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Abstract: Traffic sign detection is an essential component of an intelligent transportation system, since
it provides critical road traffic data for vehicle decision-making and control. To solve the challenges of
small traffic signs, inconspicuous characteristics, and low detection accuracy, a traffic sign recognition
method based on improved (You Only Look Once v3) YOLOvV3 is proposed. The spatial pyramid
pooling structure is fused into the YOLOV3 network structure to achieve the fusion of local features
and global features, and the fourth feature prediction scale of 152 x 152 size is introduced to make
full use of the shallow features in the network to predict small targets. Furthermore, the bounding
box regression is more stable when the distance-IoU (DIoU) loss is used, which takes into account the
distance between the target and anchor, the overlap rate, and the scale. The Tsinghua—Tencent 100K
(TT100K) traffic sign dataset’s 12 anchors are recalculated using the K-means clustering algorithm,
while the dataset is balanced and expanded to address the problem of an uneven number of target
classes in the TT100K dataset. The algorithm is compared to YOLOv3 and other commonly used
target detection algorithms, and the results show that the improved YOLOv3 algorithm achieves a
mean average precision (mAP) of 77.3%, which is 8.4% higher than YOLOV3, especially in small target
detection, where the mAP is improved by 10.5%, greatly improving the accuracy of the detection
network while keeping the real-time performance as high as possible. The detection network’s accuracy
is substantially enhanced while keeping the network’s real-time performance as high as possible.

Keywords: traffic sign recognition; YOLOV3; spatial pyramidal pooling structure

1. Introduction

Currently, automated driving and intelligent transportation systems (ITS) are the
principal applications for traffic sign detection and identification technologies. It can
give drivers and autonomous vehicles crucial traffic information so that the latter can
make judgments in accordance with the regulations of the road or alert and direct drivers’
operation behaviors in time to reduce traffic accidents. Traffic signs can be broadly divided
into three categories: directional signs, warning signs, and prohibition signs. These signs
are round or triangular in design, and they are red, yellow, and blue in color. Therefore,
classic traffic sign recognition typically uses machine learning techniques to recognize
traffic signs or extracts information such as color and shape from traffic signs.

Color segmentation to extract characteristics before classification identification is used
in color-based traffic sign detection, which is easily affected by lighting variations. Color
segmentation is not influenced by brightness variations, according to a previous litera-
ture [1], and uses HIS space to examine only hue and saturation. Due to the high demands
of color recognition on variables such as weather and detection distance, the detection ap-
proach based on color features can be employed for high-definition image recognition but
not for grayscale image recognition [2]. A shape-based traffic sign identification approach
on grayscale images was proposed in another literature [3], which transforms triangle
traffic sign detection into simple line segment detection, which can properly recognize
traffic signs and is unaffected by distance. A support vector machine-based traffic sign
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detection and recognition system was proposed in another literature [4], which uses the
generalization property of a linear support vector machine to first segment the color of
traffic signs and then classify the form. The method of detecting color and shape fea-
tures separately first performs color segmentation to obtain the region of interest, and if
the region of interest is not detected, the shape-based detection is no longer performed;
second, color segmentation requires a fixed threshold to be set manually, making traffic sign
detection complicated and time-consuming. To solve these issues and increase detection
performance, one study [5] used the AdaBoost framework to perform simultaneous color
and shape modeling detection.

Changes in external conditions, such as light, traffic sign color changes, and so on,
can affect color- and shape-based traffic sign detection. The detection impact is unstable,
impairing the traffic sign recognition system’s performance and making it vulnerable to
traffic sign leakage and false detection. Neural networks are being used more frequently
to detect targets as deep learning technology advances; examples of these algorithms
include Faster R-CNN [6], SSD [7], and YOLO [8], etc., which are primarily separated
into single-stage and two-stage detection approaches. A previous study [9] presented an
enhanced detection network based on YOLOv1 to address the issues of low accuracy and
slow detection speed of standard traffic sign detection methods. This network enhanced
traffic sign detection speed and lowered the hardware requirements of the detection system.
Another study [10] suggested a traffic sign detection approach based on enhanced Faster-
RCNN, with a 12.1% improvement in mAP, which successfully addressed issues such as
low recognition efficiency and raised the precision of traffic sign detection and recognition.
In [11], the CCTSDB dataset was obtained by expanding the Chinese Traffic Sign Dataset
(CTSD) and updating the marker information based on the improved YOLOv2 target
detection algorithm. The CCTSDB dataset only contained three categories of traffic signs,
which is insufficient to complete the challenging task of traffic sign recognition. The
TT100K [12] dataset, created by Tsinghua University and Tencent in collaboration, was
extracted from the Chinese Street View panorama and covers a wide range of lighting
and weather conditions, making it more representative of the actual driving environment.
Study [13] used DenseNet instead of ResNet in the backbone network of YOLOv3 and
experimentally validated it on the TT100K dataset. The algorithm improves the real-time
performance of the detection model, but the accuracy and recall tend to be low when
it comes to small targets such as traffic signs, which implies serious misdetection. The
detection task frequently gets more challenging in target detection tasks, since the target
to be detected is typically large, and its features can be easily extracted. Due to the FPN
structure that YOLOV3 introduces, it is now able to detect targets at various scales by
utilizing multi-scale feature fusion, which is appropriate for complicated traffic scenes and
has shown some promise in the detection of small targets. However, there is still some
room for improvement for the high-resolution images of the TT100K traffic sign dataset.

