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Abstract: Laser Doppler vibrometers (LDVs) have been widely adopted due to their large number of
benefits in comparison to traditional contacting vibration transducers. Their high sensitivity, among
other unique characteristics, has also led to their use as optical microphones, where the measurement
of object vibration in the vicinity of a sound source can act as a microphone. Recent work enabling
full correction of LDV measurement in the presence of sensor head vibration unlocks new potential
applications, including integration within autonomous vehicles (AVs). In this paper, the common AV
challenge of object classification is addressed by presenting and evaluating a novel, non-contact vibro-
acoustic object recognition technique. This technique utilises a custom set-up involving a synchronised
loudspeaker and scanning LDV to simultaneously remotely solicit and record responses to a periodic
chirp excitation in various objects. The 864 recorded signals per object were pre-processed into
spectrograms of various forms, which were used to train a ResNet-18 neural network via transfer
learning to accurately recognise the objects based only on their vibro-acoustic characteristics. A
five-fold cross-validation optimisation approach is described, through which the effects of data set
size and pre-processing type on classification accuracy are assessed. A further assessment of the
ability of the CNN to classify never-before-seen objects belonging to groups of similar objects on
which it has been trained is then described. In both scenarios, the CNN was able to obtain excellent
classification accuracy of over 99.7%. The work described here demonstrates the significant promise
of such an approach as a viable non-contact object recognition technique suitable for various machine
automation tasks, for example, defect detection in production lines or even loose rock identification in
underground mines.

Keywords: vibratory response; vibro-acoustic classification; acoustic fingerprint; non-contact excita-
tion; transfer learning; deep learning

1. Introduction

Laser Doppler vibrometers (LDVs) have numerous advantages over traditional con-
tacting transducers, such as having higher spatial resolution, frequency bandwidth and dy-
namic range [1]. Their optical, inherently non-contact nature enables remote, non-invasive
target vibration measurements, leading to a range of specific benefits in various fields.
For example, measurements on lightweight structures particularly benefit from zero mass
loading, especially for thin-walled elastic structures [2]. Furthermore, standoff distances
of up to hundreds of meters enable measurements from targets in otherwise inaccessible
or particularly hazardous areas. Examples include operational wind turbine [3] and tur-
bomachinery [4] dynamic assessment, and buried land mine detection [5]. In the former
examples, the probe laser beam is directed toward and maintained on the point of interest
on the target during operation, while in the latter, the scattering of ground surface waves
around objects of interest are imaged and interrogated with scanning LDVs.

With computational power increasing seemingly unabated, the application of ma-
chine learning to the interpretation of structural vibration and acoustical measurement
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data has attracted significant interest [6–8]. Recent examples include the use of ground-
penetrating radar data and a convolutional neural network (CNN) to detect the presence
of a landmine [9], recurrence quantification analysis to detect objects buried in the seabed
from raw sonar data [10] and machine learning to perform speaker diarisation from LDV
measurements [11]. It is quite straightforward to imagine the extension of these various con-
temporary vibro-acoustic detection, localisation and classification techniques into solutions
that can be deployed on or from autonomous vehicles, especially since this immediately
extends their application to scenarios in hostile environments that are not suitable for
human presence. However, with this comes the concomitant requirement to remove the
effect of any vibration of the platform on which the sensor suite is mounted. In the case
of LDVs, which are equally sensitive to instrument vibration as to the target vibration,
recent advances have shown that by using the data obtained from correctly positioned
measurement transducers on the LDV or steering optics, the target vibration can be fully
recovered [12,13]. While the mobile deployment of LDVs on autonomous vehicles is yet
to be realised, their successful integration would augment capability in many in-field
applications that have already received interest, for example, buried landmine detection
from mobile platforms [14], orbital seismology [15–17], terrestrial seismology [18] and
structural health monitoring from drones [19], thereby, positioning LDVs as powerful yet
underutilised tools for mobile deployment on autonomous systems.

In this context, this work presents a new addition to the ever-growing body of LDV
applications: non-contact vibro-acoustic object recognition. Up until now, existing acoustic
object recognition approaches described in the literature have tended to involve excitation
techniques that are contact in nature, using either a simple actuator [20,21] or a multiple
degrees-of-freedom robotic arm [22,23] to excite an audible response in the object that is
measured by a microphone. These recorded sounds are then classified using a range of
signal processing and machine learning techniques. Simple actuators have been applied
to excite filled containers using a shake motion [20,21], whereas robotic arms have used
various exploratory behaviours such as lift, shake, drop, crush and push motions in order to be
compatible with a broader range of objects [22,23]. All these techniques have focused mainly
on the identification of household objects and have obtained accuracies as high as 96%.
However, the act of exciting an object via touch has some drawbacks. Firstly, this requires
physical access to the object, meaning the robot must move towards the object, making
the task slower and more complex. Secondly, the object must be excited with sufficient
force to produce an audible response. Therefore, some fragile objects could be damaged
during the excitation, for example, dropping an object made from glass would probably not
be sensible. The new vibro-acoustic object recognition technique presented herein addresses
these drawbacks by proposing an entirely non-contact technique based on an LDV.

