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Abstract: To solve the problem of inadequate feature extraction by the model due to factors such
as occlusion and illumination in person re-identification tasks, this paper proposed a model with
a joint cross-consistency learning and multi-feature fusion person re-identification. The attention
mechanism and the mixed pooling module were first embedded in the residual network so that the
model adaptively focuses on the more valid information in the person images. Secondly, the dataset
was randomly divided into two categories according to the camera perspective, and a feature classifier
was trained for the two types of datasets respectively. Then, two classifiers with specific knowledge
were used to guide the model to extract features unrelated to the camera perspective for the two
types of datasets so that the obtained image features were endowed with domain invariance by the
model, and the differences in the perspective, attitude, background, and other related information
of different images were alleviated. Then, the multi-level features were fused through the feature
pyramid to concern the more critical information of the image. Finally, a combination of Cosine
Softmax loss, triplet loss, and cluster center loss was proposed to train the model to address the
differences of multiple losses in the optimization space. The first accuracy of the proposed model
reached 95.9% and 89.7% on the datasets Market-1501 and DukeMTMC-reID, respectively. The results
indicated that the proposed model has good feature extraction capability.

Keywords: person re-identification; deep learning; feature classifier; cross-learning; attention mechanism

1. Introduction

Person re-identification research [1,2] has undergone a paradigm shift from tradi-
tional methods to deep learning methods. The traditional person re-identification research
contains two parts: image feature extraction and distance metric. Among them, feature ex-
traction is used to obtain more discriminative and recognizable person image information in
the image and person re-identification methods based on feature representation, primarily
by obtaining color information of person images, LBP (Local Binary Pattern) [3], SIFT (Scale
Invariant Feature Transform) [4], and other features with discriminative power of features.
The aim of similarity metrics is to use appropriate metric functions to reduce the intra-class
distance of person features while increasing the inter-class distance of person features with
different identities, such as LMNN (Large Margin Nearest Neighbor classification) [5,6],
XQDA (Cross-view Quadratic Discriminant Analysis) [7], and so on. However, traditional
person re-identification research methods have limited ability to extract image features.

In recent years, image feature extraction methods have made significant breakthroughs
based on deep learning. Liu et al. [8] constructed a topological learning network framework
augmented by integrated contextual information to enhance the ability to extract multi-
scale features from the model and to mine valid information complementary to pedestrian
appearance features to improve feature representation. Zheng et al. [9] proposed an IDE
(ID-discriminative Embedding) network with a residual network as the backbone and
the person’s ID as the training label, which has become an important baseline in the field
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of person re-identification. Hermans et al. [10] used a triplet loss function to train the
model, and it is common for existing deep learning methods to jointly use ID loss and
triplet loss to optimize the model. Sun et al. [11] proposed a local feature-based person
re-identification method (Part-based Conv Baseline) PCB, in which the output features
are sliced in the horizontal direction and the chunked features are stitched together when
calculating the similarity distance. Zheng et al. [12] proposed a multi-granularity pyramid
model combining different granularity features, but the image chunking method still caused
alignment problems between local features. Luo et al. [13] proposed the AlignedReid model
to dynamically adjust local features to solve the problem of unaligned pedestrian pose that
exists in real scenes; however, it consumes more resources when computing the features.
Zheng et al. [14] used a pose estimation model to predict the key points of the human
body, but this approach necessitates the addition of another pose estimation model, which
reduces the model’s generalization performance. The SENet attention mechanism network
model proposed by Hu et al. [15] compresses each channel into a weight on the feature map
after dimensionality reduction and finds the relationship with the feature map from the
channel dimension. Fu et al. [16] proposed to fuse local features, global features, and multi-
granularity features to improve person re-identification accuracy; however, they neglected
the impacts of occlusion, pose, and other factors. To avoid the attention mechanism
from being overly focused on the foreground, Chen [17] combined both channel and
spatial information, but the regions extracted by combining individual attention networks
lacked adequate semantic interpretation and could not cover all discriminative image
feature information.

To address the problems of the abovementioned methods, this paper investigated
the extraction of pedestrian image features. We designed a model joint cross-consistency
learning and multi-feature fusion for the person re-identification model CCLM (Cross
Consistent Learning and Multi-feature) for person re-identification. The main work of this
paper is as follows.

