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Abstract: As more and more smart devices are deployed in homes, the communication between
these smart home devices and elastic computing services may face some risks of privacy disclosure.
Different device events (such as the camera on, video on, etc.) will generate different data traffic
during communication. However, the current smart home system lacks monitoring of these device
events, which may cause the disclosure of private data collected by these devices. In this paper,
we present our device event monitor system, HomeMonitor. HomeMonitor runs in the OpenWRT
system and supports complete event monitoring for smart home devices. HomeMoitor solves the
problem that machine learning models for detecting device events do not scale flexibly. It uses the
network packet size and the direction of the device event for unique identification during training.
When detecting, it only needs to get the packet size and timestamp and then query the policy table
for signature matching to control the device events. We evaluated the effectiveness of HomeMonitor,
and the experiments show that the match rate of our method is 98.8%, the false positive rate is 1.8%,
and the detection time is only 16.67% for PINBALL. The results mean that our method achieves the
balance of applicable protocol scope, detection performance, and detection accuracy.

Keywords: smart home devices; privacy protection; device event detection; device event signature

1. Introduction

With the continuous improvement of smart home systems, more and more users
choose to use smart home devices in their homes, and this growth is continuing. More
comprehensive privacy protection and better service are two critical requirements for
today′s smart home systems.

However, as far as we observe the phenomenon, in order to provide the appropriate
services to users, more device privacy data needs to be acquired. Research on privacy and
security for smart homes is underway. Smart home systems are generally divided into
three main bodies in architecture: smart home devices, traffic transmission links, and smart
home cloud platforms. According to the different research subjects, the current research
work also can be divided into three areas.

This work targets the traffic transport link privacy leakage problem. Most of the
mainstream smart home systems adopt the three-level control architecture of “App-Cloud–
Device.” Devices do not provide a device status display function when collecting or trans-
mitting data. Users′ home gateways also lack monitoring devices. Therefore, the user is not
clear about the function and real-time operation status of the smart home device, but the
device can transmit the collected data without the user′s awareness or authorization [1–3].
The uploaded data may well be maliciously stolen, leading to serious consequences of
family privacy leakage. Monitoring the event of smart home devices, increases the trans-
parency of the system and allows users to know the activity status of their devices, having
good application value for protecting the privacy of smart home users.

Unfortunately, we find that smart home device event monitors face challenges to fine-
grained detection, real-time, and flexibility. Much of the existing research [4–35] addresses
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device-level identification and partial address of device-event-level identification. Some
research [4–27] uses the statistical characteristics of device traffic combined with machine
learning. Other research [28–35] make use of some simple but effective features called
device event signatures, which usually consist of the exact value of the packet length and
the packet direction, etc.

Fine-grained detection: This is because device event detection implies that the iden-
tification goal is not only to classify the encrypted traffic into devices but also to classify
the encrypted traffic into device events. Here device event specifically refers to various
functional activities of the device, such as the camera′s taking pictures, recording, viewing
videos, etc. Device event identification is more fine-grained and requires more demanding
identification methods.

Flexibility: Machine learning-based methods cannot flexibly add new event types to
the model because the machine learning model has been trained before. It also cannot
flexibly adapt to changes in device behavior at the network layer, such as firmware updates
of the device, changes in the processing flow of device functions, and differences in the
environment in which the device is located, all of which can lead to changes in the packet
characteristics of the same device behavior at the network layer, requiring retraining of the
entire model in order to identify new device behaviors.

Real-time: In machine learning-based methods, the accuracy and real-time of device
behavior recognition depend on the acquisition of classification features and the design of
classification models. In particular, the acquisition and calculation of features at the data
stream level need to wait for the end of the entire stream before they can be performed,
so high real-time performance cannot be achieved. In the device event signature-based
method, it cannot achieve a balance between the real-time and the scale of the protocol. For
example, PINGPONG [32] first proposed device event signatures at the network layer, but
its signature extraction method for TCP data flow does not apply to UDP data flow. The
subsequently proposed PINBALL [33] is more compatible with the protocol but requires
additional information statistics and computational consumption.

Based on the above discussion, we choose the current state-of-the-art solution, PIN-
BALL [33], to improve. In order to expand the scope of the application of device event
signatures and reduce computing consumption, DESEND (Device Event Signature Extrac-
tion and Detection Method) was presented [36]. It is a novel device signature extraction
and detection method. The main ideas are as follows. Firstly, we extract all high-frequency
packets in the event trigger windows as the key part of the signature. Secondly, we utilize
the maximum time interval of signature packets with a flexible number of matches to
eliminate the effect of re-transmitted packets.

In this work, we designed a smart home monitoring system, HomeMonitor, and de-
ployed DESEND+ on it, which is based on our original method, DESEND. Our contribution
is as follows:

• We designed a flow monitoring system called HomeMonitor to achieve the entire
process of device event monitoring. For smart home devices based on OpenWRT
and DESEND+ to verify the effectiveness of our proposed method. Our system
HomeMonitor is designed and implemented based on real IoT situations, which are
valuable in practical applications.

• We presented DESEND+, an enhanced event signature extraction, and detection
method. The detection speed is faster than PINBALL [33]. At the same time, it has a
wider range of applications than PINGPONG [32] which means it can be applied to
both TCP and UDP protocols. Furthermore, we added a device event control function
to intercept device events by intercepting critical packets. Machine learning methods
based on data flow features for this function are difficult to implement, while statistical
methods based on packet features do not focus on this.

This paper is organized in the following structure. Section 2 introduces the background
and motivation. Section 3 introduces the Design of HomeMonitor. Section 4 introduces the
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evaluation and implementation of HomeMonitor. Section 5 introduces the related work.
Section 6 introduces the conclusion and future work.

