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Abstract: Many people struggle with mobility impairments due to lower limb amputations. To
participate in society, they need to be able to walk on a wide variety of terrains, such as stairs,
ramps, and level ground. Current lower limb powered prostheses require different control strategies
for varying ambulation modes, and use data from mechanical sensors within the prosthesis to
determine which ambulation mode the user is in. However, it can be challenging to distinguish
between ambulation modes. Efforts have been made to improve classification accuracy by adding
electromyography information, but this requires a large number of sensors, has a low signal-to-noise
ratio, and cannot distinguish between superficial and deep muscle activations. An alternative sensing
modality, A-mode ultrasound, can detect and distinguish between changes in superficial and deep
muscles. It has also shown promising results in upper limb gesture classification. Despite these
advantages, A-mode ultrasound has yet to be employed for lower limb activity classification. Here
we show that A- mode ultrasound can classify ambulation mode with comparable, and in some
cases, superior accuracy to mechanical sensing. In this study, seven transfemoral amputee subjects
walked on an ambulation circuit while wearing A-mode ultrasound transducers, IMU sensors, and
their passive prosthesis. The circuit consisted of sitting, standing, level-ground walking, ramp ascent,
ramp descent, stair ascent, and stair descent, and a spatial–temporal convolutional network was
trained to continuously classify these seven activities. Offline continuous classification with A-mode
ultrasound alone was able to achieve an accuracy of 91.8 ± 3.4%, compared with 93.8 ± 3.0%, when
using kinematic data alone. Combined kinematic and ultrasound produced 95.8 ± 2.3% accuracy.
This suggests that A-mode ultrasound provides additional useful information about the user’s gait
beyond what is provided by mechanical sensors, and that it may be able to improve ambulation
mode classification. By incorporating these sensors into powered prostheses, users may enjoy higher
reliability for their prostheses, and more seamless transitions between ambulation modes.

Keywords: A-mode ultrasound; ambulation mode classification; above-knee amputee; transfemoral
amputee; lower-limb powered prosthesis; user intent recognition; sonomyography; neural signals

1. Introduction

Limb loss affects 1.6 million people in the United States [1], and of these, 22% are
transfemoral amputees [2]. In order to restore their ability to walk in the community, they
need prostheses that allow them to walk on a wide variety of terrains, such as ramps,
stairs, and level ground. Most available prostheses are passive devices and do not allow for
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activities that required net-positive energy, such as climbing stairs step-over-step [3]. Pow-
ered prostheses aim to address this limitation with battery-operated servomotors, sensors,
and control. Current powered prostheses handle different types of terrain by using differ-
ent ambulation-specific controllers. Therefore, to seamlessly transition between different
terrain, the prosthesis must recognize the user’s intended ambulation task (e.g., walking,
stairs climbing) [4]. Failure to recognize the user’s intended ambulation task can lead to
gait instability or falls as the powered prosthesis may generate a behavior which is not
compatible with the intended ambulation tasks, such as bending the prosthesis knee when
it should be extended [5]. Thus, we need accurate ambulation-task predictions for powered
prosthesis to become viable in real life.

Ambulation mode prediction is generally achieved using supervised machine learn-
ing [4]. Basically, a machine learning model is trained using a testing dataset that contains
labelled data of one or more persons with amputation walking on different terrains and
performing different ambulation tasks. Proper selection of sensors to embed in the pros-
thesis is critical to the success of this classification approach. Mechanical sensors, such
as inertial measurement units (IMUs) or load cells [6–16] are commonly used in powered
prostheses [17]. IMUs detect the acceleration and orientation of a segment of the prosthetic
leg, while load cells detect the interaction force of the user on the prosthesis. Each of these
sensors have inherent limitations, as IMUs can be affected by drift and walking speed, while
load cells can struggle to classify mode during swing phase, when the forces and moments
on the prosthesis are minimal [17]. Thus, additional sensor modalities are necessary to
improve the accuracy of classification in powered prostheses.

