
8014 0.959 0.960 0.972 0.974 0.977 0.977 0.977 0.959
56E6 0.976 0.977 0.988 0.991 0.993 0.994 0.994 0.991
778F 0.974 0.975 0.988 0.992 0.995 0.996 0.996 0.995
449E 0.973 0.974 0.985 0.988 0.990 0.991 0.991 0.983
25DE 0.963 0.964 0.981 0.985 0.989 0.990 0.990 0.982
390D 0.974 0.974 0.986 0.988 0.991 0.991 0.992 0.983

Table 5. Correction function obtained from the benchmark test conducted in 2021.

Sensor Serial Number a b (ppm) r2

78CE 0.95 175 0.970
2823 0.97 140 0.966
814A 1.00 177 0.969
8014 0.98 202 0.959
56E6 0.99 143 0.976
778F 1.00 173 0.974
449E 1.00 108 0.973
25DE 0.97 112 0.963
390D 0.98 91 0.974
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Figure 6. Benchmark set-up 2021. The r2 value of the lineal regression of the measurements (serial
numbers: 78CE, 2823, 814A, 8014, 56E6, 778F, 449E, 25DE, 390D) with sensor R01 Ref. Values obtained
for raw data minutely recorded and average intervals of 1 min, 2 min, 5 min, 10 min, 30 min, 1 h and
2 h.

Table 6. Offset regarding the reference sensor and spread of all the measurements, considering the
benchmark test conducted in 2021.

Raw Data Corrected Data
(ppm) (ppm)

Spread 57.3 1.05
SN 2823 130 1.70
SN 56E6 139 0.73
SN 449E 108 0.07
SN 25DE 100 0.54
SN 778F 173 0.10
SN 78CE 156 1.24
SN 8014 197 1.29
SN 390D 85 2.16

5. Discussion

According to the results reported in Section 4, the following issues are characteristic of
the performance of the considered CO2 sensors:

• A certain offset that is different among distinct sensors of the same type.
• The measurements obtained using different sensors shows a certain spread.
• The individual offset and the spread between the sensors drift over time.
• The instantaneous measurements showed large fluctuations that are not related to

these changes in the CO2 concentration.

This behaviour can lead to uncertain results in a calculation containing a subtraction
incorporating measurements recorded with different sensors in the following cases:

• Comparisons of the raw measurements with certain absolute fixed levels, for example,
if these sensors are used to detect whether the CO2 concentration in a room has
exceeded a certain level

• Calculations that contain a subtraction of measurements from different sensors, for
example, in calculations of differences between the CO2 concentrations in different
rooms or differences between a room and the outside
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The results highlight the need to periodically calibrate these sensors, with some
exceptions for certain applications where standardised calibrations are not feasible or their
costs are not affordable. The following strategies based on the conducted work and its
findings are suggested to avoid wrong results due to the identified problems:

• The use of values averaged over a certain period instead of instantaneous measure-
ments. This work reveals that 30 min averaging intervals are enough to significantly
reduce unexplained sensor fluctuations. This strategy is effective combined with any
of the two following options.

• Detection of variations in CO2 measurements carried out by one sensor regarding a
reference value obtained by itself. This technique has been successfully applied in
several previous published works [22–25].

• Calibrations of the sensors at least regarding a reference sensor just before each
test campaign.

These alternatives extend the usefulness of the type of sensors analysed to a wide
range of applications, avoiding the excessive cost of test campaigns.

6. Conclusions

The behaviour of a set of nine sensors, continuously measuring for a long-term test
campaign in an in-use office building, was analysed. From a qualitative point of view, this
work confirms that the considered set of CO2 concentration sensors behaves as expected
according to the technical specifications of the manufacturers and previous research works.
Additionally, the observed behaviour was quantified for more than 14 years.