2. Background and Motivation

The existing smart home systems lack monitoring of smart home device events. Some
unexpected device events may leak users′ privacy information. This section introduces
threats faced by smart homes, the current issue of device event detection in smart homes,
and our idea.

2.1. Threat to Smart Home

The development of the smart home system can be divided into three stages: single-
device intelligence, multiple-devices intelligence, and whole-house intelligence stage. The
development of device intelligence and the growing demand for cloud services have led to
more frequent communication between devices and the cloud. Now, we are in the third
stage. Mass information interaction increases the risk of leakage of users’ privacy, such as
images, voice, and so on.

Zhou et al. [1] tested the interaction between app, cloud, and device in a smart home
system. They found that malicious attackers could obtain a device ID through the firmware
of the user′s device. The device ID can be used to bind the device and attacker′s account to
achieve device hijacking. The red path in Figure 1 shows the direction of data flow for this
attack. Data from the device can be sent to the attacker′s app.
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Some security incidents have also caused users′ concerned about the privacy disclosure
of smart homes. Researchers [2] activated Amazon Alexa through a voice activation
program to continuously record sound without the user′s knowledge. In another case,
users can watch video recordings from other users′ devices in the app under certain special
usage scenarios. We show those privacy leak attacks in Figure 1. In the blue path, the service
cloud continues to collect data from smart home devices without the user′s knowledge.
Existing methods are difficult to use DESEND+ against such attacks unless the smart home
system is targeted for improvement.

We believe that cloud platforms and malicious attackers can continuously collect data
from smart home devices through the normal process of the system. Since existing smart
home systems lack monitoring of device events, users could not aware of the possible
potential threats. It is important to reduce the possibility of privacy leaks by creating a
mechanism for IoT device event detection in the smart home.
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2.2. Problem Analysis

There are two common methods of device event detection, machine learning-based
detection and device event signature. The disadvantage of the first method is that it is im-
possible to collect features in flexible and real-time, and the model needs to be continuously
updated to cope with changes in the characteristics of equipment events. Therefore, the
current state-of-the-art method is device event signature [32,33].

In Figure 2, the signature of method PINGPONG [32] includes (l, d), and the packets
in the signature are ordered. l denotes the size of the packet, and d denotes the direction of
the packet. In Figure 3, we show some operations in the PINGPONG signature extraction
process. In the training phase, PINGPONG removes re-transmission packets from the
data flow. As shown in Figure 3, the number of packets with sizes 1277 and 1276 is
almost the same as the number of events triggered after processing. These packets will
be added to the device event signature. If the device event generates a UDP data stream,
we cannot remove the re-transmission packets. Packets of size 1276 and size 1277 will not
be added to the signature. It means the ON and OFF event of the Sengled-light-bulb will
be indistinguishable.
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Similarly, we show the event signature of PINBALL in Figure 2. We assume that the
number of events triggered is N and the packets in the signature appear in at least 0.9N
windows. PINBALL [33] calculates the proportion of occurrences of each packet as P. Then
it calculates the similarity between the packet distribution Q(x) in the window and the
device event signature P(x).

Figure 4 shows the processing flow of PINBALL [33] in the detection phase. It first
constructs a detection window with a length of 10 s. After the calculation is completed,
the detection window moves to the right for 1 s and continues to repeat the calculation
operation. Therefore, the calculation consumption in the detection phase is related to the
number of packets and the duration of the data flow. In the real smart home environment,
the device’s idle time is much longer than the device’s active time. During detection,
PINBALL will generate more computing consumption in the device’s idle time.
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2.3. Our Idea

Our main idea is as follows:

1. We use device event signature as the basic method of device event detection.
2. Only the size of the packets is collected as a signature element feature, and there is no

order between the signature elements, which makes the device event signature robust.
3. We use a transport protocol-independent mechanism to handle re-transmitted packets.
4. In the detection phase, we use packet matching to complete event detection. The

detection calculation consumption is independent of the duration of the data flow, so
it has a low calculation consumption.

5. We control the critical packets to achieve the control function for device events.

According to PINBALL, some packets will appear in most device events that trigger
windows. We divide these packets into two sets: the key-packet set (key) and the high-
frequency-packet set (high). The packets in the key set will appear in each trigger window,
and the packets in the high setting will appear in at least most trigger windows.

In the feature selection, we only consider the packet size feature. When we build the
event signature, we have no special requirements for the number of packets, so we can
include more packets in the signature. We give an example of the ON-event of the TP-LINK
bulb device in Table 1. Compared with PINGPONG [32], there are more packets in the
device event signature extracted by DESEND+. In general, we think that the feature of
packet size has enough specificity.

Table 1. TP-LINK bulb ON-event.

Packet Size Contained in the Signature

DESEND+ key: (46,58,71,198,227,309,520,1049)
high: (627,1311,1454)

PINGPONG 198, 227

During detection, re-transmitted packets will increase the number of duplicate event
reports. We give an example in Figure 5. After the TP-LINK bulb color event is triggered,
the packets in the set (58, 287, 317) will appear stably. The red packets are re-transmission
packets in the network flow. The detection program detects whether the network flow
contains data packets with the size in the set (58, 287, 317). Three event reports will be
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generated, and the red report is a duplicate report. In repeated reports, the maximum
time interval of packets is usually large, so in the training phase, we extract the maximum
time interval of packets in the signature. If the next target packet is not detected within
the maximum time interval, we will clear the matched part so that duplicate reports will
not be generated. Just such as PINGPONG, the calculation consumption of DESEND+
in the detection phase is only related to the number of packets, which avoids excessive
calculation consumption.
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PINGPONG uses the sequence of packets and the overall duration of signatures to
eliminate the impact of re-transmission packets. However, the signature extraction policy
of PINGPONG restricts its application on UDP data flows. PINBALL uses the distribution
of packet size in the detection window as the event signature, and fewer re-transmission
packets have little impact on the distribution. However, the disadvantage of PINBALL is
that the calculation consumption in the detection phase is high.