Researchers have attempted to improve classification accuracy using sensors that
monitor more than just the motion of the prosthesis or the physical interaction with the en-
vironment. For example, researchers have used sensors that monitor the environment such
as range finder [18,19], 2D cameras [20], and depth cameras [21–23]. Moreover, researchers
have proposed using sensors that can detect the muscle activations of the user such as force
myography [24], surface electromyography (EMG) [25–27], and sonomyography [28]. EMG
is the most common sensor modality used for this purpose. Although using EMG alone
leads to lower accuracy than mechanical sensors alone, combining EMG with mechanical
sensors can increase the classification accuracy [29–31]. Several studies have adopted
the combined EMG/mechanical sensor approach [32–44]. However, EMG has intrinsic
limitation such as the low signal-to-noise ratio [45], crosstalk in neighboring muscles [46],
and the inability to distinguish between superficial and deep muscle activations [45]. Thus,
classification accuracy may be improved by using a sensor modality that can provide a
more reliable estimate of muscle activations.

An alternate approach to detecting muscle activity is muscle ultrasound, commonly
known as sonomyography. Ultrasound transducers send a soundwave into the limb and
measure the reflection back from different tissue layers. The propensity to reflect rather
than transmit the sound (i.e., echogenicity) varies between different types of tissues. The
recorded changes in the echogenicity pattern of the tissues reflect changes in the muscle
shape. While electromyography and sonomyography both measure muscle activity, there
are differences between them that may affect their suitability for neural control, specifically,
ambulation mode recognition. Electromyography measures the electrical activity of the
muscles. It increases with greater motor unit recruitment and faster firing rate of motor
units. This could be expected to correlate with contractile muscle force. In contrast,
sonomyography measures muscle deformation, which depends on both the joint angle and
the contractile muscle force. In addition, muscle deformation can be influenced by pressure
applied to the leg externally. Notably, sonomyography can differentiate between muscles
at different depths and is unaffected by crosstalk from neighboring muscle activity. Thus,
sonomyography can theoretically address some of the limitations identified with EMG.

Ultrasound sensors are available in different configurations. The most common type,
B-mode ultrasound, uses an array of transducers to produce a two-dimensional image of the
tissue cross-section. This sensing modality has been used for ambulation mode recognition
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in able-bodied subjects, and showed that sonomyography of the quadriceps with a linear
discriminant analysis classification scheme can continuously classify ambulation mode
better than surface EMG signals from muscles that span the hip, knee, and ankle [28].
However, these transducer arrays are inefficient, bulky, and difficult to integrate with the
socket of a prosthesis in their current form factor, which limits the feasibility of using them
for transfemoral amputees. In contrast, A-mode ultrasound uses a single transducer, and
creates a one-dimensional image of the tissue. Although A-mode ultrasound provides much
less comprehensive information about the muscle tissue, A-mode systems are substantially
smaller and lighter, so they can easily be integrated with the socket. Thus, A-mode
ultrasound has the potential to address some of the limitations of EMG without negatively
affecting clinical viability.

A-mode ultrasound has shown promising results in upper-limb gesture classification
among able-bodied subjects [47]. It can result in higher classification accuracy and is more
robust to fatigue than EMG [48,49]. However, upper-limb gesture recognition involves
classifying a static pose, rather than a cyclical movement as in ambulation mode recognition.
In addition, the pressure applied by the socket of an upper-limb prosthetic varies less than
a lower-limb prosthetic, which alternates between weight-bearing and non-weight-bearing
throughout the gait cycle. Some of the changes in the ultrasound signal in the lower
limb may be attributed to this significant change in pressure, rather than solely due to
muscle contractions of the user. Thus, the viability of A-mode ultrasound for ambulation
classification in lower-limb prostheses is unknown.

In this study, we provide the first demonstration of A-mode ultrasound for ambu-
lation classification in individuals with transfemoral amputation. Specifically, we used
four A-mode ultrasound sensors to continuously classify the ambulation mode of seven
transfemoral amputee subjects walking in an ambulation circuit with level and inclined
walkways and different sets of stairs. We use a spatial temporal convolutional network to
classify level-ground walking, stair ascent, stair descent, ramp ascent, ramp descent, sitting,
and standing. We compare the performance of sonomyography-based classification on
different ambulation modes and explore the types of errors made by the classifier. We also
compare the accuracy of sonomyography-based classification, IMU-based classification,
and classification using a combination of sonomyography and IMU data. By providing the
first demonstration of A-mode ultrasounds in transfemoral amputees, this study builds
the foundation for future research aiming to improve classification accuracy in powered
prostheses, a prerequisite for clinical viability.