This new non-contact vibro-acoustic object recognition technique substitutes the contact-
ing actuator of the robot with an acoustic excitation generated by a loudspeaker. However,
the response generated as a result of this acoustic excitation is orders of magnitude lower
in amplitude than those previously excited via touch, generating little to no detectable
sound. These low-amplitude acoustically excited vibrations have been previously shown
to be detectable for remote acoustic measurements using an LDV due to their inherently
high dynamic range and sensitivity [24,25]. As such, the traditional microphone employed
in previous research is substituted with an LDV acting as an optical microphone, directly
measuring the low-amplitude vibrational response of the object itself, rather than remotely
measuring the sound the object generates as a result of the excitation. The recorded re-
sponses were processed with a range of spectrogram-based techniques, which were then
used to train a CNN via transfer learning. A rigorous five-fold cross-validation was used to
optimise the required training set size and pre-processing technique to show that accuracies
in excess of 99.7% are obtainable when classifying 23 household objects. In order to extend
the technique towards more practical applications, the ability of the technique to classify
objects belonging to broader classes of objects was then evaluated to show the successful
identification of never-before-seen instances of the class with similar near-perfect perfor-
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mance, for example, on variations of soda cans. This near-perfect classification performance
is higher than the existing contact techniques, whilst simultaneously introducing valuable
improved non-contact functionality. Therefore, this method is positioned as a viable object
recognition technique for integration in autonomous systems and potentially even other
machine automation tasks.

2. Data Collection and Preparation
2.1. Object Selection

This work was concerned with the vibro-acoustic characterisation of 23 household
objects shown in Figure 1. The objects were selected to satisfy the following three main
criteria. Firstly, objects were selected to enable this research to remain within the scope of
previous object recognition works [20–23]. Thus, the objects used are comprised of various
common materials including ceramic, glass, plastic, metal and wood. Secondly, triplets of
similar objects were included to assess the sensitivity of the approach to similar objects and
its ability to generalise across broader object classes. As such, there are four main subgroups
composed of three similar objects: (i) table tennis balls, (ii) tennis balls and (iii) full or
(iv) empty soda cans. For example, the system could either distinguish the three tennis
balls from one another or it could identify that a never-before-seen tennis ball is indeed a
tennis ball. Finally, since a rotary stage is used to automatically collect vibro-acoustic data
for each object, the objects must all possess some degree of axial symmetry and be small
and light enough to fit on and be manipulated by the rotary stage.

Figure 1. The 23 household objects characterised in this paper: (a) bottle cap, (b) AA battery,
(c) empty jar, (d) empty container, (e) small wooden block, (f) porcelain mug, (g) metal cup, (h) plastic
cup 1, (i) plastic cup 2, (j) plastic cup 3, (k) table tennis ball 1, (l) duct tape, (m) tennis ball 1, (n)
tennis ball 2, (o) tennis ball 3, (p) table tennis ball 2, (q) table tennis ball 3, (r) empty 375 mL soda can,
(s) empty 250 mL soda can, (t) empty 500 mL soda can, (u) sealed 375 mL soda can, (v) sealed 250 mL
soda can, (w) sealed 500 mL soda can. The empty soda cans were drained of their liquid, while the
sealed soda cans were full of soda.
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2.2. Automated Data Acquisition System

When applying deep learning to a new problem, it is difficult to know in advance how
much data is required to achieve a certain performance outcome. Therefore, a large number
of responses were collected for each object such that the optimal volume of training data
could also be determined. This was tested by only using subsets of the full collected data
to simulate the availability of only smaller data sets. A bespoke automated data collecting
system, as shown in Figure 2, was developed to rapidly enable the collection of hundreds of
measurements per object. Both the rotary stage and the controller were custom-built for this
application. The rotary stage consisted of an Arduino Nano and a 28BYJ-48 stepper motor,
both contained in a 3D-printed housing. A 3D-printed turntable attached to the motor shaft
allowed the samples to be rotated about a vertical axis in front of the speaker and SLDV.
Similarly, the controller consisted of an ESP-32 microcontroller, two 12-bit DACs and an
op-amp circuit, all contained inside a custom 3D-printed housing. Two ±3 V analogue
outputs—one per scanning mirror—and a single digital output to the rotary stage enabled
control of the target rotation and SLDV beam orientation.

system, as shown in Fig. 2, was developed to rapidly enable the collection of

(a)
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(b)

Figure 2. Experimental arrangement: (a) physical set-up with the sound source, measurement beam,
and SLDV measurement grid highlighted, (b) block diagram where solid and dashed lines are wired
and wireless connections, respectively, α and β are the scanning mirror angle command signals, and
γ is the rotary stage angle command signal.