We compare the existing works in four dimensions: calculate consumption, protocol,
scalability, and robustness. Scalability reflects the ability to easily adjust the model to detect
new events after a change in device event. HomeSnitch [27] uses a single machine learning
model for device event detection, which is less scalability. The event signature-based
methods have better scalability. The results of the comparison are shown in Table 2.

Table 2. Alternative approaches.

Work Feature Protocol Fast Detection Events Control

HomeSnitch complex TCP Yes No

PINGPONG simple, TCP Yes No

PINBALL simple TCP, UDP No No

DESEND+ simple TCP, UDP Yes Yes

3. HomeMonitor
3.1. Overview of HomeMonitor

In this section, we present our device event monitor system, HomeMonitor. HomeM-
onitor runs in the OpenWRT system and supports complete event monitoring for smart
home devices. Figure 6 shows the overview of HomeMonitor.

HomeMoitor addresses the problem that machine learning models for detecting device
events do not scale flexibly. It uses the network packet size and direction of device events
to uniquely identify, which is the network event signature of a device event. The signatures
of different events combine to form the event signature file of the device, and when the
network traffic of an event changes, the network packet signature of the event is retrieved
and added. The detection and matching module only needs to get the packet size and
timestamp and then query the policy table for signature matching. According to the
matching result, the current packet should perform the operation, which includes permit,
deny and ask. These operations are defined in advance by the user through monitor rules.
The output is processed separately by action control. Permit means that the packet passes,
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deny means that the packet is dropped, and a warning is sent to the user, and ask means
that a query is sent to the user.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 24 
 

 

events to uniquely identify, which is the network event signature of a device event. The 
signatures of different events combine to form the event signature file of the device, and 
when the network traffic of an event changes, the network packet signature of the event 
is retrieved and added. The detection and matching module only needs to get the packet 
size and timestamp and then query the policy table for signature matching. According to 
the matching result, the current packet should perform the operation, which includes per-
mit, deny and ask. These operations are defined in advance by the user through monitor 
rules. The output is processed separately by action control. Permit means that the packet 
passes, deny means that the packet is dropped, and a warning is sent to the user, and ask 
means that a query is sent to the user. 

 
Figure 6. HomeMonitor architecture. 

3.1.1. Event Signature Extraction and Training Module 
The current effective training data collection method is proposed by Trimananda et 

al. [1]. First, we connect the device to the gateway and open the traffic collection program 
at the gateway. Then we repeat the trigger device event and record the timestamp of the 
trigger. Finally, we use the DESEND+ method to extract the device event signature. 

In HomeMonitor, we use the device event description file to save the device event 
signature. A single device event description file consists of all device event signatures for 
that device. 

3.1.2. Event Signature Detection and Matching Module 
The event detection program receives every packet from the smart home device from 

the Open vSwitch. Then determine whether the source IP address or destination IP ad-
dress of the packet is related to the smart home device and the related packets enter the 
subsequent matching process. 

For each event signature, the detection program maintains two queues correspond-
ing to the set of key-packet and the set of high-frequency-packet in the signature. Each 
packet size within the signature corresponds to a flag, which defaults to 0. If a packet size 
within a signature is matched, the corresponding flag is set to 1. After packet matching is 

Figure 6. HomeMonitor architecture.

3.1.1. Event Signature Extraction and Training Module

The current effective training data collection method is proposed by Trimananda et al. [1].
First, we connect the device to the gateway and open the traffic collection program at the
gateway. Then we repeat the trigger device event and record the timestamp of the trigger.
Finally, we use the DESEND+ method to extract the device event signature.

In HomeMonitor, we use the device event description file to save the device event
signature. A single device event description file consists of all device event signatures for
that device.

3.1.2. Event Signature Detection and Matching Module

The event detection program receives every packet from the smart home device
from the Open vSwitch. Then determine whether the source IP address or destination IP
address of the packet is related to the smart home device and the related packets enter the
subsequent matching process.

For each event signature, the detection program maintains two queues corresponding
to the set of key-packet and the set of high-frequency-packet in the signature. Each packet
size within the signature corresponds to a flag, which defaults to 0. If a packet size within a
signature is matched, the corresponding flag is set to 1. After packet matching is finished, it
will get the matching result corresponding to different operations, and the matching result
will be sent to the control module for processing.

3.1.3. Event Control Module

After receiving the action message from the event signature detection and matching
module, the event control module can issue the corresponding ACL (Access Control List)
control rule to the Open vSwitch, which will release or restrict the data flow according to
this rule.
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Users can customize the monitor rules, which will be converted into entries in the
policy table. In addition, the user can also modify the policy table by modifying the monitor
rules. When the action message received by the module from the upstream module is
“notify the user to make a decision,” the module will feed this information back to the user
and wait for the user to make a decision.

3.2. Event Signature Extraction and Training Module
3.2.1. Packet Capture Framework

As shown in Figure 7, The packet capture framework in HomeMonitor consists of
three parts: wlan2, Open vSwitch, and Ryu controller. wlan2 provides wireless network
access for devices. Open vSwitch uploads the device′s traffic to the Ryu controller based on
the user-configured flow table. The device event detection program in the Ryu controller
detects events based on the device event signature. After the detection is completed, the
packet is sent to the bridge br0.
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3.2.2. Signature Extraction and Training

In the training phase, repeatedly trigger the device events N times by manual or
automatic means, saving the traffic file and triggering the timestamp. The triggered
event was expressed as Ei, i ∈ {1, 2, 3, . . . , N}, and the triggered timestamp was set as
Ti, i ∈ {1, 2, 3, . . . , N}. For each event Ei, DESEND+ extracts the traffic features within the
[Ti,, Ti + t] time window, t is set to 10s in the experiment. DESEND+ extracts the packet
size Pl as part of the device event signature, the timestamp Pt for the subsequent checks.