2. Materials and Methods

Seven subjects with a transfemoral amputation participated in the study. Subject
characteristics are shown in Table 1. The subject pool consisted of five men and two women,
aged between 29 and 68 years old. Subjects were 1–22 years post amputation. Five subjects
used a suction socket suspension while the remaining two used a lanyard style socket
suspension. The study was conducted in accordance with the Declaration of Helsinki, and
approved by the Institutional Review Board of The University of Utah (Protocol #00103197,
approved 16 June 2021). Informed consent was obtained from all subjects involved in
the study.

The A-mode ultrasound system used in this study is shown in Figure 1a and consists
of four transducers sampled sequentially at 80 Hz [50]. This portable ultrasound system
was worn by the subject and transferred data to a laptop located on a desk via an ethernet
cable. The ethernet cable was routed through an overhead track to avoid interference with
the subject when they ambulated in the circuit. The ultrasound system was strapped to
the subject’s waist, and the transducers were placed on the anterior and posterior side
of the subject’s residual limb, as shown in Figure 1b,c. To place the sensors, the subject
first removed their passive prosthesis and liner. They were then asked to flex and extend
their hip on the amputation side. The approximate location of the rectus femoris and
biceps femoris muscle bellies were identified through muscle palpation. Ultrasound gel
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and a pair of transducers were placed on each of these muscle bellies, and the ultrasounds
signals were observed as the subject flexed and relaxed their muscle. The transducers were
shifted slightly until a strong change in the signal was observed with muscle flexion. The
transducers were then secured to the skin with kinesiology tape. The subject then placed
their liner over the sensors and donned their socket and passive prosthesis. They were then
instructed to walk around to check that the sensors did not interfere with socket suction or
comfort. If needed, the sensor position was adjusted.

Table 1. Subject information.

Subject Age Years since
Amputation

Socket
Suspension Sex Weight (kg) Height (m)

AK1 29 8 Suction Male 65 1.78
AK2 68 5 Suction Male 70 1.70
AK3 32 13 Lanyard Female 59 1.60
AK4 32 4 Suction Male 77 1.80
AK5 53 22 Suction Male 100 1.93
AK6 54 2 Suction Male 78 1.73
AK7 31 1 Lanyard Female 59 1.68
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Figure 1. Sensor placement: (a) A-mode ultrasound system, with dime for scale. (b) Anterior US
transducers placement. (c) Posterior US transducers placement. (d) Subject equipped with US system
and IMU sensors.

Walking kinematics were recorded with an inertia measurement unit (IMU)-based
system (Xsens MVN, Enschede, Netherlands [51]). After the ultrasound transducers were
in place, the IMUs were placed on the pelvis, thighs, shanks, and feet of the subjects
(Figure 1d), and the system was calibrated. Data was recorded on a separate laptop at
80 Hz to match the ultrasound system recording rate. The ultrasound and motion capture
data were synchronized by using a DAQ system (National Instruments USB-6001) to trigger
the motion capture recording simultaneously with the ultrasound recording.

The subjects were then asked to complete 20 laps of the ambulation circuit, shown
in Figure 2. The circuit began with the subject sitting quietly for 3 s. Subjects then stood
and walked across level ground, ascended a flight of 4 stairs, and continued walking until
having to turn and descend 2 stairs. Subjects then walked on level ground to reach a ramp,
which they then descended. The ramp slope was 1:12 and the stair height was 7 inches.
The ramp descent was followed by level-ground walking, which brought subjects to the
mid-point of the circuit, where they were instructed to turn around and stand quietly for
3 s. After the quiet standing, subjects went through the reverse of the ambulation circuit.
This involved level ground walking, followed by ramp ascent, level-ground walking, stair
ascent of 2 stairs, level-ground walking, stair descent down 4 stairs, and level-ground
walking up to the chair at the start. After reaching the chair, subjects turned around and sat
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down. The trial was completed once the subject was resting in a sitting position. While the
subject walked on the circuit, an experimenter clicked a button at the transitions between
different ambulation modes, which synced with the sonomyography program to record the
ambulation mode. The ambulation modes recorded were: sitting, sit-to-stand, standing,
stand-to-sit, pivot, level walking, stair ascent, stair descent, ramp ascent, and ramp descent.
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2.1. Data Processing

