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Abstract: Eye-gaze direction-tracking technology is used in fields such as medicine, education, engi-
neering, and gaming. Stability, accuracy, and precision of eye-gaze direction-tracking are demanded
with simultaneous upgrades in response speed. In this study, a method is proposed to improve the
speed with decreases in the system load and precision in the human pupil orbit model (HPOM)
estimation method. The new method was proposed based on the phenomenon that the minor axis
of the elliptical-deformed pupil always pointed toward the rotational center presented in various
eye-gaze direction detection studies and HPOM estimation methods. Simulation experimental results
confirmed that the speed was improved by at least 74 times by consuming less than 7 ms compared
to the HPOM estimation. The accuracy of the eye’s ocular rotational center point showed a maximum
error of approximately 0.2 pixels on the x-axis and approximately 8 pixels on the y-axis. The precision
of the proposed method was 0.0 pixels when the number of estimation samples (ES) was 7 or less,
which showed results consistent with those of the HPOM estimation studies. However, the proposed
method was judged to work conservatively against the allowable angle error (AAE), considering that
the experiment was conducted under the worst conditions and the cost used to estimate the final
model. Therefore, the proposed method could estimate HPOM with high accuracy and precision
through AAE adjustment according to system performance and the usage environment.

Keywords: eye-tracking; eyeball model; model fitting method; eye-gaze tracking; HPOM

1. Introduction

Eye-gaze direction-tracking technology is a human-computer interaction tool that is
used to control machines such as computers. This technology is being studied in fields such
as education, engineering, gaming, and medicine [1–5]. Research has been conducted to
identify or train reality-based users’ behaviors by applying it to automobiles, wheelchairs,
and augmented reality [6–8]. However, research on eye-gaze direction-tracking is not
limited to recognition and the analysis of physical changes in eye movement. Recently, the
scope of eye-gaze direction-tracking studies was expanded to the understanding of human
psychology, behavior, emotions, and intentions [8,9]. Thus, eye-gaze direction-tracking
studies commonly require the stability, accuracy, and precision of eye-gaze direction de-
tection, as well as fast response speed. If these performance requirements are not satiated,
results different from the intended purpose can occur.

The movement of the eyeball is well known as a rotational movement based on the
rotational center point. However, studies have shown that the center point of the eye model
is inconsistent with the eye’s ocular rotational center point (ORCP) [10,11]. The ORCP is
not only useful for calculating the gaze direction angle but also for improving the accuracy
of techniques that require spatial analysis, such as the recognition of objects located in
the gaze direction and the facial pose. The ORCP should also be considered essential for
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accurately calculating the eye-gaze direction, considering that the size and rotation radius
of the eyeball is different for each person. Based on this, we proposed an estimation method
of the human pupil orbit model (HPOM) for eye-gaze tracking. We conducted a study to
predict the movement orbit of the pupil as a spherical shape based on various mathematical
principles and performed simulation experiments of HPOM estimation. Through this
study, we presented a novel model called the HPOM, which enables a simplified eye-gaze
direction calculation process in a 3D space using a quadratic equation. Accordingly, the eye-
gaze direction calculation could be made using only the pupil center point after estimating
the HPOM. As a result of simulation experiments, HPOM has been obtained in real-time
by taking an estimation time of less than 1 s with an error of less than 1 pixel. In the HPOM
estimation study, the minimum difference of gradient (MDG), an independent variable
proposed for real-time HPOM estimation, effectively reduced the load and processing time
to suit the purpose. However, it was confirmed that the MDG affected the precision due to
the lack of discrimination power [12].

In various studies, the method of detecting the eye-gaze direction is based on the
phenomenon that the minor axis of the elliptical-deformed pupil always points toward the
rotational center [13,14]. In addition, in studies of detecting the iris region uniformly and
the gaze direction detection using artificial intelligence, the minor axis of the pupil, which
has been changed to an ellipse, is always directed toward the rotational center [15–17].
Moreover, we have demonstrated through simulation experiments that the shape of the
pupil appears and rotates in an elliptical shape depending on the eye-gaze direction in an
HPOM estimation study [12]. In the simulation experiment, the three-dimensional eye-gaze
direction was shown as two angles: the rotation angle of the eye (RAE) and the rotation
direction angle of the eye (RDA). In particular, the minor axis of the elliptical-deformed
pupil was found to be equal to the RDA. For theoretical verification of this phenomenon,
results of simulation by fixing the eye-gaze direction, changing the shooting angle, and
measuring have also been reported [18]. In addition, clinical studies on mice and humans
have been conducted to confirm the actual measurement error [19–21].