(1) The ResNet50 residual network [18] was used as the backbone network, and the
interference of invalid feature information was reduced by embedding the dual-
attention mechanism module Convolutional Block Attention Module (CBAM) [19]
and the mixed-pooling module (MPM) in the residual network.

(2) In the cross-consistency learning module of the model, the model was pre-trained to
design image classifiers specific to different viewpoints to extract features from differ-
ent viewpoints and reduce the impact of viewpoint transformation on the extraction
of image information.

(3) The model was fine-tuned in the multi-feature fusion module, and the fused multi-
level features were used to match the similarity with images from the image library to
enhance the feature representation capability of the model.

(4) In the process of model optimization, for the difference of multiple losses in the
optimization space, Cosine Softmax loss [20] was introduced to eliminate the spatial
inconsistency of cross-entropy loss and triplet loss, and Cluster Center Loss (CCL)
was proposed to make the model focus on intra-class distance as well as inter-class
distance in the optimization process.

This paper proposed the CCLM, a joint cross-consistency learning and multi-feature
fusion person re-identification model, to address the drawbacks of the earlier approaches.

2. Algorithm Flow

In this section, the joint cross-consistency learning and multi-feature fusion for person
re-identification network model are presented in five parts, starting with the general
structure of the network, followed by the attention mechanism used by the network,
followed by the mixed pooling module and then the cross-consistency learning module
of the network, and finally explaining the feature pyramid module of the network. The
modules collaborate with each other to improve the ability of the model to extract features.
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2.1. Network Structure

In order to extract the image detail information CCLM person re-identification model
is based on the ResNet50 residual network, which contains an attention mechanism module,
a mixed-pooling module MPM, CCL, FPN, and a multi-feature fusion module. The network
model proposed in this study is shown in Figure 1.
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Figure 1. General model structure diagram.

The attention mechanism module is located in layers 2 through 5 of the backbone
network, while the down-sampling operation in the last layer is removed, as well as the
global average pooling and fully connected layers in the original residual network; after
layer 5, it is proposed to use mixed pooling rather than average pooling to improve the
network’s ability to extract image features.

The training procedure was divided into two steps: cross-consistency learning and
multi-feature fusion. The cross-consistency learning module randomly divides the person
re-identification dataset into two groups based on the camera view and then designs a
classifier to train the network model for each of the two groups of images with different
camera views. The model was then pre-trained by cross-using classifiers with different
specific information to eliminate the effect of different camera view shifts on the model’s
extraction of valid information.

After pre-training the model with certain knowledge, the multi-feature fusion module
takes the feature vectors obtained from the pyramid module and the hybrid pooling module
as input, and finally optimizes the backbone network, the pyramid module, and the multi-
feature fusion module by combining the Cosine Softmax loss, the triplet loss, and the cluster
center loss.

2.2. Attention Mechanism Module

The CBAM module consists of two sub-attention modules: the channel attention
module and the spatial attention module. The structure of the channel attention module is
depicted in Figure 2, where the features extracted by the backbone network are weighted
appropriately by the channel attention module and the spatial attention module in turn.
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The feature map F(x) of the image x extracted in the backbone network is input
to the max pooling and average pooling layers to obtain two feature vectors FMax(x)
and FAvg(x) respectively, and then the two feature vectors are input to the multilayer
perceptron with shared parameters; finally, the corresponding channel attention mapping
matrix Mc(F(x)) ∈ RC×1×1 is generated after the Sigmoid activation operation. The one-
dimensional attention mask for the channel domain is calculated as Equation (1):

Mc(F(x)) = sigmoid(MLP(Max(F(x))) + MLP(Avg(F(x))))
= sigmoid

(
W1(W0(FMax(x))) + W1

(
W0
(

FAvg(x)
))) (1)

where F(x) denotes the image features of the backbone network input, Max(*)and Avg(*)
denote the maximum and average pooling, MLP(*)denotes multilayer perception operation,
W0 ∈ RC/r×C and W1 ∈ RC×C/r. To obtain, weight the mapping matrix obtained after the
channel attention module with the corresponding elements of the original input feature
map in the channel dimension.