Since LDVs measure the surface velocity of a target at a specific location in the direc-
tion of the laser beam, any change of scan location or beam angle will change the nature
of the measurement and could adversely affect the subsequent object classification accu-
racy. While the object location is fixed in this work, eventual practical application of this
technique to autonomous systems would need to be insensitive to the relative object–robot
positioning. As such, care was taken to ensure that the training data was sufficiently
diverse to be representative of a real application scenario by moving both SLDV steering
mirrors and the rotary stage to collect a total of 864 responses at various locations and
angles of incidences. A schematic of the setup with the relevant dimensions labelled can
be seen in Figure A1. The responses were collected at a 0.6 m stand-off distance over an
8 × 3 grid for every position of the rotary stage. The height and width of this grid on each
object was chosen to be 80% the total height or width of the object. Once measurements at
each of the 24 grid points were acquired, the rotary stage was adjusted by 10 degrees and
another 8 × 3 scan of measurements was collected. This procedure was repeated until the
8 × 3 scans were collected in 10-degree increments around the entirety of the object, giving
864 scans and taking approximately 20 min in total per object.

The entire operation was orchestrated by a Python script running on a laptop (HP
Elite Book HSN-I13C-4; Intel Core i7-8650U @ 2.1 GHz, 16 G RAM). The laptop sent
angle commands to the controller via a USB serial link; the controller then applied the
corresponding voltages to the External Scanner Control (EXT) to adjust the mirror positions,
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and relayed the required object orientation angle to the rotary stage; the EXT is an optional
extra on some Polytec scanning-laser Doppler vibrometers. The acoustic excitation imparted
to the target was a 1 s long, 1 Hz to 20 kHz linear chirp played during each scan using
a loudspeaker (Jaycar AS3007; Sydney, Australia; 125 mm; 5 Ω) via an amplifier module
(Kemo Electronics M032N; Geestland, Germany; 12 W). This frequency range was chosen
to be as broad as possible while still using a standard loudspeaker. The maximum A-
weighted sound pressure level recorded at the target location was 67 dB re 20 × 10−6 Pa
using a sound level meter (Digitech QM1592; Frankfurt, Germany). The resulting vibratory
responses were recorded using the SLDV (Polytec PSV-500 Xtra Scanning Laser Vibrometer;
Waldbronn, Germany; sensitivity: 306.2 mms−1V−1, sensitive range: 20–1250 kHz, velocity
resolution: 0.12 µm/s). Both the excitation and response signals were played and recorded
through the headphone and microphone jacks on the laptop for convenience, using a
sampling frequency of 44.1 kHz.

2.3. Management of Measurement Challenges

Successful macro-scale LDV measurements generally rely on the target surface being
rough on the scale of the optical wavelength. As a result, scattering of the inbound laser
beam occurs, allowing sufficient light to be collected in direct backscatter in the instrument
optics. Importantly, this allows measurements to be made even when the laser beam is not
normal to the target surface. However, surface roughness also results in a de-phasing of
the scattered monochromatic, coherent light, which, in turn, leads to the formation of a
speckle pattern [26]. For a moving target or laser beam, the speckle pattern will change in
sympathy, which can present a number of measurement challenges [1].

While state-of-art LDV systems include increasingly sophisticated attempts to over-
come laser speckle challenges, these may not always be 100% effective. Furthermore, since
externally generated signals controlled the scanning mirrors in this campaign, such features
were not available as part of the acquisition. Another increasingly important feature of
commercially available scanning LDVs is laser beam auto-focusing; this also contributes to
optimising the chances of successful, automated measurements at a range of points across
the surface of a structure. To maximise the collection of useful, high-quality measured
signals in this campaign, a custom solution was developed to handle these two aspects.