When periodic calibrations are not conducted, the measurements are affected by a
certain offset, where the electric measurement is transformed to the CO2 concentration
using the default transformation function given by the manufacturer. This offset is different
among different sensors of the same type. This work found an offset from 2 to 301 ppm. A
spread from 19 to 101 ppm was identified. The individual offset and the differences between
the sensors drift over time. A drift of 28 ppm was observed over 5 years in the spread of the
different sensors. The assessed performance can lead to uncertain results in a calculation
containing a subtraction of measurements recorded with different sensors. The identified
behaviour stresses the need to calibrate the sensors just before each test campaign or at
least to identify an offset of each used device regarding a reference sensor if standardised
calibrations are not feasible or their costs are unaffordable. Another alternative applied
in previous research, valid in certain applications, is to skip these calibrations detecting
variations in the CO2 measurements by one sensor regarding a reference value obtained by
itself [22–25].

Additionally, instantaneous measurements showed large fluctuations, up to 80 ppm,
that are not related to these changes in the CO2 concentration. This work revealed that
using 30 min averaging intervals significantly reduces unexplained sensor fluctuations in
the analysed test campaigns, lowering the fluctuations to 20 ppm approximately. According
to this result, assessing the optimum average interval and filtering the raw data by the
determined optimum averaging interval are recommended as part of the pre-processing of
CO2 concentration measurements.

The suggested strategies to overcome the identified problems can be applied to avoid
periodic standardised expensive calibrations, extending the usefulness of the type of sensors
analysed to a wide range of applications.

Some of the potential applications of the findings of this work are the experimental
assessments of occupancy patterns and air renovation rates from the measurement of the
metabolic CO2 in the built environment. In this context, some previous research works
have avoided the calibration of these sensors by detecting variations in CO2 measurements
carried out by one sensor regarding a reference value obtained by itself [22–25]. Further re-
search on these applications incorporating the findings reported in this paper can contribute
to improving the results of these previous works.



Sensors 2022, 22, 9403 14 of 15

Author Contributions: Conceptualisation, M.J.J., H.H. and M.N.S.; formal analysis, H.H. and C.S.L.;
investigation, C.S.L. and H.H.; data curation, C.S.L. and H.H.; writing—original draft preparation,
C.S.L., M.J.J. and M.N.S.; writing—review and editing, H.H., M.N.S. and M.J.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Spanish National Research Agency (Agencia Estatal de Inves-
tigación) through the In-Situ-BEPAMAS project (PID2019-105046RB-I00/AEI/10.13039/501100011033).
Additionally, the operation of the test facilities that supported this study was partially funded by the
Spanish Ministry of Economy, Industry, and Competitiveness through ERDF funds (SolarNOVA-II
project Ref. ICTS-2017-03-CIEMAT-04). The authors wish to express their gratitude for all these funds.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Villanueva, F.; Notario, A.; Cabañas, B.; Martín, P.; Salgado, S.; Fonseca Gabriel, M. Assessment of CO2 and aerosol (PM2.5,

PM10, UFP) concentrations during the reopening of schools in the COVID-19 pandemic: The case of a metropolitan area in
Central-Southern Spain. Environ. Res. 2021, 197, 111092. [CrossRef]

2. Aguilar, A.J.; de la Hoz-Torres, M.L.; Martínez-Aires, M.D.; Ruiz, D.P. Monitoring and Assessment of Indoor Environmental
Conditions after the Implementation of COVID-19-Based Ventilation Strategies in an Educational Building in Southern Spain.
Sensors 2021, 21, 7223. [CrossRef]

3. de la Hoz-Torres, M.L.; Aguilar, A.J.; Ruiz, D.P.; Martínez-Aires, M.D. Analysis of Impact of Natural Ventilation Strategies in
Ventilation Rates and Indoor Environmental Acoustics Using Sensor Measurement Data in Educational Buildings. Sensors 2021,
21, 6122. [CrossRef]

4. Pei, G.; Rim, D.; Schiavon, S.; Vannucci, M. Effect of sensor position on the performance of CO2-based demand controlled
ventilation. Energy Build. 2019, 202, 109358. [CrossRef]

5. Mou, J.; Cui, S.; Khoo, D.W.Y. Computational fluid dynamics modelling of airflow and carbon dioxide distribution inside a
seminar room for sensor placement. Meas. Sensors 2022, 23, 100402. [CrossRef]

6. Mylonas, A.; Kazanci, O.B.; Andersen, R.K.; Olesen, B.W. Capabilities and limitations of wireless CO2, temperature and relative
humidity sensors. Build. Environ. 2019, 154, 362–374. [CrossRef]

7. Petersen, J.K.K.; Kristensen, J.K.; Elarga, H.; Andersen, R.K. Accuracy and air temperature dependency of commercial low-cost
NDIR CO2 sensors: An experimental investigation. In Proceedings of the 4th International Conference COBEE2018: Conference
On Building Energy and Environment, Melbourne, Australia, 5–9 February 2018; pp. 203–207.