F′(x) = Mc(F(x))⊗ F(x) (2)

where F′(x) is the feature map obtained after channel attention.
The spatial attention model is similar to channel attention, as shown in Figure 3. The

procedure for calculating the two-dimensional attention mask for the spatial domain is
Equation (3):

Ms = sigmoid(conv([Max(F′(x)); Avg(F′(x))]))
= sigmoid

(
conv

([
F′Max(x); F′Avg(x)

])) (3)

where F′Max(x) ∈ R1×H×W, F′Avg(x) ∈ R1×H×W, and Conv represents the convolution opera-
tion. Following that, in the spatial dimension, the spatial attention feature mapping matrix
and the input feature vector F′(x) are element-wise multiplied to obtain the final image
feature map representation as Equation (4):

F′′(x) = Mc
(

F′(x)
)
⊗ F′(x) (4)
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Finally, the attention module’s weighted image feature map F′′(x) is used as input to
the deeper network.

2.3. Mixed Pooling Module

To extract global personal features while also highlighting differences between the
person and the background, in this paper, we proposed mixed pooling instead of average
pooling in residual networks, which compensates for the shortcomings of average pooling
in residual networks and improves the ability of the person re-identification model to
extract detailed features from images by preserving the whole body information of the
person and deepening the person outline while paying more attention to the differences
between persons and the background.

As shown in Figure 4, the vector PAvg obtained from the average pooling of the image
features is subtracted from the vector Pmax obtained from the maximum pooling, and
the subtracted features are computed using a 1 × 1 convolution kernel, after which the
difference features between PAvg and Pmax are obtained by passing through the Batch
Normalization(BN) and Relu layers respectively. The Pmax features obtained by maximum
pooling are summed with the different features between PAvg and Pmax using the same
computational process to obtain the 2048-dimensional feature vector Pmix.
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The Pmix is calculated as Equation (5):

Pmix = Rp(Pmax) + Rp
(

Pavg − Pmax
)

(5)

where Pmixdenotes the feature vector obtained after mixed pooling, PAvg and Pmax denote
the feature vectors obtained after average pooling and maximum pooling, respectively,
and RP denotes a 1 × 1 convolution operation on the feature map followed by BN and
Relu activation.

2.4. Cross-Consistent Learning Module

In order to empower the feature encoder to extract stable features of person images,
it is proposed to game different sets of samples crossed with classifiers equipped with
specific knowledge. Firstly, the person image samples were randomly divided into two
parts according to camera views; assuming that the dataset samples come from cameras
with N views, one group contains [N/2] camera samples with one viewpoint and the other
group contains N-[N/2] camera samples with one viewpoint down, where [ ] denotes the
downward rounding function. Different camera views can be interpreted specifically as
different camera angles. For example, the Market-1501 dataset has six cameras, which
were randomly divided into two groups of three cameras each, and the DukeMTMC-
ReID dataset has eight cameras, which were randomly divided into two groups of four
cameras each.

As shown in Figure 5, a distinct classifier was trained for the feature vectors generated
from person images from various sample groups. Given a person image feature vector
f and crossing two distinct sets of classifiers, if the two distinct classifiers produce the
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same prediction, the network has successfully eliminated the impact of various camera
perspective modifications.
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The loss of the classifier cross-entropy function in the pre-training phase is Equation (6):

LCE = − 1
n

n

∑
i=1

P

∑
p=1
−I
(

c, yi
1

)
log P

(
C1

(
f i
1

∣∣∣w1

))
− 1

m

m

∑
j=1

P

∑
p=1
−I
(

c, yj
2

)
log P

(
C2

(
f j
2

∣∣∣w2

))
(6)

I(c, y) =
{

1− N−1
N ε, i f c = y

ε
N , otherwise

where n and m denote the total number of images in each batch of the two sample groups,
respectively, p denotes the total number of person categories in the training set, yi

1 denotes
the true label corresponding to the training set image xi, 1 denotes the first camera sample
set, yj

2 denotes the true label corresponding to the training set image xj, 2 denotes the
second camera sample set, C1

(
f i
1

∣∣w1
)

and C2
(

f i
1

∣∣w2
)

denote the classification probabilities
obtained by classifier w1 and w2 for the images of the two camera views, respectively,
f1i denotes the feature vector extracted from the images of camera sample group 1, f1j

denotes the feature vector extracted from the images of camera sample group 2, and c is the
predicted sample label, and the smoothing hyper-parameter ε takes a value of 0.1.