There are two main sets of device event signatures extracted by DESEND+: the key-
packet set (key) and the high-frequency-packet set (high). After an event was triggered,
in t time, packet size Pl will be extracted. If Pl appears N times in all windows, we add
Pl to the key-packet set. If Pl appears at least 0.9N times in windows, we add Pl to the
high-frequency packet set. If two packets are subtracted from each other with a difference
of 1, such as their packet sizes Pl1− Pl2 = 1. We set Pl1, Pl2 as (Pl1, Pl2). If Pl1, Pl2 appears
at least 0.9N times, we add (Pl1, Pl2) to the set of high-frequency-packet set.

Packets may often be re-transmitted in the complexity of the network situation. It
causes inconsistencies between the number of event signature matches and actual event
triggers. DESEND+ eliminates this effect in event signatures by limiting the match interval
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between two adjacent packets. Maximum match interval mechanism can work well on
both TCP and UDP packets.

As shown in Table 3, we list the signatures extracted by DESEND+. DESEND+ extracts
packets from the key-packet set and the high-frequency-packet set then calculate the time
interval of the adjacent matching packets in two sets and obtain the maximum interval
time (set as max_time) and minimum occurrences of high-frequency packets (set as min).
The two sets of extracted data by DESEND+ are not in order, so the change of packet order
in the real data will not affect the validity of the signature.

Table 3. Description in device event signature extract reproduced with permission from [J. Chen, Y.
Liu, S. Zhang, Z. Guo, B. Chen and Z. Han], [DSC]; published by [IEEE], [2022].

Component Description

name device event name

key key-packet set

high high-frequency-packet set

min minimum number of occurrences in the set of high-frequency-packet set

max_time maximum interval between two adjacent matching packets

fix key-packet-set matching number adjustment value

high fix High-frequency-packet set matching number adjustment value

In the detection phase, there may be a variety of reasons that will cause certain packets
in the set the key-packet set (key) and high-frequency-packet set (high) not to appear,
such as the training set containing background traffic. To ensure a certain degree of fault
tolerance, DESEND+ adds the parameters fix and high fix. The length of the key packet set
is key length, and the key-packet set (key) is considered to be complete when the number
of key-packet matches reaches key length–fix. The number of matches required is min–high
fix for the high-frequency-packet set (high). The algorithm of event signature extraction is
shown in Algorithm 1.

Algorithm 1. Event signature extraction

INPUT: input pkgs = { P1, P2, . . . , Pn }
Timestamp file: T = { T1, T2, . . . , Tn }
event_trigger_time # Number of events triggered when collecting data

OUTPUT: Event signature
1. get counter_list # counter_list save the pkg len in [Ti,Ti + 10s]
2. # example: counter_list = [[T1][P1.len,PK.len],[T2][][],...]
3. get pkg_occurance_num # pkg_occurance_num saves the number of trigger intervals with B
4. # pkg_occurance_num = [[len:P1.len][num:10],...]
5. for each pkg_num in pkg_occurance_num
6. if pkg.num == event_trigger_time
7. event_signature.key.append(pkg.len)
8. if pkg.num >= event_trigger_time-5
9. event_signature.high.append(pkg.len)
10. endfor
11. for each interval in interval list
12. temp_min = Number of occurrences of elements in set event_signature in interval
13. if temp_min < min
14. event_signature.min = temp
15. endfor
16. for each interval in interval list
17. temp_max_time = The maximum time between two packets in a signature in interval
18. if temp_max_time > max_time
19. event_signature.max_time = max_time
20. endfor
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As shown in Table 4, after signature extraction and training, a signature file would
be generated.

Table 4. Device event signature file.

Keyword Description

manufacturer device manufacturer

name device name

version File Version

event num Number of device events

event list Device event signature list

3.3. Event Signature Detection and Matching Module
3.3.1. Policy Table

Policy configuration provides users with configurable monitoring options based on de-
vice event signatures. Users configure monitoring rules based on monitoring requirements.
Specific information is shown in Table 5.

Table 5. Policy table.

Device (Mac/IP) Event
Signature

Action
Key High . . .

(allure-speaker)
192.168.1.7

android_wan
audio_ON

83, 74, 338,
60, 267 343, 54 . . . deny

android_wan
audio_OFF

83, 74, 338,
267, 60 - . . . ask

(roku-tv)
192.168.1.9

android_lan
remote

60, 97, 66,
74, 1514

80, 75, 378, 373, 192,
117, 519, 1396, 607,

208, 244, 214
. . . permit

android_wan
remote 74, 66 97, 1514,

(85, 86) . . . deny

(lightify-hub)
192.168.1.15

android_lan_
ON

260, 196,
235, 108 93 . . . permit

android_lan_
OFF 260, 196, 235 93, 108 . . . permit

3.3.2. Detection

The main idea in the detection phase is to detect if there are packets in the data flows
that can match the policy table. The event signature detection program keeps two separate
matching sequences for the set. A match is considered successful if the required number of
matches is reached without exceeding max_time. Otherwise, the match is considered to have
failed. The detection sequences will be cleared. In addition, the matching packets should
send messages to the event control module according to the action in the policy table.