8. Pereira, P.F.; Ramos, N.M.M. Low-cost Arduino-based temperature, relative humidity and CO2 sensors—An assessment of their
suitability for indoor built environments. J. Build. Eng. 2022, 80, 105151. [CrossRef]

9. Calì, D.; Matthes, P.; Huchtemann, K.; Streblow, R.; Müller, D. CO2 based occupancy detection algorithm: Experimental analysis
and validation for office and residential buildings. Build. Environ. 2015, 86, 39–49. [CrossRef]

10. Tekler, Z.D.; Low, R.; Gunay, B.; Andersen, R.K.; Blessing, L. A scalable Bluetooth Low Energy approach to identify occupancy
patterns and profiles in office spaces. Build. Environ. 2020, 171, 106681. [CrossRef]

11. Nassif, N. A robust CO2-based demand controlled ventilation control strategy for multi-zone HVAC systems. Energy Build. 2012,
45, 72–81. [CrossRef]

12. Wang, S.; Jin, X. CO2-based occupancy detection for on-line outdoor air flow control. Indoor Built. Environ. 1998, 7, 165–181.
[CrossRef]

13. Kampezidou, S.I.; Ray, A.T.; Duncan, S.; Balchanos, M.G.; Mavris, D.N. Real-time occupancy detection with physics-informed
pattern-recognition machines based on limited CO2 and temperature sensors. Energy Build. 2021, 242, 110863. [CrossRef]

14. Esposito, E.; De Vito, S.; Salvato, M.; Bright, V.; Jones, R.L.; Popool, O. Dynamic neural network architectures for on field stochastic
calibration of indicative low cost air quality sensing systems. Sens. Actuators B Chem. 2016, 231, 701–713. [CrossRef]

15. Tekler, Z.D.; Chong, A. Occupancy prediction using deep learning approaches across multiple space types: A minimum sensing
strategy. Build. Environ. 2022, 226, 109689. [CrossRef]

16. Borodinecs, A.; Palcikovskis, A.; Jacnevs, V. Indoor Air CO2 Sensors and Possible Uncertainties of Measurements: A Review and
an Example of Practical Measurements. Energies 2022, 15, 6961. [CrossRef]

17. Spinelle, L.; Aleixandre, M.; Gerboles, M. Protocol of Evaluation and Calibration of Low-Cost Gas Sensors for the Monitoring of Air
Pollution; EUR 26112; JRC83791; Publications Office of the European Union: Luxembourg, 2013.

18. Spinelle, L.; Gerboles, M.; Villani, M.G.; Aleixandre, M.; Bonavitacola, F. Field calibration of a cluster of low-cost commercially
available sensors for air quality monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017, 238, 706–715. [CrossRef]

19. Mao, K.; Xu, J.; Jin, R.; Wang, Y.; Fang, K. A fast calibration algorithm for Non-Dispersive Infrared single channel carbon dioxide
sensor based on deep learning. Comput. Commun. 2021, 179, 175–182. [CrossRef]

20. Vajs, I.; Drajic, D.; Gligoric, N.; Radovanocic, I.; Popovic, I. Developing Relative Humidity and Temperature Corrections for
Low-Cost Sensors Using Machine Learning. Sensors 2021, 21, 3338. [CrossRef]

http://doi.org/10.1016/j.envres.2021.111092
http://doi.org/10.3390/s21217223
http://doi.org/10.3390/s21186122
http://doi.org/10.1016/j.enbuild.2019.109358
http://doi.org/10.1016/j.measen.2022.100402
http://doi.org/10.1016/j.buildenv.2019.03.012
http://doi.org/10.1016/j.jobe.2022.105151
http://doi.org/10.1016/j.buildenv.2014.12.011
http://doi.org/10.1016/j.buildenv.2020.106681
http://doi.org/10.1016/j.enbuild.2011.10.018
http://doi.org/10.1159/000024577
http://doi.org/10.1016/j.enbuild.2021.110863
http://doi.org/10.1016/j.snb.2016.03.038
http://doi.org/10.1016/j.buildenv.2022.109689
http://doi.org/10.3390/en15196961
http://doi.org/10.1016/j.snb.2016.07.036
http://doi.org/10.1016/j.comcom.2021.08.003
http://doi.org/10.3390/s21103338