KL divergence is used to describe the similarity of two different probability distribu-
tions, and KL scatter possesses non-negativity, as shown in Equation (7).

∑
i

P(i)ln
(

Q(i)
P(i)

)
≤∑

i
P(i)

(
Q(i)
P(i)

− 1
)
= 0 (7)

When and only when ∀i, Q(i)
P(i) = 1 occurs, at which time P = Q, the equal sign is

obtained. The proposed average camera view classifier, which has the same structure as
the camera view classifier, enables consideration of not only the parameters of the current
batch during the network update but also the parameters that are updated concerning
the previous batch, with the crossover consistency loss shown in the equation. A direct
crossover of classifiers with different knowledge would result in a rapid and optimized
agreement of the two classifier parameters, Equation (8).

LCCL =
1
n

n

∑
i=1

C1

(
f i
1

∣∣∣E[w1]
)

log
c1
(

f i
1

∣∣E[w1]
)

c2
(

f i
1

∣∣w2
) +

1
m

m

∑
j=1

C2

(
f j
2

∣∣∣E[w2]
)

log
c2

(
f j
2

∣∣∣E[w2]
)

c1

(
f j
2

∣∣∣w1

) (8)

where E[w1] and E[w2] denote the parameters of these two average classifiers, respectively,
which are related to the batch of data set training and are updated after each batch of data
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training. The parameters of this set of average classifiers are initialized, E(0)[w1] = w1 and
E(0)[w2] = w2, and the average classifier parameters are updated as Equations (9) and (10).

E(t)[w1] = (1− β)E(t−1)[w1] + β[w1] (9)

E(t)[w2] = (1− β)E(t−1)[w2] + β[w2] (10)

where E(t)[w1] and E(t − 1)[w1] denote the model parameters of the current and previous
batches, respectively, and β is the equilibrium parameter of the model update, where β is
set to 0.2.

The total loss of cross-consistency learning is Equation (11):

LSUM = LCE + µLCCL (11)

During the pre-training phase, the cross-consistency loss balance parameter µ is set to
1.5, and the joint cross-entropy loss and cross-consistency learning loss of the two classifiers
are jointly updated for the backbone network.

2.5. Feature Pyramid Module

A Feature Pyramid Network (FPN) [21] was initially used in object detection. Figure 6
depicts its structure.
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In this paper, the pedestrian feature maps generated by different layers of the net-
work are denoted by Tk(Tk ∈ T), and the semantic information contained in T1 and T2 is
not considered as incomplete. The sizes of the extracted feature maps T3 to T5 have the
following sizes and order: T3 ∈ R512×32×16, T4 ∈ R1024×16×8 and T5 ∈ R2048×16×8. Since the
convolutional features of different sizes have to be fused accordingly, the convolutional
kernels of size 1 × 1 are used to adjust the features of different levels to the same number of
channels, and a feature map of uniform spatial dimension is obtained after the up-sampling
operation of the features using Bilinear Interpolation (BII) [22]. Finally a final feature map-
ping is generated using a 3 × 3 convolution in each feature matrix incorporating multiple
layers of features. The feature pyramid is calculated as shown in Equations (12)–(14).

T′i = GAP(conv1×1(Ti)) i = 5 (12)

T′i = GAP(conv3×3(conv1×1(Ti)) ⊕ (conv1×1(Ti+1))) i= 4 (13)

T′i = GAP(conv3×3(conv1×1(Ti)) ⊕ blinear (conv1×1(Ti+1))) i = 3 (14)

where conv stands for convolution operation and bilinear stands for bilinear interpolation
operation. Global Average Pooling (GAP) stands for global average pooling operation, and
⊕ stands for element-by-element summation operation. Following the feature pyramid
module, three feature vectors are obtained. The feature vector T′5 is 512-dimensional after
convolution and pooling procedures, while T′4 and T′3 are 256-dimensional due to the fifth
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layer of the feature map’s rich semantic meaning. The model is optimized using the same
set of losses after the three feature vectors are combined into a 1024-dimensional vector in
the channel dimension.