A device may have multiple events, each packet with the same IP as the device will
be matched against all event signatures, and it will be detected at the same time. There
are two cases in which the matching sequences for each event signature will be cleared:
one is no new packets are added to the detection sequences within the max_time, and the
other is the event about this device matches successfully. The algorithm of event signature
detection is shown in Algorithm 2.
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Algorithm 2. Detection and matching

INPUT: input pkgs = { P1, P2, . . . , Pn }
policy table: F = { F1, F2, . . . , Fn }

OUTPUT: Event_Match
1. for each Pi in pkgs do
2. for each Fi in F
3. if Pi.ip == Fi.ip do
4. if L(Pi) in Fi.key and L(Pi) not in Fi.keylist do
5. Fi.keylist.append(L(Pi))
6. Fi.lastpkt_time = T(Pi)
7. endif
8. if L(Pi) in Fi.high and L(Pi) not in Fi.highlist do
9. Fi.highlist.append(L(Pi))
10. lastpkt = T(Pi)
11. endif
12. endif
13. endfor
14. for each Fi in F
15. if L(Fi.keylist) >= L(Fi.key)–fix and L(Fi.highlist) >= L(Fi.key)–high fix do
16. Event_Match [Fi.name].append(Fi.lastpkt_time)
17. clearall F.keylist, F.highlist, F.lastpkt_time
18. break
19. endif
20. endfor
21. for each Fi in F
22. if T(Pi)–Fi.lastpkt_time < Fi.max_time
23. clear
24. clear Fi.keylist, Fi.highlist, Fi.lastpkt_time
25. endif
26. endfor

3.4. Event Control Module
3.4.1. Monitoring Rule

Users configure monitoring rules according to monitoring requirements. The event
signature is generated by the security service vendor or device manufacturer. Policy config-
uration generates the final monitoring policies based on monitoring rules and device event
signature. Event detection applies different monitoring policies based on device classes.
The event detection results are displayed to the user through the event detection report.

As shown in Table 6, a monitoring rule consists of two parts: the matching field and
action field. The match field includes device id, device event, and valid time.

Table 6. Monitoring rule.

Keyword Description

match field

rule_id Rule id

Mac/IP Device Mac/IP address

device_event

start_time Effective start time

end_time Effective end time

action field control action Log/Drop

3.4.2. Action Control

We designed device event control based on event detection. The goal of device event
control is to control device events at the network layer while not affecting other events of
the device. The action field contains two optional monitoring actions: log and intercept,
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which means to record information or drop the packet. Since the set of keys in the event
signature is steadily occurring, we refer to the packets in this set that can affect the device
event in progress as critical packets. We continuously intercept the critical packets while
the device event is in progress, which will prevent the completion of the event, such as the
transmission of video, etc. The duration of the interception will be set by the user. We will
verify the feasibility of device event control in the experimental section.

4. Evaluation and Implementation
4.1. The Implementation of HomeMonitor
4.1.1. Experimental Environment

We tested DESEND+ in a real environment with the topology shown in Figure 8 and
the information of the gateway shown in Table 7. We place four devices in the lab. The
evaluation of the HomeMonitor system was divided into three parts.
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Table 7. Gateway information.

CPU i5-8400

ram 8 GB

OpenWRT 19.07

dnsmasq 2.8.5

hostapd v2.10-devel

4.1.2. Device Event Signature Extraction

We connected three camera devices in the lab to the wireless hot spot of the gateway.
We disabled the video upload feature and the human detection feature for each camera,
both of which generate network traffic unrelated to viewing video and are triggered in
an uncontrollable manner. We connect our smartphone to the campus network WiFi and
trigger the camera to view the video in the corresponding smart home app, repeating
20 times for 20 s each time and 2 min between each trigger.

Table 8 shows the device event signatures for the three cameras in the lab. In particular,
Xiaomi smart camera 2K uses UDP packets to transmit video traffic.

Table 8. Device event signature in the lab.

Device Event Signature Protocol

Lenovo-R1 camera watch video 52, 60, 104, 106, 125, 184, 234, 1488 TCP

Xiaomi smart camera 2K watch video 38, 40, 56, 60, 64, 96, 1060 UDP

EZVIZ-C2C camera watch video 52, 60, 72, 120, 1440 TCP
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4.1.3. Device Event Detection

We watch the videos of the Xiaomi smart camera 2K, EZVIZ-C2C camera, and Lenovo
R1 camera on the APP. The mac address of the Xiaomi smart camera 2K is 60:7E:A4:30:70:60,
and the detection record is shown in Table 8.

When performing device event detection, the EZVIZ-C2C camera and the Lenovo
R1 camera were able to report very quickly after watching a video. Xiaomi smart camera
2K needs to report a few seconds after watching the video. This is related to the overall
duration of the device event signature.

4.2. The Evaluation of Detection

In this section, we analyze the calculated consumption of DESEND+ in the detection
phase. To verify the validity of various parameters in the event signature, we conduct
experiments on them separately. We evaluated the detection accuracy and performance
of the DESEND+ method using publicly available datasets and compared it with existing
event signature-based methods.

4.2.1. Evaluation Metrics

From the perspective of accuracy and time consumption, we evaluate the effectiveness
of DESEND+. Accuracy is made up of two elements: the match rate and the number of false
positives. The match rate indicates the ability of the method to correctly detect device events.
A false positive is a duplicate or incorrect recording of a device event. Time consumption
is determined by calculation consumption. It also can be divided into two components:
packet feature extraction consumption and matching calculation consumption.

Assuming the file contains N packets for a total of S seconds, the calculation consump-
tion for event detection in this file is D. In the packet feature extraction step, the calculation
consumption to perform one comparison is assumed to be a. m is the number of features
collected from each packet. n is the number of comparisons. It is related to the size and
number of device event signatures. The calculation consumption at this step is a ∗N ∗m ∗ n.

The calculation consumption during the match calculate step depends on the design of
the method and is related to the key-step calculation, assuming that one key-step calculation
is d, the number of key-step is T, T is related to the number of packets N the duration of the
data flow S, and the event signature of the device, which can be calculated by the function
Cal_key. The time consumption of the final calculation is d ∗ Cal_key(N, S).

Combining the two steps, the calculated consumption of event detection is shown in
Equation (1). The parameters a, m, n, d are constants, Cal_key is linearly related to N, so
the overall computational complexity is O(n).