Figure 3 describes the measurement procedure from the moment after the laser beam
has been directed to a new grid location on the target. First, the controller emulates a
Bluetooth keyboard connected to the integrated PSV-500 Xtra Data Management System
and issues a Ctrl + E keystroke to have the scanning head complete an auto-focus operation.
With the laser beam focused at the point of interest, the speaker signal is output via
the headphone jack and a recording is made using the LDV via the microphone jack.
The level of this time recording, v(t), is interrogated and, should it exceed a threshold, vT ,
it is rejected on the basis that a high-amplitude-inducing laser speckle noise “drop-out”
might have occurred; otherwise, the measurement is saved. This threshold value is initially
set to twice the root mean square of the first measurement of an object. In the case of
a rejection, the laser beam position is fine-tuned by a 5 mrad scan angle adjustment
sequentially in ±x or ±y and the process is repeated from the autofocus step until a
satisfactory measurement is obtained. If the original location and the four adjusted locations
fail to obtain a suitable measurement, it can be reasonably concluded that the threshold is
too low and the system is incorrectly identifying measurements as containing speckle drop-
outs. As such, the threshold value is increased by 10% to prevent the system from becoming
stuck in an infinite loop and the processes is repeated. This revised threshold value is used
for the entire object and will remain increased for all subsequent measurements, allowing
the system to autonomously determine an appropriate value during the scans for each
object. Finally, once a satisfactory measurement is obtained, the laser beam is directed to
the next position on the grid or the target is rotated to the next rotary stage angle, as shown
in Figure 2a.
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New grid location

Autofocus
Attempt
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max(|v(t)|) > vT

Adjustments
remaining?

Adjust
mirrors

↑ vt 10%
Reset

adjustments

Save
measurement

False
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Figure 2: Flow chart of the measurement process where v is the LDV time mea-
surement and vt is the threshold velocity within the measurement. Adjustments
occur in the order of

3

Figure 3. The measurement procedure where t is time, v(t) is the LDV measurement and vT is the
threshold velocity, initially set to twice the root mean square of the first object measurement.

2.4. Data Pre-Processing

While the 864 responses per object were stored in the form of audio files (*.wav),
these were all processed into images using the laptop for classification purposes to allow a
broad range of available image processing NNs to be utilised. The raw measurements are
publicly available via a link at the end of this paper, and the mean spectra for each object
can be seen in Figure A2. Since pre-processing can have an effect on classification accuracy,
this work will compare four similar but alternative pre-processing techniques. For each
measurement, the first two options are spectrogram, showing the frequency content plotted
against time, and mel-spectrogram, showing the frequency content on a non-linear scale
(the mel scale). The mel-spectrogram uses a non-linear frequency scale based on human
auditory perception and is a common pre-processing technique for audio classification-
based tasks [27,28]. By taking the mean spectra of each object, shown in Figure A2, it
can be noted that most of the object resonances occur in the lower frequencies. As such,
mel-spectrograms are particularly well-suited for this application, since they devote more
image area to these lower frequencies. With a focus on reducing the impact of measurement
noise on classification accuracy, both spectrograms and mel-spectrograms are modified
such that any spurious signal content above the excited frequency is removed; this will be
referred to as “cropping” throughout this paper. This results in a total of four data types:
spectrograms, mel-spectrograms, cropped spectrograms and cropped mel-spectrograms,
as can be seen in Figure 4. Each of these will be used to train a CNN so that the efficacy of
these data pre-processing techniques can be compared.

The pre-processing was implemented in Python using the Librosa library [29]. Each
response was first used to generate a normalised spectrogram with a window size of
1024 samples, or 23.22 ms, which gives a spectral resolution of 0.043 Hz. The windows had
an overlap of 6.25% and a maximum frequency bin of 22.05 kHz. The spectrograms were
then “cropped” between opposing corners, shown in Figure 4c, removing any spectral
information above the excitation frequency by setting these areas of the spectrogram to
zero amplitude. Finally, the mel-spectrograms and the cropped mel-spectrograms were
generated using their spectrogram counterparts with 150 bin frequencies. Convolutional
neural networks (CNNs) were then trained and assessed on each of these four data types,
which were in the form of 496 × 369-pixel images (*.png) as exported by Librosa.
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Figure 4. A response of object (j) shown in the four data types used to train the various CNNs;
(a) spectrogram, (b) mel-spectrogram, (c) cropped spectrogram and (d) cropped mel-spectrogram.
Axes are not presented to the CNN; similarly, the colours represent normalised amplitude.

3. Convolutional Neural Network Regularisation and Training
3.1. Summary of Fundamental Neural Network Concepts

CNNs are a type of neural network (NN) which specialise in processing data with
a grid-like topology, and have therefore excelled at image recognition tasks [30]. Time
domain audio data can be readily represented as images using a range of spectrogram-based
techniques which maintain this three-dimensional grid-like topology; therefore, CNNs
have been commonly used for audio classification tasks [28]. The name and fundamental
structure of an NN is inspired by that of a biological brain, mimicking the way that neurons
in a brain send signals to one another [31]. A simple schematic of a basic NN can be seen
in Figure 5. The input nodes receive information, such as the brightness of a pixel (for a
monochromatic image; otherwise, it is the brightness of a channel within a pixel), and
pass this information on via a connection to a node in the next layer. Each node in the
hidden layers uses the assigned weights of each connection and an internal bias to calculate
an output value (activation functions are not mentioned here for simplicity) [32]. This
process continues until the output layer, where the result can be acquired; for example, the
classification of the image.