For the purpose of resolving the lack of precision caused by the lack of discrimination
power of the MDG proposed in the HPOM estimation study and reducing the system load
using the fact that the minor axis of the elliptical-deformed pupil is the same as the RDA,
this study aimed to improve the speed following decreases in the system load and the
precision of the HPOM estimation. Since the method proposed in the HPOM estimation
study can be used as a preprocessing process, accuracy and precision errors can affect
eye-gaze direction detection [12]. In addition, a small system load and a short time are
required as a real-time adaptive gaze direction detection model. Therefore, we propose
a novel ORCP estimation method to avoid using the MDG, and the entire process and
conditions follow the HPOM estimation study [12]. The proposed method includes the
period from after acquiring the pupil shape to before making the final eye-gaze direction
detection.

2. Materials and Methods
2.1. Problems of a Previous Study

We had estimated a pupil’s three-dimensional spatial position by analyzing the pro-
jected pupil onto a camera (PPC) observed as an ellipse. In addition, by analyzing a
projection relationship between the pupil’s 3D position and the camera, we had obtained
HPOM described by the pupil’s rotational radius and the ORCP. Furthermore, we sug-
gested the MDG which is an independent variable to improve system overload, which is
expected in the ORCP inference process [12]. The MDG decreased HPOM estimation time
by effectively reducing the system load. However, the result showed that the degree of pre-
cision was lowered in proportion to the set MDG value. This means that the discrimination
power of the MDG is insufficient to ensure consistent positioning of the ORCP. Thus, we
propose a novel ORCP estimation method that does not apply an MDG.
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2.2. Theoretical Background

Figure 1 shows an ideal PPC according to the eye-gaze direction commonly suggested
by various studies on eye-gaze tracking, including the HPOM estimation study [12–21].
The minor axis of the elliptically deformed PPC appears at the same angle as the RDA. This
means that the ORCP always exists on the extension line of the PPC minor axis.
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Figure 1. Conceptual diagram of an ideal PPC according to RDA changes.

Figure 2 shows that the ORCP is always located on the extension line of the minor axis
of the ideal PPC. In addition, it can be seen that the ORCP is located at the intersection of
all extension lines. Based on this phenomenon, the ORCP can be obtained by deriving the
equation of a straight line from each PPC.
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2.3. ORCP Inference

The PPC contour obtained using the camera is presented in Figure 3a. The center point
(Cn) and the direction of minor axis of each pupil (Pn) appears differently depending on
the eye-gaze direction. To obtain a straight-line equation from each pupil, the pre-process
is required similar to the PPC analysis. A PPC analysis can be performed to obtain the
center point, lengths of the major axis and the minor axis, and the rotation angle using
the method proposed by Wenchao Cai et al. [22]. In this paper, the rotation angle means
the angle forming at the minor axis of a PPC with the x-axis. That is, the rotation angle is
equal to the RDA. Before transforming the obtained data into the equation of a straight
line, the rotation angle must be transformed into a slope. The reason is that equations of
straight lines generally express linear change as a ratio. The obtained rotation angle can
be calculated as a slope value according to Equation (1). In addition, using coordinates of
the center point and the slope value, the equation of a straight line can be obtained as in
Equation (2). If Equation (2) is rearranged for an unknown y, the equation can be arranged
as shown in Equation (3):

Gradient = tan(RDA) (1)

(y − yc) = G × (x − xc), G = Gradient (2)

y = Gx − Gxc + yc, G = Gradient (3)
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Figure 3. Conceptual diagram of ORCP inference method. (a) Obtained PPC data, (b) Straight line
extracted from PPC.