3. Loss Function

The person re-identification model was jointly trained using cosine cross-entropy loss,
triplet loss, and cluster center loss improved on the cross-entropy loss function to jointly
constrain the features extracted by the network model and optimize the proposed model.

3.1. Cross-Entropy Loss and Triplet Loss

In the field of deep learning-based pedestrian re-identification, most of the work
uses cross-entropy loss in conjunction with triplet loss to train the network together. The
cross-entropy loss function for label smoothing is shown in Equation (15).

LCE = −
N

∑
i=1

qilog(pi) (15)

pi =
exp
(

WT
yi

fi + byi

)
C
∑

K=1
exp
(
WT

K fi + bK
) qi =

{
1− N−1

N , i f i = y
ε
N , otherwise

where N represents the total number of person images in each batch, C represents the total
number of person identities in each batch, fi represents the feature vector of the image with
the true label yi, W represents the weight vector, and b is the bias value.

Difficult sample triplet loss is a widely used loss function in the field of image identifi-
cation, where fa, fp, and fn denote Anchor pedestrian image features, pedestrian image
features with the same label as the anchor, and pedestrian image features with a different
label than the anchor, respectively, then the discrepancy between fa, fp and fa, fn is calcu-
lated separately, letting the difference in distance between the two be the parameter of the
loss function. In order to make the algorithm more accurate during training, fp which is
the farthest away from fa, and fn , which is the closest distance from fa, are used as training
data, and the triplet loss function is shown in Equation (16).

LTriplet = −
P

∑
i=1

K

∑
a=1

[α + max
p=1···K

∥∥∥ f (i)a − f (i)p

∥∥∥
2
− min

n = 1 · · · K
j = 1 · · · P

j 6= i

∥∥∥ f (i)a − f (j)
n

∥∥∥
2
]+ (16)

where P denotes that there are images of pedestrians with different identities in the same
batch of training data, K denotes that there are K instances of each identity of pedestrians
in the same batch of training data, and α denotes the interval distance between positive
and negative samples, where α = 0.3.

3.2. Cosine Softmax Loss

The cross-entropy loss function uses the inner product of vectors to measure similarity,
while the triplet loss optimizes the Euclidean distance between the feature vectors. The
Cosine Softmax Loss is different from the traditional Softmax Loss in that it optimizes the
inner product between the sample vector and the weight vector, while the Cosine Softmax
Loss optimizes the cosine distance between the sample vector and the weight vector.
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LCOS =
1
N

N

∑
i=1
−log

eγ(s(WT
yi

,xi)−m)

eγ(s(WT
yi ,xi)−m) +

C
∑

j = 1
j 6= yi

eγ(s(WT
yi ,xi))

(17)

where s(x, y) calculates the cosine distance between x and y. The parameter m is the cosine
interval that allows the network to make the feature vectors of the same person image less
distant when optimized, and γ is the scale factor.

3.3. Loss of Cluster Center

To increase the cohesiveness of features within the same identity image, cluster center
loss is proposed and combined with Cosine Softmax Loss and triplet loss to optimize the
model, with cluster center loss regulating the relationship between features of different
identity classes, as shown in Figure 7.
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The average characteristics of the same identity are shown in Equation (18)

hyi =

K
∑

k=1
fk

K
(18)

where Kdenotes the average feature value of the pedestrian image labeled yi and K is the
number of instances of the same identity in a batch of training data.

To make the model converge faster during the training process, only the most difficult
samples are considered during the training process, reducing the number of iterations
required for the convergence process. The maximum Euclidean distance between the
same identity pedestrian and the average feature of its corresponding identity is shown as
Equation (19)

dk_max
i = max

k∈K

∥∥ f (xk)− hyi

∥∥2
2 (19)

The minimum Euclidean distance of the average intra-row person trait between
different identities is shown as Equation (20)

dp_min
i = min

∀j∈p,j 6=i

∥∥∥hyi − hyj

∥∥∥2

2
(20)

where p denotes the total number of personal identities in the same batch of data. During
the iteration of each batch of data, the intra-class distance is reduced while the inter-class
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distance is increased, and the loss of cluster centers based on hard sample mining is shown
as Equation (21)