Input layer

Multiple hidden layers

Output Layer

Figure 5. A simple schematic of an NN, with circles representing nodes and arrows representing how
information is passed between them. The number of nodes in each layer is not necessarily equal.
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It is the weights and biases that determine the behaviour of an NN; they are selected
through a process known as training. In the case of the supervised learning used herein,
training is performed using a labelled data set, known as a training set. The training set
is used to tune the weights and biases with the intention of matching the NN outputs to
the correct labels. How exactly the weights and biases are tuned is regulated by various
parameters, known as hyperparameters [32]. The correct selection of the hyperparameters
for optimum performance is a vital part of training any NN. One such hyperparameter is
how many epochs an NN is trained for, an epoch being a single iteration of the training
data by the NN, since training involves making repeated iterations over the training data
to arrive at the final weights and biases. Since the NN has only been trained on the training
data, it may be successful within the training data set, but unsuccessful on an unseen data
set; this is known as overfitting and can occur if an NN is trained for too many epochs.

3.2. Regularisation to Prevent Overfitting

While there are a number of techniques available to prevent overfitting, known as
regularisation, this work uses early stopping [33]. Early stopping uses a second data set,
known as the validation set. The NN is not trained on this data set, but it does make
predictions on it. These predictions are used to determine if the NN has made meaningful
generalisations that apply to the validation set, or if the NN is only able to make accurate
predictions on data within the training set. Practically, this means selecting a number of
epochs that minimises both training loss and validation loss, where loss is a number which
captures the accuracy of the NN when making predictions on either data set.

Typically, a data set is either split into 80% training set, and 20% validation set, or,
when particular rigour is required, split into 70% training set, 20% validation set and
10% test set [32]. The test set is set aside in the early stages and is not used during the
training procedure. Therefore, this data set is the most representative when estimating the
real-world performance of the trained NN, as the user may select hyperparameters that
could similarly lead to overfitting on the validation set.

3.3. Training Methodology for Response Classification

Rather than training an NN from scratch, a transfer learning (TL) approach was
applied. TL uses an NN that has already been trained for a different but related task and
retrains it for the new task, thus “re-purposing” the NN. Since only the weights and biases
closer to the output are tuned, the network retains some knowledge learned from the initial
data set. TL has three main general advantages over training an NN from scratch [34].
Firstly, the initial accuracy, after one epoch of training, will be higher. Secondly, the rate
of improvement with increasing epochs will be steeper. Finally, once the performance
plateaus with increased epochs, it will still remain higher than traditional techniques. These
advantages are due to the NN applying general knowledge learned from the pre-training
data set to the new data set, which increases the contextual knowledge available to the NN.

The pre-trained CNN used in this research was ResNet-18 [35], which is pre-trained
on the ImageNet database [36]. At only 18 layers deep, it is relatively lean, with training
and subsequently running the CNN thereby requiring less time and processing power
than its larger counterparts. TL was used to retrain the CNN on the Google Colab cloud
platform using Python and the Fastai library [37]. Since a Google Colab Pro membership
was used, the graphical processor unit used in this work was either a NVIDIA V100 or
A100, depending on availability. All CNNs described herein were trained using a batch
size of 16 and for 14 epochs using the fit.one_cycle function. This method of training is
an implementation of cyclical learning rate [38,39] and super-convergence [40] principles.
Practically, this means that the hyperparameters of learning rate, momentum and weight
decay are automatically determined, leading to CNNs that can outperform those created
using traditional hyperparameter tuning techniques for some applications [40]. In this
work, it is sufficient to use accuracy as the performance metric, as the data is balanced,
meaning each class contains the same number of responses [41]. During the analysis of
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the data, in some instances, the data may be split in such a way that some classes contain
one more or less response than the others. For example, the 10% test set split of all
19,872 responses results in 1987.2, as such the resulting test set contains 1987 responses.
This is a common occurrence and will introduce a negligible bias into the accuracy-based
performance assessment, whereas for larger class imbalances roughly ranging up from a
two times difference, other performance metrics become more reliable, such as F1-score [42].

4. Response Classification Performance Assessment

This section will assess the performance of this vibro-acoustic object recognition
technique in two main regards: firstly, the ability to distinguish all 23 objects from one
another and secondly, the ability of this technique to generalise across broader object classes
to recognise never-before-seen instances of an object class.