Both the A-mode ultrasound data and the joint kinematics data were exported to and
processed offline in MATLAB (Mathworks, Natick, MA, USA). At each time frame, the
ultrasound system recorded a signal consisting of 997 sample points from one channel. The
system iterated through the four channels, so that every fourth timeframe corresponded
to the same ultrasound transducer being updated. The signal was zero-centered, rec-
tified, and its envelope was calculated through a moving average convolution (sliding
window of 77 sample points). Next, the signal was cropped to 960 sample points, with the
37 deepest datapoints being discarded. The signal was then segmented into 48 windows of
20 sample points. The mean of each window was calculated, resulting in 48 features for a
single channel. This process is similar to upper-limb work described in [52]. The ultrasound
data was then temporally segmented into overlapping windows of 1.25 s, or 100 time points.
This was to capture the cyclical movement of the gait cycle, which can increase the steady-
state accuracy of classification [15]. The windows overlapped by 99 time points, such that
a classification would be made for every time frame. The final feature set consisted of
4 matrices of 100 rows and 48 columns. Each matrix represented one sensor, with the rows
corresponding to the temporal dimension, and the columns corresponding to the spatial
dimension. The label corresponds to the ambulation mode of the final timeframe. The
window size of 100 timepoints was chosen through Bayesian optimization on a pilot data
set. The results of this optimization are shown in Supplementary Figure S1.

The features selected from the IMU data were the position, velocity, acceleration,
orientation, angular velocity, angular acceleration, sensor free acceleration, sensor magnetic
field, and sensor orientation of the thigh, shank, and foot, as well as the direction, velocity
and acceleration of the hip, knee, and angle, and the foot contacts on the amputation
side, for a total of 113 pieces of information per time frame. This information was chosen
as it represents the data typically available within a powered prosthesis. The data was
similarly segmented into overlapping windows of 1.25 s, or 100 time frames. The label
again corresponds to the ambulation mode of the final timeframe.

After the data was segmented into overlapping windows, datapoints labeled “sit-to-
stand,” “stand-to-sit”, and “pivot” were discarded. This was due to the small number of
datapoints containing these labels. The data from the 20 ambulation circuits were divided
into training, testing, and validation datasets. Two laps of the ambulation circuit were
reserved for the testing and validation of datasets, and the remaining laps were used for
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the training set. Validation and testing circuits were chosen as the middle two circuits to
mitigate any potential effects of subject fatigue or sensor drift.

Three convolutional neural networks were designed to classify the ambulation mode
using sonomyography data, kinematic data, or both. The network architectures are shown
in Figure 3. The sonomyography classifier has a four-branch structure, with the signal from
each of the four sensors as an input to a branch. Each branch consists of four blocks, that
each contains a two-dimensional convolutional layer, a batch normalization layer, a ReLU
activation layer, and a max pooling layer. Finally, the outputs of the four branches are added
together and sent through a fully connected layer, a SoftMax layer, and a classification layer.
The kinematic classifier has one branch, which receives all the kinematic data as an input. It
has a similar structure of repeating blocks, but the convolutional layer is one-dimensional
(along the temporal dimension). The combined data network structure takes the structure
of the previous two networks and combines them. The complexity of the sonomyography
classifier is 332 MFLOPS. The kinematic classifier has a complexity of 141 MFLOPS. The
combined classifier has a complexity of 473 MFLOPS.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 15 
 

 

datapoints containing these labels. The data from the 20 ambulation circuits were divided 
into training, testing, and validation datasets. Two laps of the ambulation circuit were 
reserved for the testing and validation of datasets, and the remaining laps were used for 
the training set. Validation and testing circuits were chosen as the middle two circuits to 
mitigate any potential effects of subject fatigue or sensor drift. 

Three convolutional neural networks were designed to classify the ambulation mode 
using sonomyography data, kinematic data, or both. The network architectures are shown 
in Figure 3. The sonomyography classifier has a four-branch structure, with the signal 
from each of the four sensors as an input to a branch. Each branch consists of four blocks, 
that each contains a two-dimensional convolutional layer, a batch normalization layer, a 
ReLU activation layer, and a max pooling layer. Finally, the outputs of the four branches 
are added together and sent through a fully connected layer, a SoftMax layer, and a clas-
sification layer. The kinematic classifier has one branch, which receives all the kinematic 
data as an input. It has a similar structure of repeating blocks, but the convolutional layer 
is one-dimensional (along the temporal dimension). The combined data network structure 
takes the structure of the previous two networks and combines them. The complexity of 
the sonomyography classifier is 332 MFLOPS. The kinematic classifier has a complexity 
of 141 MFLOPS. The combined classifier has a complexity of 473 MFLOPS. 