D = a ∗ N ∗m ∗ n + d ∗ Cal_key(N, S) (1)

4.2.2. Simulation Settings

To evaluate DESEND+, we perform event signature extraction and detection experi-
ments on two public datasets: PINGPONG and MonIoTr [6]. In the PINGPONG dataset,
we perform accuracy evaluation and time consumption evaluation. PINBALL can also
extract event signatures for TCP and UDP flows, so we use PINBALL as the baseline for
comparison. In the MonIoTr dataset, we perform signature extraction experiments to verify
the effectiveness of signature extraction on UDP data flows.

For accuracy evaluation, we evaluate the effect of max_time and fix parameters on
the accuracy. For time consumption evaluation, we compare the time consumption of
DESEND+ and PINBALL in the detection phase.

Dataset 1: PINGPONG dataset. PINGPONG was the first work to propose a network
layer signature of a device event. They collected a dataset of smart home device events.
Devices in this dataset include cameras, switches, bulbs, etc. It includes a PCAP file and
a timestamp.txt file. PCAP file contains 100 times active trigger for each device event,
timestamp.txt file contains the start timestamp of each device trigger, and the device trigger
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interval is set to 131 s. We distinguish device events that are triggered at different times
based on timestamps. We use the data of device events in the following path as the training
set: /evaluation-datasets/local-phone/standalone. At the same time, the data in the
following path is used as the test set: /evaluation-datasets/local-phone/smarthome. The
above data contains 23 types of device events. Device Signatures extracted by DESEND+ are
also released for public access [36]. Here is the link to the dataset: PingPong: Dataset | UCI
Networking Group.

Dataset 2: MonIoTr dataset. The MonIoTr dataset contains traffic generated by 55 dif-
ferent smart home devices, devices in this dataset include speakers, doorbells, tv, etc. It
contains both TCP-based and UDP-based device events. DESEND+ verifies the validity by
extracting the signature of the UDP-based device event from the MonIoTr dataset. In the
dataset, the traffic generated by each device event is saved as a separate PCAP file, and the
traffic packets generated by different device events are classified in different folders, and
we use the folder names as labels for the traffic samples. Here is the link to the dataset: IoT
Information Exposure (IMC ′19)–Mon(IoT)r Research Group (neu.edu)

4.2.3. Accuracy

We perform signature extraction experiments on devices using UDP protocol in the
MonIoTr dataset, and some of the results are shown in Table 9. There is no limit on the time
to trigger in the MonIoTr dataset.

Table 9. MonIotr datasets experimente.

Device Event Key High Min Max Time

allure-speaker

android_wan
audio_ON

83, 74, 338,
60, 267 343, 54 1 41.26

android_wan
audio_OFF

83, 74, 338,
267, 60 - 2 43.24

roku-tv

android_lan
remote

60, 97, 66,
74, 1514

80, 75, 378, 373, 192,
117, 519, 1396, 607,

208, 244, 214
12 18.19

android_wan
remote 74, 66 97, 1514,

(85, 86) 3 30.53

lightify-hub

android_lan_
ON

260, 196,
235, 108 93 1 13.58

android_lan_
OFF

260, 196,
235 93, 108 1 13.38

We use the PINGPONG datasets to verify the accuracy of DESEND+. With respect to
the matching success rate, DESEND+ is able to match 98.8% of the device events, indicating
that DESEND+ can effectively identify the device events in the data flows with a low error
rate. With respect to the false positive rate, DESEND+ generates 1.8% duplication due to
packet re-transmissions.

The impact of the two-evaluation metrics on device event detection is different. The
match rate is a direct reflection of the methods the under-reporting rate, where an under-
report means that a device event is not being detected correctly. False positive means the
detection program generates some duplicate reports.

We conducted event detection experiments on 23 device events. Among the 23 devices,
the detection trigger times of 19 device events are inconsistent with the actual trigger times.
We show the detection accuracy of some device events in Figure 9. The worst one is the
ON-OFF event of the sengled-bulb, where nine event triggers were not detected.



Sensors 2022, 22, 9389 15 of 23

Sensors 2022, 22, x FOR PEER REVIEW 15 of 24 
 

 

Device Event Key High Min Max time 
remote (85, 86) 

lightify-hub 

android_lan_ 
ON 

260, 196,  
235, 108 93 1 13.58 

android_lan_ 
OFF 260, 196, 235 93, 108 1 13.38 

We use the PINGPONG datasets to verify the accuracy of DESEND+. With respect to 
the matching success rate, DESEND+ is able to match 98.8% of the device events, indicat-
ing that DESEND+ can effectively identify the device events in the data flows with a low 
error rate. With respect to the false positive rate, DESEND+ generates 1.8% duplication 
due to packet re-transmissions. 

The impact of the two-evaluation metrics on device event detection is different. The 
match rate is a direct reflection of the methods the under-reporting rate, where an under-
report means that a device event is not being detected correctly. False positive means the 
detection program generates some duplicate reports. 

We conducted event detection experiments on 23 device events. Among the 23 de-
vices, the detection trigger times of 19 device events are inconsistent with the actual trig-
ger times. We show the detection accuracy of some device events in Figure 9. The worst 
one is the ON-OFF event of the sengled-bulb, where nine event triggers were not detected. 

In Figure 10, the first four devices match better in DESEND+ with the larger differ-
ence in ring-alarm, while the last three devices match worse in DESEND+ with the 
sengled-bulb performing worse in detecting the ON-OFF event. Overall, the difference 
between DESEND+ and PINGBALL in terms of matching success ratio is not significant. 

In the DESEND+, parameters 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 and 𝑓𝑖𝑥 are very important. We performed 
experiments with them separately. 

 
Figure 9. Device matching experiment. 