Figure 3b shows a straight line (Ln) obtained from each PPC. One straight-line equation
can be obtained from each PPC. Furthermore, since all straight lines intersect in the ORCP,
there is always one solution that satisfies the equation of all straight lines. Therefore, the
ORCP can be estimated using two samples as minimum limits. However, at least three
samples shall be used for accuracy, as an error sample may be included. The position of the
ORCP can be obtained through a matrix calculation that consists of straight-line equations.
The equation of a straight line can be arranged in a general form, as shown in Equation
(4) from Equation (3). If the equation of n straight lines is divided into the coefficient term
and unknown term and arranged as a determinant, it can be expressed as Equation (5).
The ORCP which expressed as an unknown term can be calculated by finding the inverse
matrix of the coefficient term and transforming it into Equation (6). However, since the
obtained matrix is not always a square matrix, it is not possible to directly calculate the
inverse matrix. Therefore, it is necessary to obtain the inverse matrix using the singular
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value decomposition method, which can calculate a pseudo-inverse matrix to replace the
inverse of a non-square matrix [23].

Ax + By = C (4)A1 B1
...

...
An Bn

(x
y

)
=

C1
...

Cn

 (5)

(
x
y

)
=

A1 B1
...

...
An Bn


−1C1

...
Cn

 (6)

3. Experiments

In this study, a simulation experiment was performed using a total of 200 data points
adapted from the HPOM estimation study [12]. The data consisted of 100 ideal PPCs
acquired by simulation and 100 randomly configured PPCs as noise. Figure 4a shows the
data distribution in the three-dimensional space. The ORCP of the ideal data was set to
coincide with the center of the set space. Figure 4b shows the data distribution with the
xy-plane distance between the ORCP and each data point and the RAE. The ideal data are
observed as a sine wave, as shown in Figure 4b [12]. HPOM estimation is performed using
independent variables, model estimation sample (ES), and allowable angle error (AAE),
using the random sample consensus method [12,24]. Independent variables ES and AAE
refer to the number of samples and tolerances used when estimating HPOM, respectively.
The random sample consensus method shows a stable performance in estimating the model
indicated by the total data using a small number of ESs. The experiment was divided
into two parts to evaluate the effect of each independent variable, AAE and the number
of ES, on performance. Each experiment evaluated the performance by comparing the
proposed method to the HPOM estimation study [12]. However, the comparison in the
second experiment used an MDG of 1 because the discriminatory power decreased as the
MDG increased.
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Figure 4. (a) Three-dimensional data distribution diagram. (b) Data distribution diagram represented
by RAE and the distance of the each data point from ORCP on the xy-plane.

In the first experiment, the AAE is fixed to ±5 for comparison with the HPOM
estimation performance according to ES. The first experiment was conducted 200 times
each, gradually increasing the number of ESs from 2 to 14. Performance comparison and
stability evaluation of the newly proposed ORCP estimation method were performed in
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the second experiment, which was conducted 200 times by fixing the number of ESs to 7
and increasing the AAE by 1 degree from 0 to ±5 degrees.

4. Results

The experiment was performed on a computer configured with Intel Core i7 and
SAMSUNG 64 GB RAM using the same visual studio 2017 and Open Source Computer
Vision Library as the HPOM estimation study [12]. Table 1 shows the results of the first
experiment comparing the HPOM estimation study to the proposed method. In the method
proposed in the first experiment, the processing time increased proportionally to the
number of ESs. When the number of ESs was 4 or less, a processing time of 1 ms or less was
required. In addition, the position of the x-axis of the ORCP showed an error of less than 1
pixel, while the position of the y-axis showed an average error of up to 9 pixels. Moreover,
the radius showed an error of less than 1 pixel. When the number of ESs was 7 or less, the
standard deviation of the ORCP and radius was constant at 0.

Table 1. Performance of HPOM estimation according to the number of ES.