 
 

 
 

(a) (b) (c)  

Figure 3. Classifier algorithm architecture: (a) Sonomyography spatial–temporal convolutional network. 
(b) Kinematic temporal convolutional network. (c) Combined sonomyography and kinematic network. 

The convolutional neural network approach was chosen to take advantage of the re-
lationship between data points that are adjacent spatially or temporally. It also produced 
better initial results on a single-subject pilot data set than a support vector machine, linear 
discriminant analysis, logistic regression, k-nearest neighbor, decision trees, naïve Bayes, 
or fully connected neural network classifier. The network structures for the sonomyogra-
phy data and the kinematic data were chosen through testing on data collected from the 
pilot test. The number of repeated blocks, convolutional window size and stride length, 
and the pool size and stride length were selected through Bayesian optimization to pro-
vide the highest accuracy on that data set. The pilot data used to design the networks was 
not included in this study. 

2.2. Outcome Measures 
The accuracy, precision, recall, and F1 scores were calculated for each subject, and 

the mean and standard deviation of the group are reported. The accuracy for the entire 
dataset was defined as 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠  (1) 

Figure 3. Classifier algorithm architecture: (a) Sonomyography spatial–temporal convolutional
network. (b) Kinematic temporal convolutional network. (c) Combined sonomyography and kine-
matic network.

The convolutional neural network approach was chosen to take advantage of the
relationship between data points that are adjacent spatially or temporally. It also produced
better initial results on a single-subject pilot data set than a support vector machine, linear
discriminant analysis, logistic regression, k-nearest neighbor, decision trees, naïve Bayes, or
fully connected neural network classifier. The network structures for the sonomyography
data and the kinematic data were chosen through testing on data collected from the pilot
test. The number of repeated blocks, convolutional window size and stride length, and
the pool size and stride length were selected through Bayesian optimization to provide
the highest accuracy on that data set. The pilot data used to design the networks was not
included in this study.

2.2. Outcome Measures

The accuracy, precision, recall, and F1 scores were calculated for each subject, and the
mean and standard deviation of the group are reported. The accuracy for the entire dataset
was defined as

accuracy =
correctly classi f ied datapoints

total datapoints
(1)
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The precision of each ambulation mode was defined as

precisioni =
datapoints correctly classi f ied as modei

total datapoints classi f ied as modei
(2)

The recall of each ambulation mode was defined as

recalli =
datapoints correctly classi f ied as modei

total datapoints belonging to modei
(3)

The F1 score of each ambulation mode was defined as

F1 scorei = 2 × precisioni × recalli
precisioni + recalli

(4)

The confusion matrix of the true and predicted ambulation modes for each timeframe
in the test dataset was generated for each subject. It was normalized by dividing by the
total number of datapoints in the test dataset. The group confusion matrix was calculated
by taking the mean of the normalized confusion matrices and multiplying it by the mean
number of datapoints in the test dataset.

For error analysis, consecutive misclassifications were grouped together into er-
ror segments. The duration of the error segment was calculated as the total time that
the classifier was in an error state. For example, each timeframe is 12.5 ms apart, so
four consecutive misclassified timeframes would be considered a single error segment
with a duration of 50 ms. The time to transition of the error segment was calculated
as the shortest time between any of the datapoints in the error segment, and the closest
transition. For example, if an error segment began 2.5 s after a mode transition, and ended
50 ms before the next mode transition, the time to transition would be 50 ms. Finally, the
errors were labeled either transition timing errors or steady state errors. Transition timing
errors occurred at the boundary of an ambulation mode change, and indicate the classifier
identified the correct mode change, but somewhat earlier or later than the mode change
actually occurred. Steady state error segments occurred away from transitions and indicate
that the classifier identified a mode change where none occurred.

Paired t-tests were performed to test for differences between the accuracy of the
sonomyography-, kinematic-, and combined-classifiers on the test dataset. The Bonferroni–
Holm correction for multiple comparisons was applied.

3. Results
3.1. Overall Performance

The mean classification accuracy using sonomyography alone was 91.8 ± 3.4%. The
distribution across subjects is shown in Figure 4 and ranged from 87.8% to 96.0%.
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3.2. Performance by Ambulation Mode

The combined confusion matrix for all subjects using only sonomyography data is
shown in Figure 5. Most confusion happened between level walking and other modes of
ambulation. In particular, 17.3% of ramp ascent datapoints were classified as level walking,
as well as 22.2% of ramp descent. Aside from level walking, ramp descent was confused
with stair descent 1.0% of the time. Stair ascent was classed as ramp descent 1.1% of the
time and standing 1.0% of the time. Finally, stair descent was classified as ramp descent
0.2% of the time, as stair ascent 0.8% of the time, and standing 0.8% of the time.
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Figure 5. Combined confusion matrix for classification with sonomyography data alone. Correct
classifications are shaded in blue, while incorrect classifications are shaded in pink. The depth of
shading corresponds to the number of observations in each cell of the matrix as a proportion of the
total number of observations.