The 𝑚𝑎𝑥_𝑡𝑖𝑚𝑒 parameter is the maximum time interval between two adjacent match-
ing packets in the device event signature. It is used for eliminating duplicate matches 

Figure 9. Device matching experiment.

In Figure 10, the first four devices match better in DESEND+ with the larger difference
in ring-alarm, while the last three devices match worse in DESEND+ with the sengled-
bulb performing worse in detecting the ON-OFF event. Overall, the difference between
DESEND+ and PINGBALL in terms of matching success ratio is not significant.
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In the DESEND+, parameters max_time and f ix are very important. We performed
experiments with them separately.

The max_time parameter is the maximum time interval between two adjacent matching
packets in the device event signature. It is used for eliminating duplicate matches generated
by re-transmitted packets. In practice, we increase the maximum time interval by 0.5 s as
max_time, which increases the redundancy of event detection.

As shown in Figure 11, a total of 139 false positives were reported by the five devices
when max_time was not enabled. With max_time enabled, only 11 false positives were
reported by the five devices. In particular, the TP-LINK bulb does not report any false
positives in the test.
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Among related work, PINBONG filters re-transmitted packets with sequence num-
bers of TCP packet headers, making it unsuitable for UDP data flows. PINBALL uses
the percentage of occurrence of high-frequency packets in a statistical interval to elimi-
nate duplicate matches, yet it requires more additional computation. DESEND+ reduces
computing consumption while supporting both TCP and UDP protocols.

Other parameters in the event signature extracted by DESEND+ are f ix, high f ix,
which affects the matched number required for the event signature.

The adaptability of the matched number ensures the robustness of the device event
signature. The f ix, high f ix in the device event signature is set to 0 by default. As shown
in Table 10, the ON and OFF event of the seven devices need to adjust the values of
f ix and high f ix in the detection phase.

Figure 12 shows the variation of the matching rate of the seven devices with the f ix
parameter enabled. Among the seven devices, the f ix parameter has a greater impact
on the TP-LINK bulb device. Taking the ON-event of the TP-LINK bulb as an example,
the set of key-packet of the device event signature extracted from the datasets is (46, 58,
71, 198, 227, 309, 520, 1049). However, in the test file, the TP-LINK bulb with address
192.168.1.246 does not send or receive packets of size 309, so the key-packet set cannot be
matched successfully without adjusting the f ix value.
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Table 10. Fix parameter adjustment.

Device Event Fix (ON) High Fix (ON) Fix (OFF) High Fix (OFF)

TP-LINK bulb 1 0 1 0

ecobee-thermostat-havc 1 0 1 0

ecobee-thermostat-fan 1 0 1 0

blossom-sprinkler-quickrun 0 3 0 0

blossom-sprinkler-mode 0 1 1 0

alro-camera 0 1 0 1

roomba-vacuum-robot 1 0 1 0
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4.2.4. Time Consumption

The above gives an analysis of the accuracy of DESEND+. In real applications, it is
also necessary to consider time consumption, which is positively related to computational
consumption. We divide it into two steps, the feature extraction step, and the match
calculation step.

In the feature extraction step, according to Equation (1), m represents the number
of features. We use the size and time of the packets as features. Thus, the number of
features m is 2. The number of comparisons n is related to the number of key-packet and
high-frequency-packet in the device event signature.

In the match calculate step, DESEND+ has two key steps d. One is to judge if the size of
the packet matches the one in the key-packet set or the high-frequency-packet set. The other
one is to calculate if the interval time of two matching packets is less than the max_time.
d is related to the number of packets N to be detected in the data flow, independently of
the data flow duration S.

The ON-event of the wemo-plug device is taken as an example. The signature of the
ON-event is shown in Table 11.
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Table 11. Signature extracted by DESEND+.

Value

key (246, 259, 430, 475)

high ()

min 0

max_time 0.56366491317749023

fix 0

high fix 0

The test file has 15,484 packets related to wemo-plug, the number of collected features
is 2, the number of packets in the event signature is 4, the number of calculations in the two
key steps is 15,484, and the calculation consumption D is as follows:

D = a ∗ 15484 ∗ 2 ∗ 4 + d ∗ 15484 ∗ 2 (2)

We conducted event signature extraction and event detection experiments on 23 de-
vices with PINBALL and DESEND+. The time.perf_counter function is used to obtain the
current timestamp of the system at the beginning and end of the detection function. The
difference between the two is used to calculate the time consumption of the calculation
phase. The average detection time for the five rounds is shown in Figure 13. 76.418 s per
round for PINBALL and 9.926s per round for DESEND+.
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DESEND+ vs. PINBALL is shown in Table 12. The DESEND+ method shows more
false positives than PINBALL, but the detection time of DESEND+ has a greater advantage
over PINBALL. The detection efficiency is improved by about 80.6%.
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Table 12. Comparison between DESEND+ and PINBALL.

Match Rate False Positive Rate Detection Time (s) UDP Support

PINBALL 98.4% 0.08% 76.418 yes

DESEND+ 98.8% 1.8% 9.926 yes

4.3. The Experiment of Device Event Control
4.3.1. Device Event Control Experiment

In the event control experiment of the devices in Table 13, we take the Lenovo R1
camera as an example. Respectively intercepting data packets of sizes 125, 184, 234, and
1488, the program reports a large number of re-transmission packets. As shown in Figure 14,
the smart Lenovo App is unable to view the video, and the connection progress will be
stuck at 89%. As mentioned above, this data stream is critical for the event to view video.

Table 13. Device event control experiment result.