LCenter =
1
N

N

∑
j = 1

yi ∈ P

∥∥ f j − hyi

∥∥2
2 +

1
P

P

∑
p=1

[
ρ +

(
dk_max

i − dp_min
i

)]
+

(21)

The total loss function in the multi-feature fusion stage is shown in Equation (22)

LTotal = LCOS + LTriplet + LCC (22)

4. Experiments and Analysis

The algorithms in this paper were implemented based on the pytorch framework,
using a 64-bit Ubuntu 16.04 based computing platform with the following hardware
configuration: NVIDIA GeForce GTX 3090 GPU and 64 GB of memory. The model was
pre-trained in the first 50 iterations in the cross-consistency learning phase, and fine-tuned
in the second 150 iterations in the multi-feature fusion phase, using the Adam optimizer
to optimize the model parameters. During the training process, the training technique of
REA [23] was introduced to randomly mask the person images, setting the probability of
randomly erasing the images to 0.5 and the area ratio of the erased part to 0.02 < S < 0.4, as
shown in Figure 8, which can reduce the degree of overfitting of the model.
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4.1. Experimental Data Set

This paper conducted corresponding comparative experiments on the proposed person
re-identification method on the currently more commonly used datasets Market-1501 and
DukeMTMC-ReID, the details of which are shown in Table 1.

Table 1. Attribute information of the dataset.

Dataset Market-1501 DukeMTMC-ReID

ID 1501 1404
Camera 6 8
Image 32,668 36,411
Train ID 750 702
Test ID 751 702
Retrieved Image 3368 2228
Candidate Set Image 19,732 17,661

4.2. Comparison with Existing Methods

In this paper, the current widely used datasets Market-1501 and DukeMTMC-ReID
were compared with the existing state-of-the-art methods and the results are shown in
Table 2.
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Table 2. Different methods that were used to evaluate the results.

Method
Market-1501 DukeMTMC-ReID

Rank-1 mAP Rank-1 mAP

XQDA [6] (Natural Science Edition 2018) 43.0 21.7 31.2 17.2
IDE [8] (ArxiV 2016) 72.5 46.0 65.2 44.9
PCB [11] (ECCV 2018) 92.4 77.3 81.9 65.3
PIE [13] (IEEE 2019) 78.7 53.9 — —
AlignedReID [13] (2019) 90.6 77.7 81.2 67.4
ABD-Net [17] (IEEE 2019) 95.6 88.2 89.0 78.5
SVDNet [24] (IEEE 2017) 82.3 62.1 76.7 56.8
ABFE-Net [25] (2022) 94.4 85.9 88.3 75.1
HA-CNN [26] (IEEE 2017) 91.2 75.7 80.5 63.8
PCB-U+RPP [27] (IEEE 2019) 93.8 81.6 84.5 71.5
CASN(PCB) [28] (IEEE 2019) 94.4 82.8 87.7 73.7
HOReID [29] (IEEE 2020) 94.2 84.9 86.9 75.6
SNR [30] (IEEE 2020) 94.4 84.7 84.4 72.9
TSNet [31] (2021) 94.7 86.3 86.0 75.0
BDB [32] (IEEE 2019) 95.3 86.7 89.0 76.0
SCAL(spatial) [33] (ICCV 2019) 95.4 88.9 89.0 79.6
SCAL (channel) [33] (ICCV 2019) 95.8 89.3 88.9 79.1
RGA-SC [34] (CVPR 2020) 96.1 88.4 — —
TransReID [35] (ICCV 2021) 95.2 89.5 90.7 82.6
MGN+UP-ReID [36] (CVPR 2022) 97.1 91.1 — —
CCLM (Ours) 95.9 88.1 89.7 79.3

Although it somewhat increases the model’s identification rate, the key point detection
model PIE provided in the table has alignment issues and uses more processing resources.
The rank1 and mAP of the method in this paper were also higher than those of the PCB
model using only local features and the PCB-U + RPP model after sampling fine-grained
adjustment, respectively. Although AlignedReID incorporates global features based on
dynamically aligned local features, it neglects the contribution of shallow features to image
features, and therefore the recognition rate is also inferior to that of the CCLM model. The
Attentive but Diverse Network (ABD-Net) model was only slightly higher in mAP than the
CCLM model on the Market-1501 dataset, although the ABD-Net model uses automatic
differentiation to calculate the spectral value difference orthogonality for training, a process
with a large computational burden of feature decomposition, which increases the difficulty
of training.