The precision, recall, and F1 score of each ambulation mode were calculated for each
subject and the mean and standard deviation of the results for the group are shown in
Table 2. Sitting was identified with 100% precision and recall. After sitting, ramp ascent had
the highest precision (93.9 ± 3.8%) and standing had the highest recall (99.7 ± 0.9%). Ramp
descent had the lowest recall and precision at 86.0 ± 11.7% and 76.4 ± 21.5% respectively.

Table 2. Sonomyography classifier mean performance by mode.

Precision Recall F1

Level Walking 91.9 ± 5.9% 91.9 ± 1.7% 91.8 ± 3.2%
Ramp Ascent 93.9 ± 3.8% 82.4 ± 14.5% 87.2 ± 8.6%
Ramp Descent 86.0 ± 11.7% 76.4 ± 21.5% 79.4 ± 15.5%

Sitting 100 ± 0% 100 ± 0% 100 ± 0%
Stair Ascent 92.5 ± 5.2% 91.0 ± 8.3% 91.5 ± 5.0%
Stair Descent 90.8 ± 9.4% 88.5 ± 12.4% 89.1 ± 8.5%

Standing 87.2 ± 8.5% 99.7 ± 0.9% 92.8 ± 5.1%

3.3. Error Types and Duration

The timing of errors of a representative subject (AK5) is shown in Figure 6. Most
errors occur at transitions between different modes, with the classifier predicting this
transition slightly early or late. This was most noticeable on transitions from stair ascent to
level walking, ramp descent to level walking, and standing to level walking. Other errors
occurred outside of transitions, such as the segments of level walking that were classified
as ramp descent or stair descent, and the segment of stair descent which was classified as
ramp descent.
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Figure 6. Classification errors for a representative subject, AK5.

As with the representative subject, transitions between modes were associated with many
of the classification errors throughout the entire subject pool. To further illustrate the influence
of these transitions, Figure 7 shows the time between an error and its closest transition for
the entire subject pool. Forty percent of errors began or ended less than 100 ms from a mode
transition. Within this subset, 95% of errors began or ended precisely at an ambulation transition
and could be described as discrepancies in timing of the transition between modes.
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Figure 7. Error timing and duration: (a) Timing of errors relative to transitions among all subjects.
(b) Distribution of transition timing delays among all subjects. (c) Distribution of error duration for
steady state errors (those not associated with transitions). (d) Sonomyography classifier accuracy for
three error definitions: all misclassified datapoints considered errors, only misclassified datapoints
occurring during steady state considered errors, and only misclassifications occurring during steady
state and of greater than 50 ms considered errors. The median, interquartile range, and total range for
the group are shown in the boxplot. The colored points show individual results.
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This variation in transition timing is shown in Figure 7b. The transition time delay was
calculated as the difference between when the classifier identified the mode change and
when the actual mode changed. Transition timing ranged from 662.5 ms early to 1262.5 ms
late. Transitions were more likely to be recognized late rather than early, with 56% of
transitions being recognized late, 21% recognized early, and 23% recognized precisely at
the actual transition. Forty percent of transitions are recognized within 50 ms of the actual
transition, and 61% within 150 ms of the actual transition.

Other errors were not associated with transitions. Transition errors were defined as
those which occurred when the classifier identified the correct mode change, but with
incorrect timing. The remaining errors were considered steady state and included cases
where the classifier identified a mode change where one did not actually occur. For example,
in Figure 6, at approximately 25 s into the trial, the classifier incorrectly identifies a segment
of level walking as ramp descent. This would be considered a steady state error. The
duration of these steady state errors among all subjects is shown in Figure 7c and ranged
from 12.5 ms to 775 ms. Most errors (69.3%) lasted less than 50 ms, and 78.6% lasted less
than 100 ms.