Sensors 2022, 22, 9403 15 of 15

21. van Zoest, V.; Osei, F.B.; Stein, A.; Hoek, G. Calibration of low-cost NO2 sensors in an urban air quality network. Atmos. Environ.
2019, 210, 66–75. [CrossRef]

22. Diaz, J.A.; Jiménez, M.J. Experimental assessment of room occupancy patterns in an office building. Comparison of different
approaches based on CO2 concentrations and computer power consumption. Appl. Energy 2017, 199, 121–141. [CrossRef]

23. Díaz-Hernández, H.P.; Sánchez, M.N.; Olmedo, R.; Villar-Ramos, M.M.; Macias-Melo, E.V.; Aguilar-Castro, K.M.; Jiménez, M.J.
Performance assessment of different measured variables from onboard monitoring system to obtain the occupancy patterns of
rooms in an office building. J. Build. Eng. 2021, 40, 102676. [CrossRef]

24. Sánchez, M.N.; Giancola, E.; Soutullo, S.; Gamarra, A.R.; Olmedo, R.; Ferrer, J.A.; Jiménez, M.J. Suitability Evaluation of Different
Measured Variables to Assess the Occupancy Patterns of a Building: Analysis of a Classroom of a School in Madrid during the
COVID-19 Pandemic. Energies 2022, 15, 3112. [CrossRef]

25. Jiménez, M.J.; Díaz, J.A.; Alonso, A.J.; Castaño, S.; Pérez, M. Non-Intrusive Measurements to Incorporate the Air Renovations in
Dynamic Models Assessing the In-Situ Thermal Performance of Buildings. Energies 2021, 14, 37. [CrossRef]

26. Soutullo, S.; Sánchez, M.N.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. Empirical estimation of the climatic representativeness in
two different areas: Desert and Mediterranean climates. Energy Procedia 2017, 122, 829–834. [CrossRef]

27. Sánchez, M.N.; Soutullo, S.; Olmedo, R.; Bravo, D.; Castaño, S.; Jiménez, M.J. An experimental methodology to assess the climate
impact on the energy performance of buildings: A ten-year evaluation in temperate and cold desert areas. Appl. Energy 2020,
264, 114730. [CrossRef]

28. Olmedo, R.; Sánchez, M.N.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. ARFRISOL Buildings-UIE3-CIEMAT. In Book IEA, EBC
Annex 58, Report of Subtask 1a. Inventory of Full Scale Test Facilities for Evaluation of Building Energy Performances; Janssens, A., Ed.;
Publisher KU Leuven: Leuven, Belgium, 2016; pp. 171–184, ISBN 9789460189906.

http://doi.org/10.1016/j.atmosenv.2019.04.048
http://doi.org/10.1016/j.apenergy.2017.04.082
http://doi.org/10.1016/j.jobe.2021.102676
http://doi.org/10.3390/en15093112
http://doi.org/10.3390/en14010037
http://doi.org/10.1016/j.egypro.2017.07.415
http://doi.org/10.1016/j.apenergy.2020.114730

	Introduction 
	Related Work 
	Materials and Methods 
	Monitored Office Building 
	Measurement Devices 
	Sensors Built into the Monitoring System of the Building Being Continuously Monitored 
	Additional Test Set-Up and Measurement Campaigns 

	Data 
	Continuous Monitoring 
	Intensive Measurement Campaigns: Benchmark Tests 

	Data Analysis 
	Assessment of the Spread and Offset of the Measurements and Their Drift over a Long-Term Period 
	Signal Smoothing and Identification of the Suitable Averaging Step 


	Results 
	Assessment of the Offset in the Measurement and Its Drift over a Long-Term Period 
	Signal Smoothing and Identification of the Suitable Averaging Step 

	Discussion 
	Conclusions 
	References