4.3. Analysis of Visualization Results

The ResNet50 residual network is the foundation of the proposed CCLM model. The
baseline and CCLM model validation and analysis findings were visualized in this study in
order to visually check the model’s validity. To match the four-person images in Figure 9 in
the query set, four typical types of photographs—normal walking, cycling, obscured, and
poor resolution—were arbitrarily chosen from the query set. Both the baseline activation
map and the CCLM model activation map are represented by the matching heat maps of
each image, respectively.
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Figure 9 shows in (1b) that the baseline activation area in the image is concentrated in
the legs, covering less of the rest of the body. (1c) shows that the CCLM model activation
area covers more of the body area, enhancing the correlation between the various parts of
the body. (2b) shows that the activation area is not only concentrated in the body parts of the
person, but also the backpack area is covered, while in (2c) only the body parts are covered,
mitigating the impact of the pose transformation. The activation area in (3b) also focuses
on the handbag, where the baseline model identifies the pedestrian shorts in the wrong
dataset as a handbag, and in (3c) it mainly covers the body part, reducing the interference
of occlusions. (4b) and (4c) show that for the low-resolution images, the activation area of
the CCLM model is also significantly improved over the baseline, validating the CCLM
model in the query dataset validity. Where(1a), (2a), (3a) and (4a) are the original images.

Figure 10 shows the query results for the corresponding four person images, where
the top row is the set of query results for the baseline and the bottom row is the set of
query results for the CCLM model. The solid border indicates a correct query result and
the dashed line against a red background indicates an incorrect query result.
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Figure 10. Schematic diagram of person query results.

The images of the same person are not a single scene in the gallery set. To further verify
the validity of the CCLM model, four sets of person images were randomly selected for
visual validation. As shown in Figure 11, the four groups of person images include four sets
of comparison images of the person-unaligned, pose-transformed, person-occluded, and
multiple-person noise respectively. In the person-unaligned and person-pose-transformed
image groups, the area covered by the CCLM model was concentrated on the whole human
body part. In the images with occlusion and multiple-person noises, the activation area of
the CCLM model avoided the occlusion and other personal information, which effectively
reduced the noise interference brought by other information and validates the effectiveness
of the CCLM model in multiple data sets.
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4.4. Ablation Experiments

To verify the effectiveness of each component of the proposed person re-identification
model, ablation experiments for the corresponding modules were designed on two datasets,
Market-1501 and DukeMTMC-ReID, using a single query model. The results of Rank-1
and mAP for each metric are shown in Table 3. CBAM denotes the Attention Mechanism
Module, MPM denotes Mixed Pooling Module, FPN denotes Feature Pyramid Module,
and CCL denotes Cross Consistency Learning Module. Only one set was changed for all
results, and the rest of the settings were the same as the default settings.

Table 3. Ablation experiment data sheet.

Network Structure
Market-1501 DukeMTMC-ReID

Rank-1 mAP Rank-1 mAP

Baseline 89.3 74.5 75.2 62.5
Baseline + CBAM 92.2 76.4 81.5 65.4
Baseline + CBAM + MPM 92.4 78.9 82.3 69.2
Baseline + CBAM + MPM + FPN 94.4 85.5 86.4 73.4
Baseline + CBAM + MPM + FPN + CCL 95.9 88.1 89.7 79.3