While one would ideally like to eliminate all errors, some errors may be more likely
to impact performance than others. Transitioning slightly early or late may not impact a
user as much as a steady state error. Even within steady state errors, those that are swiftly
corrected may be ignored by the controller. Figure 7d shows the accuracy of the classifier for
three different definitions of error. The first boxplot is the same as in Figure 4 and considers
any misclassified datapoint an error. The second boxplot considers only steady state errors
as true errors, and the third boxplot considers only steady state errors lasting more than
50 ms to be true errors. The accuracy for the three cases is 91.8 ± 3.4%, 96.7 ± 1.7%, and
97.3 ± 1.4%, respectively.

3.4. Performance Comparison

The sonomyography classifier was compared with the kinematic classifier and com-
bined data classifier. The overall accuracy of the three classifiers is shown in Figure 8.
With sonomyography alone, the classification accuracy was 91.8 ± 3.4%. Kinematics alone
resulted in an accuracy of 93.8 ± 3.0%, and the combined data classifier had an accu-
racy of 95.8 ± 2.3%. No significant differences were observed between accuracies of the
three classifiers.
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Examining the performance of individual subjects reveals that the relative performance
of the sonomyography and kinematic classifier depended on the subject. While some
subjects attained greater accuracy with kinematics alone than sonomyography alone, for
subjects AK3 and AK7 sonomyography was more accurate than kinematics. With the sole
exception of AK5, subjects were able to achieve the greatest accuracy with the combined
data set.

4. Discussion

A-mode ultrasound is a promising sensing modality for user intent detection, as it can
encode information on muscle activations with high signal-to-noise ratio and distinguish
between changes in superficial and deep muscles. The sensors are small and could be
worn comfortably under the socket by seven transfemoral amputee subjects. Using a
spatial–temporal convolutional network, sonomyography data alone could classify seven
different ambulation mode with 91.8% accuracy.

Most misclassifications happened between level walking and other ambulation modes.
A large portion of the errors occurred during transitions between modes. There are several
possible reasons for this. Biomechanically, the transition between ambulation modes is
not a discrete event, but a gradual one. Second, the mode transitions were recorded by an
experimenter clicking the counter while the subject walked through the circuit. Human
variability and reflexes could result in some inconsistency in the data labels. Finally, the
temporal convolutional network structure may also have played a role. To capture the
cyclical nature of ambulation, the data fed to the classifier contained information from the
previous 100 timesteps. This may also cause the classifier to be slightly biased toward the
previous mode rather than the next one, which would contribute to the transitions being
identified late more often than early. A different network structure with more weight on
the most recent timesteps may perform better on these transitions.

The steady state errors made by the classifier may pose a greater challenge to adapta-
tion to online control than the transition errors. However, most of these errors were very
brief. Studies have shown that ambulation mode transitions can be delayed by up to 90 ms
without negative effects on the usability of the powered prosthesis [9]. A control strategy
that required the sonomyography classifier to identify the new mode for four consecutive
timesteps before switching could eliminate 69% of these steady state errors, while only
delaying transitions by 50 ms. There still remain some longer duration steady state errors.
Further work on ultrasound sensor placement and classification algorithm design may be
able to mitigate these errors in the future.

Our results suggest that sonomyography alone provides similar classification accuracy
to kinematic data alone. However, there are important limitations to this comparison, in
that there are many more possible combinations of sensor placement and classification
algorithms that could be explored, and further studies would be needed to illuminate the
relative strengths of the sensing modalities. However, this initial comparison suggests that
sonomyography data is comparable to IMU data as a source for ambulation classification.

Despite the similarity of the group mean accuracy for the sonomyography and kine-
matic classifiers, individual subjects did not necessarily achieve similar accuracy levels with
the two classifiers. The subject-specific results in Figure 8 show that the relative accuracy
of sensing modalities, for the given implementation of the classifiers, depended on the
subject. There are a few possible causes for this. Some subjects may be better suited to
sonomyography than others. This could be due to physiology, as some subjects had more
obvious muscle bellies, while others had more subcutaneous tissue. Alternatively, it may
be that the sensor placement for certain subjects was more informative than others. For
some subjects, placing the sensor on the center of the muscle belly caused discomfort or
disrupted suction when the socket was added, so the sensor had to be placed slightly off
center. Finally, the two subjects that performed better with sonomyography than kinematics
were both the only women in the group, as well as the only two that used lanyard style
sockets. This suggests that gender differences in subcutaneous tissue and musculature
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in the thighs may play a role, or that suction socket types interfered with the sensor in a
way that the lanyard style sockets did not. Further study on these effects could illuminate
subpopulations that may particularly benefit from this sensing modality, or suggest better
strategies for sensor-socket integration.