Device Event Intercepted Packets Result

Lenovo R1-View the video 125, 184, 234, 1488 unable to view video

Fluorite C2C-View the Video 1440, 120, 72, 52(0), 60 unable to view video

Fluorite C2C-View the Video 52(1) able to view video

Xiaomi smart camera 2K-View the Video 96, 1060 unable to view video

Xiaomi smart camera 2K-View the Video 38, 40, 56, 60, 64 able to view video
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The same interception experiments were performed separately for the other device
event. The results as shown in Table 13. For the fluorite C2C camera, an intercepted packet
of size 52, which is sent to the device, will make the camera cannot view the video. The
table is marked as 0. However, a packet of size 52, which is the device sent out, has no
effect on viewing the video. The table is marked as 1. For the Xiaomi smart camera 2K,
which uses UDP, intercept data packets of size 38, 40, 56, 60, and 64 have no impact on
viewing the video, while packets of size 96 and 1060 have an effect on viewing the video.

4.3.2. Event Detection Report

The results of the device event detection are presented to the user on a web page. The
information reported is shown in Figure 15. log_time is the time when the device event
occurred, and device_event represents the detected device event. Device_id is the mac
address of the device. The detection results are listed in chronological order.
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5. Related Work

With the rapid development of the Internet of Things (IoT), many works investigate
how to mitigate the security privacy threats of IoT. Through the communication and
activity status of IoT devices, some threat information can be obtained, and corresponding
responses can be made. Related work can be divided into two categories: device event
detection and device traffic monitoring.

5.1. Device Event Detection

Since data from existing smart home devices are often encrypted [6,7], detecting device
events means detecting them from encrypted traffic. The research problem focuses on
two aspects: (1) the selection of effective traffic characteristics and (2) the development
of a detection method that takes into account the handling of retransmitted packets and
unknown class packets.

As shown in Table 14, there are two types of methods to detect devices and device
events from network traffic: machine learning-based detection methods and statistical
classification-based detection methods.

Machine learning-based detection methods: Many works [4–24] use the traffic features
of devices and train supervised machine learning models for user event detection. These
methods have high detection accuracy. Some works use unsupervised models [25,26] to
detect unknown classes of devices and events in network traffic.

Regarding device event detection, Abbas et al. [24] proposed a multi-stage user be-
havior detection scheme that applies device detection, device state detection, and de-
vice state classification. They combined multiple device states to extract user behavior.
Oconna et al. [27] proposed a system called HomeSnitch. It collects flow features of device
events (e.g., maximum packet size and average packet size in the flow) and uses these
features to train a random forest model to detect device events.

Statistical feature-based detection methods: Statistical features of traffic are used in
these works [28–35] for monitoring, such as the set of DNS request domain names [28], the
set of TCP port numbers [29], and the TF-IDF values of TLS packets [30].
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Table 14. Comparison of two types of methods.

Method Accuracy Demand Feature

Machine learning
classification

Supervised
Learning High Precise traffic classification High accuracy

Unsupervised
Learning Middle

Unknown traffic classification
Traffic law extraction

Feature validity evaluation

Identify unknown
traffic

Deep Learning High Precise traffic classification
Automatic feature extraction

High accuracy,
Unsupervised

Statistical classification High Precise traffic
classification

Well-designed methods could
realize real-time classification Statistical classification

Device event signature [32,33] is an important work in statistical feature-based de-
tection methods with good accuracy and flexibility. PINGPONG [32] system, which was
presented by Trimananda et al., could extract packet-level signatures from device event-
triggered traffic. It detects device events by determining whether device event signature
packets are present in network flows. However, the limitation of PINGPONG is that it does
not apply to the UDP protocol. Duan et al. [33] present improved signature extraction and
detection method, PINBALL. The device event signature extracted by PINBALL contains
all high-frequency packets in t seconds after the device event is triggered. PINBALL uses
the distribution of the proportion of packets as the device event signature.

For both types of device event detection methods, there is little difference in accuracy.
In the training phase, machine learning-based methods usually contain a single detec-
tion model and are less scalable than device signature-based methods. In the detection
phase, machine learning-based methods need to wait for device events to complete before
extracting traffic features, so some methods cannot perform real-time detection. Event
signature-based methods do not need to wait for device events to complete, so it is easier
to achieve real-time detection.

5.2. Device Traffic Monitoring

Most work in this category depends on packet header information, especially for
MUD-based systems [37]. With MUD files, users can restrict the communication range of
IoT devices, and the MUD manager matches traffic packets based on IP, port, and protocol
information. Wang et al. [38] refined the description granularity of the MUD file based on
the IFTTT automation procedure and added some descriptive information such as time
interval, packet number, packet sequence, etc. However, it has some limitations since MUD
files cannot describe device event information.

Other works have focused on how to mitigate the risk of privacy disclosure by reducing
the upload of privacy data to cloud services. Chi et al. [39] present the PFIREWALL system,
where they analyzed and obtained the minimum data required by the home automation
program. Without modifying the smart home architecture, the device can only upload
the minimum data required by the home automation program to the cloud platform. Xu
et al. [40] present a privacy protection framework for cloud platforms. They propose an F&F
filtering component that filters redundant behavior records uploaded to IFTTT and blurs
the features of the uploaded data. These works can protect user privacy at the data level
but are only applicable to some smart home platforms, such as SmartThings and IFTTT.

In general, existing research on traffic monitoring focuses on device communication
range restriction, malicious traffic detection, and data leakage reduction [41].

6. Conclusions and Future Work

In this paper, we present a novel device event signature extraction and detection
method, DESEND+. Then, in order to detect events in a real smart home environment, we
built a flow monitoring system, HomeMonitor. According to the experimental results, the
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match rate and the false positive rate of DESEND+ are both higher than PINBALL [33],
while the detection time of DESEND+ is only 16.67% of PINBALL [33]. In addition, the
DESEND+-based HomeMonitor supports both TCP and UDP data flows. In future work,
the stability of event signatures can be further verified, such as whether the signatures
change over time. The implementation of Homemonitor can also be optimized to re-
duce the network latency caused by event detection, then further improving the event
control mechanism.
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