4.1. The Effects of Pre-Processing and Training Set Size on Classification Accuracy

This subsection will focus on the effects of the data pre-processing and training set size
on the classification accuracy. Here, 864 responses for each of the 23 objects in Figure 1 were
used to generate the four data types shown in Figure 4. This yields 19,872 images for each
of the four pre-processing techniques, labelled according to Figure 1 using numbered file
names. Of these, 10% are kept aside as a test set to be used later to determine the accuracy
of each CNN. This test set is comprised of the same 1988 responses for each technique, but
with different pre-processing applied. Since 1988 is not a multiple of 23, there are either 86
or 87 responses for each object class. The remaining 17,884 images are used as the training
set. To simulate smaller data sets, the number of responses is also reduced by the factor
m = 1, 2, 4, 6, 8, 10. Over the six training set sizes and four pre-processing techniques, there
are a total of 24 data sets used for this section.

A 10% randomly selected stratified sample was set aside as the test set for each
pre-processing type to subsequently evaluate the performance of the trained CNNs. Five-
fold cross-validation was then applied to rigorously compare the effects of the four pre-
processing techniques on the CNN performance. This divides the remaining data into
five “folds”, four of which are used to train the CNN, with the remaining fold used to
validate its performance. This process is repeated five times to generate five separate CNNs
for each data set, each of which uses a different fold as the validation set. This means
that every piece of data not in the test set is used to both train and validate the CNNs,
generating a total of 120 CNNs for the 24 data sets. For a fair comparison, all CNNs for all
values of m must be compared against the same test set for each pre-processing type. There-
fore, the metrics presented in this section were always generated using the same test set,
but with differing pre-processing applied for the four techniques. This procedure is de-
picted in Figure 6.

The results of the five-fold cross-validation for the 24 data sets can be seen in Figure 7.
The overall trend for all four pre-processing techniques is that a larger sample size yields
a higher accuracy as all four techniques tend towards 100%. However, as the sample
size decreases, the performances of four techniques begin to diverge. The overall worst
performing CNNs used spectrograms, reaching as low as 72.16% for 78 responses used per
object. The second-best technique was the cropped spectrogram; however, it performed
fairly similarly to mel-spectrograms, with a maximum difference in performance of only
about 2%. Finally, the CNNs utilising cropped-mel-spectrograms performed universally
best of the four techniques and exhibited a considerably lower sensitivity to sample size
than the other techniques, while also being the most accurate when the entire data set was
used. The mel-spectrograms obtained an accuracy of 87.74% while only being trained on
78 responses per object. This training set size is arguably small enough to make manual
data acquisition a viable alternative to the bespoke automated arrangement used here.

The expanded plot in Figure 7 shows more clearly the results at the largest sample
size. It can be seen that all four techniques obtained a performance above 98.64% with
non-overlapping standard deviations. Overall, spectrogram CNNs performed the worst;



Sensors 2022, 22, 9360 10 of 20

however, the cropped spectrograms CNNs gained a performance boost of over one per-
centage point. Similarly, cropped mel-spectrogram CNNs outperformed mel-spectrogram
CNNs by about half a percent. Overall, cropping seems to have the expected effect on the
performance, as the CNNs can generalise more effectively if there is less irrelevant infor-
mation within each image. Similarly, mel-spectrograms perform better than spectrograms,
likely caused by the higher density of object resonances at the lower frequencies, where
mel-spectrograms devote more image area, therefore allowing the CNNs to generalise more
effectively. Thus, the remainder of this paper focuses on cropped mel-spectrograms as
the primary datatype with the full data set for the CNNs, as their classification accuracy
exceeds that of the others.

Figure 6. A depiction of the five-fold cross-validation procedure used to compare the four pre-
processing techniques at six sample sizes. m represents the fraction of the data set used in the five-fold
cross-validation, A is the accuracy obtained for each split, Ā is the mean accuracy of all five splits, σ

is the associated standard deviation, Nsplit is the total size of that split of the training data set and
Ntest is the test set size.

Figure 7. The accuracy and the associated standard deviations of the CNNs utilising the four data types
as the combined size of the training and validation set is decreased. An expanded plot representing
four data points is overlaid to the right.

Figure 8 shows the confusion matrix for one of the five mel-spectrogram CNNs using
the full data set. A confusion matrix with 100% accuracy would only have predictions lying
on the diagonal from the top left to the bottom right, as this corresponds to the predicted
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label being equal to the true label. From this, it can be seen that the CNN made errors in two
main regions of the confusion matrix, that is, two errors where it mistook the table tennis
balls (p) and (q) for one another once and when it mistook the tennis balls (m), (n), and (o)
for one another a further four times. These errors could likely be removed by including a
larger data set, allowing the CNN to generalise more effectively; by using a larger CNN,
such as ResNet-34, enabling the extraction of more complex features; or by increasing the
spectral range and spectral resolution of the spectrograms, allowing the identification of
more features. Despite the potential improvements, in its current form, the performance
of this CNN rivals existing contact object recognition techniques. Direct comparison to
existing work is difficult, as they all utilise a different number of objects (ranging from 12
to 50) with some using filled containers [21,23] rather than solid objects [22], or both [20].
However, these can be summarised as performing from within the range of 85.5% [23] up
to 98.2% [22], with the highest performing work using the most similar objects to those
used in this work. This contextualises the technique presented herein as a viable alternative,
not only increasing recognition accuracy, but also introducing non-contact functionality.