ES
Processing Time

ORCP
Radius Cost

X Y Distance

AVG 1 (±SD 2) AVG (±SD) AVG (±SD) ±SD AVG (±SD) AVG

Previous
Method

4 82737.40 (4977.1) 250.04 (0.0052) 250.12 (0.0130) 0.01 249.76 (0.0385) 105.58
5 81188.50 (2952.3) 250.04 (0.0016) 250.12 (0.0049) 0.01 249.76 (0.0223) 105.81
7 82808.70 (2450.4) 250.04 (0.0008) 250.12 (0.0025) 0.00 249.77 (0.0137) 105.95
10 85940.50 (2993.2) 250.04 (0.0001) 250.12 (0.0004) 0.00 249.77 (0.0112) 106.01
14 473,015.30 (15,934.7) 250.04 (0.0004) 250.12 (0.0013) 0.00 249.75 (0.0354) 106.11

Proposed
Method

2 0.22 (0.4153) 249.75 (0.0000) 242.05 (0.0000) 0.00 249.87 (0.0000) 109.00
3 0.42 (0.4940) 249.75 (0.0000) 242.05 (0.0000) 0.00 249.87 (0.0000) 109.00
4 0.86 (0.3804) 249.75 (0.0000) 242.05 (0.0000) 0.00 249.87 (0.0000) 109.00
5 1.64 (0.5017) 249.75 (0.0000) 242.05 (0.0000) 0.00 249.87 (0.0000) 109.00
7 6.54 (0.5921) 249.75 (0.0000) 242.05 (0.0000) 0.00 249.87 (0.0000) 109.00
10 56.21 (3.8718) 249.76 (0.0141) 242.26 (0.7166) 0.72 249.98 (0.1688) 109.40
14 960.64 (35.5290) 249.78 (0.0066) 241.50 (0.8077) 0.81 249.85 (0.1529) 110.74

pcs 3 ms 4 pixel pixel pixel pixel pcs
1 Average. 2 Standard deviation. 3 Pieces. 4 Millisecond.

Table 2 shows results of the second experiment comparing the HPOM estimation study
to the proposed method. As a result of the second experiment, the proposed method took
less than 7 ms of processing time. In addition, as the AAE increased, the error of the ORCP
and radius increased. However, the standard deviation of the ORCP was constant at 0.

Table 2. Performance of HPOM estimation according to AAE.

AAE
Processing Time

ORCP
Radius Cost

X Y Distance

AVG 1 (±SD 2) AVG (±SD) AVG (±SD) ±SD AVG (±SD) AVG

Previous
Method
(MDG 1)

1 435.49 (54.33) 250.04 (0.01) 250.24 (0.60) 0.60 249.76 (0.19) 99.01
2 427.34 (29.90) 250.03 (0.02) 250.27 (0.31) 0.31 249.76 (0.10) 100.75
3 427.17 (22.75) 250.03 (0.02) 249.62 (2.26) 2.25 249.67 (0.39) 101.71
4 465.78 (50.35) 249.83 (0.82) 250.05 (4.10) 4.17 249.81 (0.67) 103.94
5 530.81 (26.36) 250.09 (0.00) 250.00 (0.78) 0.77 249.74 (0.14) 105.89
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Table 2. Cont.

AAE
Processing Time

ORCP
Radius Cost

X Y Distance

AVG 1 (±SD 2) AVG (±SD) AVG (±SD) ±SD AVG (±SD) AVG

Proposed
Method

0 4.44 (0.61) 250.00 (0.00) 250.00 (0.00) 0.00 250.00 (0.00) 100.00
1 5.74 (0.64) 249.97 (0.00) 248.33 (0.00) 0.00 249.92 (0.00) 101.00
2 5.99 (0.63) 249.97 (0.00) 248.33 (0.00) 0.00 249.92 (0.00) 101.00
3 6.23 (0.55) 249.97 (0.00) 248.33 (0.00) 0.00 249.92 (0.00) 101.19
4 6.63 (1.05) 249.86 (0.00) 241.85 (0.00) 0.00 249.89 (0.00) 105.00
5 6.75 (0.69) 249.75 (0.00) 242.05 (0.00) 0.00 249.87 (0.00) 109.00