4.4.1. Impact of Different Modules

The CBAM, MPM, FPN, and CCL modules make up the majority of the CCLM model,
and Table 3 displays the effects of the various modules on the experimental outcomes. The
heat map of each image corresponds to the order of the ablation experiment in Table 3 from
left to right, and Figure 12 displays the visualization features of four randomly chosen
person images from the ablation experiment.
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With the CBAM module fused in the baseline, the recognition rates of the model are
shown in Table 3 to have improved in both datasets, and the activation regions are seen in
Figure 12 to be more focused on the pedestrian parts rather than the image background.
This is because the attention mechanism module allows the model to adaptively focus on
the more discriminative features of the image. By replacing the mean pooling module
with the MPM module on top of the embedded CBAM, the recognition rate was further
improved because the MPM module focuses on the global features of the image as well
as the texture features of the image, attenuating the effect of the background on feature
extraction. Based on the abovementioned operation, the FPN module was embedded into
the model, and it was evident in the heat map that the activation area of the visualization
map of the four images covered almost the whole body part, and the table also showed a
significant increase in recognition rate, which was due to the fact that not only deep features
but also the contribution of shallow features to feature extraction were considered after
feature fusion. In the case of pre-training the model with cross-consistency learning, the
table also showed an improvement compared with the case without pre-training, since the
influence of different camera views on feature extraction is reduced during the pre-training
phase of the model, which enhances the robustness of the model.

4.4.2. Effect of Different Loss Functions

Based on the cross-consistency pre-training of the model, in order to test the effect of
the loss function on the recognition rate of the model, corresponding experimental vali-
dations were conducted on the Market-1501 and DukeMTMC-ReID datasets, respectively,
and the experimental results are shown in Table 4.

Table 4. Table of results of different loss functions.

Loss Function
Market-1501 DukeMTMC-ReID

Rank-1 mAP Rank-1 mAP

Cos 93.4 84.7 86.3 76.5
Cos + Triplet 94.2 85.6 88.4 77.9
Cos + Triplet + Center 95.9 88.1 89.7 79.3
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Where Cos denotes the Cosine Softmax Loss, Triplet denotes the triplet loss and Center
denotes the cluster center loss. The results showed that the worst results are obtained when
one loss function is used, and the best results are obtained when the model is trained with
the combination of the three loss functions, and the experiments validate the effectiveness
of the loss functions used.

4.4.3. The Impact of the REA Module

As can be seen from Table 5, the Rank-1 in CCLM without the REA module was lower
than the experimental results with the REA module, because REA reduces the interference
of background noise and focuses on the part of the pedestrian rather than learning the
whole object.

Table 5. REA ablation experiment data sheet.

Network Structure
Market-1501 DukeMTMC-ReID

Rank-1 mAP Rank-1 mAP

CCLM 93.5 86.2 87.3 74.6
CCLM + REA 95.9 88.1 89.1 79.3

4.4.4. Selection of Parameters

The parameters γ and m of Cosine Softmax Loss and the parameter ρ of cluster center
loss were experimentally confirmed on the Market-1501 dataset to show the reasonableness
of the parameters. The parameters are shown in Figure 13.
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Figure 13. Results of different parameters.

The parameter γ is the scale factor in the Cosine Softmax loss function, Rank-1 and
mAP have the best performance index when γ is 60. The parameter m is the interval in
the Cosine Softmax loss function, which is used to strengthen the cohesion of the image
features, m was set to 0.3 to achieve the highest recognition rate. Although the highest
Rank-1 metric was achieved for both ρ values of 0.6 and 0.8, the mAP metric was higher for
ρ values of 0.8 and was therefore set to 0.8 in this paper.

4.5. Results of the Actual Scenario

In order to verify the effectiveness and practicality of the proposed model, this model
was combined with the YOLO V3 target detection model to retrieve specific persons in two
different real-world scenarios.

The experiment confirms that the model in this study has good feature extraction
capabilities because it can still identify the persons to be retrieved in the presence of
occlusions and significant changes in human position, as shown in Figures 14 and 15.
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5. Conclusions

In the training process, the proposed person re-identification model based on cross-
consistency learning and multi-feature fusion was divided into two phases: model pre-
training and model fine-tuning. The cross-consistency module of the model suppressed
noise interference from non-person-identified semantic information during the pre-training
stage. In the fine-tuning stage of the model, different spatial semantic relationships were
established on multiple scales of feature information to enhance the model’s representation
of the semantic information of the images. The effectiveness of the proposed model was
validated in several datasets as well as in real-world scenes, improving the model’s ability
to extract image detail features. The proposed network model’s first accuracy on the
datasets Market-1501 and DukeMTMC-ReID was 95.9% and 89.7%, respectively. The main
focus of future work will be on applying models to real-world scenarios, and lightweight
models in conjunction with knowledge distillation will be the next major step.
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