Figure 8. The confusion matrix for one of the five mel-spectrogram CNNs making predictions on the
test set. Highlighted for convenience are the two groups of objects where erroneous predictions were
made: in red, (k), (p) and (q) are the table tennis balls; in green, (m), (n) and (o) are the tennis balls.

4.2. Sensitivity to Broader Object Classes

While the previous subsection has shown that it is possible to recognise specific objects
using their vibrational response to an acoustic excitation, it has not yet been established
if this technique can be used to recognise a broader class of similar objects, for example,
to recognise any soda can rather than a specific soda can. The few errors shown in Figure 8
are a subtle indicator that, acoustically, these four groups of like objects may share some
features; hence why a person can easily distinguish the sound of any table tennis ball
bounce to that of any other type of ball. As such, the ability of the system to classify
objects into broader classes is the focus of this section. To do this, the CNN must be able to
generalise features related to all the included soda cans and be able to correctly identify
features of an unseen soda can. As such, this section utilises the grouped objects: table
tennis balls—objects (k), (p) and (q); tennis balls—objects (m), (n) and (o); empty soda
cans—objects (r), (s), (t); and the sealed soda cans—objects (u), (v), (w). The CNN was
trained on two of the three objects within each group, labelled as the same class, as well as
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all of the previous objects, minimising the likelihood that the results occur due to chance.
This means that the accuracy can then be obtained using the third (unseen) object within
each group. This experiment will show that the CNN is able to generalise features common
to all three objects within each group, despite having seen only two of them.

Figure 9 illustrates how the data were labelled for this section, achieved by modifying
the file names, through which the classes are assigned. Here, a new ResNet-18 CNN was
trained using 864 cropped mel-spectrograms for each of the single objects, as per the
previous section, but also on four pairs of objects belonging to each of the four groups,
again with 864 scans per object. The box in the figure titled “training and validation set”
was split into the standard portions of 80% training set and 20% validation set. However,
since the performance metric of interest here is how accurately the CNN can classify
never-before-seen items belonging to a specific group, the test set consists only of the four
hold-out objects.

(a) (b) (c) (d)

(i) (j) (l)

(t)           (s)

(m) (o)

(k) (p)

Single
Objects

Grouped 
Objects

Tennis balls

Sealed soda
cans 

Table tennis
balls

Test set

(r)

(q)

(n)

Training and validation set

(e) (f) (g) (h)

(w) (v) (u)

Empty soda
cans 

Figure 9. The 23 objects labelled as single objects or grouped objects. Here, there are four groups of
objects, tennis balls, table tennis balls and either full or empty soda cans. Each object in this represents
864 mel-spectrograms.

The confusion matrix for this test set can be seen in Figure 10. Overall, the CNN
correctly predicted the class of the hold-out object 99.83% of the time. Unsurprisingly,
the most common prediction error was between the full and empty cans, but this is still
a comparatively small number of mistakes when compared to the number of correct
predictions and would likely decrease if the CNN was given more than two soda cans
during the training phase. There is one cited work which similarly looks at broader object
classes rather than classifying individual objects [20]. In that work, only three object classes
were excited using a simple shake actuator, consisting of filled bottles of water, pieces of
paper and, finally, rigid objects, which make no noise. This work showed that a never-
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before-seen object belonging to the broader object classes could be recognised with an
accuracy of up to 95.8%. However, with such a small number of classes in the data, there is
a 33.3% chance that the classifier can obtain the correct output. Similarly, the chosen objects
do not represent the most challenging selection. Regardless, the non-contact acoustic object
recognition technique presented herein outperforms this technique, obtaining near-perfect
classification despite a total of 15 potential class outputs.

Figure 10. The confusion matrix of the test set used to assess the ability of the technique to detect
broader classes of objects.

5. Conclusions and Future Work

This work aimed to show that the applications of non-contact vibro-acoustic measure-
ment using a loudspeaker and a laser Doppler vibrometer (LDV) could be expanded to
object recognition. This technique can rapidly recognise previously characterised objects
within seconds by exciting a small vibrational response using a loudspeaker measured
using an LDV and classified using a convolutional neural network (CNN), which was
trained using transfer learning based on ResNet-18. The technique was developed and
verified using 23 household objects; however, it is not only limited to household objects.
A bespoke, automated vibro-acoustic response measurement system was developed specifi-
cally to enable the rapid collection of quality raw time data. These were then pre-processed
into images for use with the CNN as four data types: spectrograms and mel-spectrograms,
with and without cropping the image above the excitation frequency.