±degree Ms 3 pixel pixel pixel Pixel Pcs 4

1 Average. 2 Standard deviation. 3 Millisecond. 4 Pieces.

5. Discussion

The HPOM estimation method and the proposed method showed significant dif-
ferences in the first experiment. With the HPOM estimation method, HPOM could be
estimated using at least 4 ESs, whereas the proposed method was able to estimate using
at least 2 ESs. In addition, when the number of ES was 4 to 13, the HPOM was estimated
approximately 490 to 96,000 times faster, respectively. This means that the system load of
the proposed method is significantly less compared to the HPOM estimation method. In
addition, the ORCP of the proposed method was found to have a large error compared to
the HPOM estimation method. Compared to the HPOM estimation method, the proposed
method showed an error of approximately 0.2 pixels on the x-axis and approximately
8 pixels on the y-axis in the accuracy of the ORCP. The ORCP error is important because
it causes eye-gaze direction errors. In addition, it may have a continuous effect on the
technology that utilizes the eye-gaze direction detection results. However, this error is
thought to be the result of setting a relaxed AAE because the second experiment confirmed
that this error was significantly reduced when the AAE was adjusted. On the other hand,
the precision of the proposed method was 0.0 pixels when the number of ES was 7 or less,
showing a more consistent result compared to the HPOM estimation method. As for the
radius, the HPOM estimation study and the proposed method showed an error of less than
1 pixel [12]. It was considered that there was a difference in sensitivity to the AAE applied
equally in both experiments. This was because the cost used to estimate the final HPOM
was larger than the proposed method compared to the HPOM estimation method. The cost
means the number of data when estimating the final model or the number of data forming
the model.

As a result of the second experiment, the proposed method compared to the HPOM
estimation method, when the MDG was set to 1, was confirmed to be approximately
74 times faster when the AAE was 1 and approximately 78 times faster when the AAE was
5. This proves that the system load of the proposed method is significantly less compared
to the HPOM estimation method confirmed in the first experiment. This is because, despite
the fact that the purpose of the MDG is to reduce system load, the proposed method
showed a markedly faster speed [12]. The accuracy of the ORCP and radius are higher with
the HPOM estimation method. On the other hand, the precision of the proposed method
was higher than that of the HPOM estimation method. This result can be attributed to
the cost. The proposed method generally maintains a high cost compared to the HPOM
estimation method. The error ratio of the data should also be considered because using
the random sample consensus method explained that if this ratio exceeded 50%, the model
could not be secured [24]. Therefore, considering that the experiment was conducted under
the worst conditions, the proposed method was judged to work conservatively against the
AAE compared to HPOM estimation studies.

Two experiments confirmed that the proposed method could estimate at least 74 times
faster than the HPOM estimation method. In addition, the proposed method could obtain a
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high-precision ORCP and radius. On the other hand, the proposed method shows that the
accuracy decreased as the AAE increased because of the conservative tendency compared to
the HPOM estimation method [12]. However, when the AAE was 0, the proposed method
was ideally able to obtain HPOM. Consequently, stable HPOM estimation is expected to be
possible if the AAE is adjusted according to the system performance and environment.

6. Conclusions

This study was conducted to improve speed by decreasing system load and the
precision of HPOM estimation that is decreased by the MDG. In this study, we proposed a
novel ORCP estimation method by reflecting the phenomenon that the minor axis of the
elliptical-deformed pupil always pointed toward the rotational center mentioned in various
eye-gaze tracking studies. As a result, the proposed method consumed less than 7 ms and
reduced the time required by at least 74 times compared to the HPOM estimation study.
In addition, compared to the HPOM estimation studies, it showed high precision and low
accuracy. However, the proposed method was judged to work conservatively against an
AAE, considering that the experiment was conducted under the worst conditions and the
cost used to estimate the final model. Therefore, the proposed method could estimate
the HPOM with high accuracy and precision by adjusting the AAE according to system
performance and the usage environment. In conclusion, the proposed method could
constantly estimate the HPOM during a real-time of less than 7 ms. Thus, the purpose of
improving speed and precision was achieved. Therefore, the proposed method and the
HPOM estimation study can be used as an adaptive model and a preprocessing process for
eye-gaze direction detection. In addition, the proposed method is expected to be utilized in
various fields not confined to the field of eye-gaze tracking. For example, it is expected to
be used for the circular marker-based 3D posed estimation of tools that undergo rotational
movements.
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