Regardless of which sensing modality was more accurate for a given subject, the
combined data classifier almost always improved accuracy over either modality alone. This
suggests that the sonomyography data may be capturing a slightly different aspect of the
gait cycle than the IMU data, and that the combined dataset is more information rich as a
result. A-mode ultrasound sensing may be a valuable addition to mechanical sensors, even
in subjects where it is not more accurate than kinematic data alone.

Sonomyography also performs well in comparison to other neural signal classifiers
available in the literature. A table of ambulation classification strategies intended for knee-
ankle prostheses, adapted from [17], is shown in the Supplementary Table S1. Almost all
studies employing EMG also incorporated mechanical sensors. In [29,30], EMG alone was
compared to mechanical sensors alone, as well as the two combined. In [29], the mechanical
sensors used were kinetic sensors: a 6 degree of freedom load cell in the prosthetic pylon,
and pressure sensors in the soles of the shoes. The EMG classifier in that study was more
accurate than the mechanical sensor classifier, particularly in swing phase. By contrast,
in [30], the mechanical sensors included kinematic and inertial sensors as well. In this
study, EMG alone was found to classify ambulation modes in transfemoral amputees with
6% error on steady state and 27% error on transitions, compared to 2% steady state and
20% transition error for mechanical sensors alone [30]. The combined data classifier had
1% error on steady state and 12% on transitions. While EMG alone was not better than the
mechanical sensors, when combined, it was able to reduce the error by one percentage point
on steady state and eight percentage points on transitions. In our study, sonomyography
alone was able to classify steady state with 4.3% error, or 8.2% error on the entire dataset.
The mechanical sensors were able to classify the total dataset with 6.2% error, and the
combined classifier had 4.2% error. This suggests that the addition of sonomyography data
to mechanical sensing data could reduce the error by two percentage points. These results
suggest that A-mode ultrasound sonomyography performs better than EMG when used
alone, and comparable when combined with mechanical sensors.

A previous work using B-mode ultrasound in able-bodied individuals has shown
99.8% classification accuracy [28], which is higher than this study with A-mode ultrasound.
Although this result may be partly explained by the increased dimensionality of the data
obtained using B-mode ultrasound, we believe that the main factor contributing to this
difference is that the B-mode study analyzed able-bodied subjects, whereas our study
focused on individuals with amputations using passive prostheses. Other differences in
the protocol could have played a role. In the B-mode study, the transducer was placed over
the rectus femoris, vastus lateralis, and vastus intermedius. While the rectus femoris is
involved in hip flexion as well as knee extension, the vastus lateralis and vastus intermedius
are solely involved in knee extension. Therefore, the data captured by the sensors would
likely relate to both knee flexion and hip extension. In contrast, in this study placed
sensors on the rectus femoris and biceps femoris, and since the subjects were transfemoral
amputees, the data captured by these sensors would be related to hip flexion and extension.
In addition, the B-mode ultrasound study attempted to classify five modes of ambulation,
whereas the current study predicts seven distinct modes of ambulation. Moreover, the
ramp ascent, ramp descent, and level walking conditions were collected on a treadmill,
which has reduced variability between strides compared to level-ground walking. The
ramp angle used was 10◦ rather than the ADA-compliant 4.8◦ used in this study, which may
make the ramp ambulation modes more distinct from the level-walking mode. Additional
studies using B-mode ultrasound on transfemoral amputees may help elucidate the relative
benefits of each sonomyography modality for this population.
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5. Conclusions

A-mode ultrasound sonomyography is a promising sensing modality for predicting
widely varying ambulation activities in transfemoral amputee subjects. Overall, data
from A-mode ultrasound can classify ambulation mode with comparable accuracy to
kinematic data, with 91.8 ± 3.4% and 93.8 ± 3.0% accuracy, respectively. When combined,
the accuracy may be improved over either data type alone, to 95.8± 2.3%. This suggests that
the information captured by sonomyography is different than the information captured by
the kinematic data. Rather than being redundant, the combined dataset is richer than either
one alone. A-mode sonomyography also performs comparably to other neural-signal-based
ambulation classifiers reported in literature. This sensing modality may be a useful tool in
reducing ambulation mode classification errors and the associated risks of gait instability
and falls in transfemoral amputees.

Supplementary Materials: The following supporting information can be downloaded at: https:
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