The paper first looked at how the pre-processing approach and training set size
may affect the accuracy of the object classification predictions. From this, three main
observations can be made. Firstly, all the CNNs’ accuracies increased for larger training set
sizes; this is not surprising, as it is a fairly typical outcome. Secondly, the CNNs utilising
mel-spectrogram inputs performed better than those utilising spectrograms. This is likely
due to the higher density of resonances at the lower frequencies, therefore dedicating more
space to these in the spectrogram image and allowing for more effective classification and
generalisation. Lastly, removing any spectral information in the scan above the frequency
being excited at that time instant (cropping) increased the accuracy. This is likely due to
the cropped region containing mostly noise, which inhibits the CNN’s ability to effectively
generalise. While all the pre-processing techniques lead to a sufficiently high accuracy when
the training set size was at its largest, the use of cropped mel-spectrograms outperformed
the others with an accuracy of 99.74 ± 0.15% on the test set. As such, only the full mel-
spectrogram data set was used to train CNNs in the subsequent section.
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While the aforementioned performance is near-perfect, a practically viable object
recognition technique must be able to detect broader classes of objects, not just specific
ones, for example, all soda cans, not just one specific soda can. To test this, four triplets
of similar objects were grouped together so that the CNN could generalise across them.
When the CNNs predicted the class of the never-before-seen third item in the groups, an
accuracy of 99.83% was obtained, confirming that this approach constitutes a practically
viable object detection technique. It is important to note that when generalising to unseen
objects, the broader object class must contain some vibro-acoustic similarities; however, it
can be reasonably expected that a sufficiently large and diverse training set should still
yield performance comparable to that described here.

While this paper has focused on object recognition, it has been shown that this tech-
nique is highly sensitive to slight differences in the objects, while also being capable of
learning broader object classes. These characteristics open up many potential applications
within various other fields. For example, this technique could be used for defect detection
in production lines, where physical changes in an item will subtly modify its acoustic
fingerprint. This is useful when all that is of concern is that a defect is present in an item,
not what exactly the defect is; similar to the role checksums play in computing. Therefore,
rather than manually inspecting parts for defects, the objects may be excited to ensure the
vibrational response is within the limits of “good” responses contained in the training data.
Similarly, the response of objects containing a defect may constitute another class, such that
they may be similarly detected and discarded. This application may even be simpler than
the object detection tasks described here if the parts on the production line all share the
same orientation and locations on the production line, therefore allowing both the training
data and the classification measurement to be conducted from the same point on the object
and removing the need for the rotary stage during the acquisition of training data.

Another potential application is the identification of loose rocks in underground mines.
Current techniques depend on a worker tapping the roof with a bar and listening to the
sound to determine if it is loose, known as “roof sounding” [43]. A more high-tech solution
employs the use of a vibration sensor, which is similarly tapped on the roof to identify
loose rock [44]. However, both require workers enter the newly created area. Therefore,
the introduction of a non-contact remote alternative technique would reduce the risk to hu-
man life. Here, the roof can be excited remotely using either acoustic or seismic techniques
(for example, tapping the walls from a safe distance), while the SLDV remotely measures
the response of various locations on the roof. Training data would be required to be labelled
as either “secure” or “loose”. The collection of such data may be the most challenging
aspect, potentially requiring a skilled roof sounder to assist. With the performance de-
scribed herein, this technique could likely match that of a skilled roof sounder, potentially
outperforming them if higher-quality training data could be acquired by alternative means.

Despite the technique’s promising performance, there remain some aspects of the
system that require further investigation and refinement. Firstly, the loud audible chirp
used for exciting the response in the samples makes the system unpleasant to nearby people.
Therefore, it is important to use non-audible frequencies to excite the target. Secondly,
to increase the range, the energy of the speaker should be directed in the approximate
direction of the target, rather than being lost to the surroundings. Therefore, integrating an
ultrasonic parametric speaker to perform the excitation is an ideal next step for the system,
with an investigation into other excitation signals and frequency ranges. Then, an in-depth
investigation into the effects of object distance and sound reflections can be conducted.
Finally, the automatic acquisition procedure could be modified to accommodate larger
objects with more complex geometries that may not fit onto a rotary stage.
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Appendix A

Figure A1. (a) side view and (b) top view schematic of the test apparatus with the relevant approxi-
mate dimensions annotated and the measurement beam highlighted in red.

https://data.mendeley.com/datasets/7km4xcx5hb/2
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Figure A2. Cont.
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Figure A2. Cont.
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(w)

Figure A2. Mean spectra of all 864 Hann windowed responses for each object as measured through
the laptop microphone port; as such, the amplitude has no units. Subfigures (a–w) corresponding to
objects (a–w), respectively.
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