In conclusion, the neural network-based approach can successfully address issues
with low recognition efficiency, missed detection, and false detection while also enhancing
the precision of traffic sign detection and recognition. Neural network-based methods have
better accuracy or faster detection than traditional methods but cannot obtain both detection
speed and detection accuracy. In addition, most traffic sign detection uses the German
Traffic Sign Dataset (GTSDB), and traffic signs in Germany are different from those in China;
there are fewer studies on traffic sign detection and recognition in China. Therefore, to
address the problems in the above methods, this paper uses the TT100K dataset to train
and detect Chinese traffic signs and improve and adjust the YOLOv3 network, mainly with
the following improvements:

(1) Add a fourth feature prediction scale of 152 x 152 size to the YOLOvV3 network
structure to take full advantage of the shallow features in the network to anticipate
small targets. To achieve the fusing of local and global features, the spatial pyramid
pooling structure is fused.
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(2) The distance between target and anchor, overlap rate, and scale are all taken into
account when using DIoU loss for faster convergence and more consistent target
frame regression. This makes the target frame regression more stable.

(3) The majority of the traffic signs in the TT100K dataset are small- and medium-sized
targets, with only a few large targets. As a result, using the original anchor is not a
viable option. The K-means clustering algorithm is used to recalculate 12 anchors
for the TT100K dataset, and the data augmentation strategy is used to balance and
increase the dataset’s imbalanced number of target categories.

2. Algorithm Fundamentals
2.1. The YOLOw3 Algorithm

YOLOV3 [14] is Redmon’s improved, single-stage target detection algorithm based
on YOLOV2, which has improved detection accuracy and real-time performance, and
outperforms other algorithms in terms of speed and accuracy. YOLOV3 is currently the most
popular algorithm in the YOLO family and is widely used in real detection scenarios [15];
the YOLOV3 network structure is shown in Figure 1.
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Figure 1. The network structure of YOLOV3.

The complete convolutional structure used by YOLOvV3 is not constrained by the
size of the image input. The pooling and fully connected layers are removed from the
entire network structure, and a convolutional layer with a step size of 2 is used instead
of the pooling layer for the downsampling operation, which prevents the loss of target
information during pooling and facilitates the detection of small targets [16]. In addition,
YOLOV3 replaces the DarkNet-19 network structure of YOLOv2 with the DarkNet-53
feature extraction layer.

The DarkNet-53 network, which successfully resolves the gradient problem of the
deep network and the loss of original information during the multi-layer convolutional
operation to better extract features and improve detection and classification [17], borrows
the residual network structure of ResNet [18] and uses the original output of the previous
layer as part of the input in the latter layer of the network. As shown in Figure 2, the
residual module in YOLOv3 consists of two convolutional layers and a shortcut layer.
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Figure 2. The structure of the residual network.

Furthermore, YOLOvV3 uses the notion of a feature pyramid network (FPN) [19] and
introduces the feature pyramid network to forecast feature maps at three scales, with
detection scales of 13 x 13, 26 x 26, and 52 x 52. The method of feature extraction by
the convolutional neural network is bottom-up in the FPN network, and the process of
upsampling the convolutional layer feature maps is top-down, as shown in Figure 3.

— \g_> predict

" y | %—) predict

% predict

Figure 3. The network structure of FPN.

Deep convolutional layers with wide sensory fields are appropriate for predicting
large targets, whereas shallow convolutional layers with small sensory fields are suitable
for predicting small targets. The properties of the two layers are combined by lateral
connection. As a result, YOLOvV3 is capable of predicting objects of varying sizes and is
ideal for a variety of sophisticated application scenarios.

2.2. Spatial Pyramidal Pooling Structure

The spatial pyramid pooling (SPP) structure [20] solves the problem of repeated
extraction of image features by convolutional neural networks and greatly improves the
detection efficiency; the SPPNet network structure is shown in Figure 4. To ensure that the
resolution of the input image matches the feature dimension of the fully connected layer
in a neural network with a fully connected layer, region cropping and scaling operations
on the input image are required. Scaling and cropping processes will result in the loss of
picture feature information, lowering detection accuracy and affecting detection outcomes;
however, scaling and cropping processes will result in the loss of picture feature information,
lowering detection accuracy and affecting detection results, whereas SPPNet can overcome
the limitation of the fixed size of the input image, saving the computational cost [21].
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Figure 4. Structure of the SPP module.

3. Improved YOLOv3
3.1. Improved YOLOw3 Network Structure

The basic feature extraction network is commonly downsampled five times, with a
downsampling rate of 2, and the multiplicity of five times downsampling is 32 to the fifth
power of two, according to the COCO dataset description. If downsampling is continued,
the feature map obtained will be one, and the target information will be lost. Small targets
are fewer than 32 x 32 pixels, medium targets are 32 x 32-96 x 96 pixels, and giant targets
are greater than 96 x 96 pixels [22]. Asillustrated in Figure 5, the TT100K traffic sign dataset
used in this work was mostly made up of small and medium targets, with large targets
accounting for just 7.4% of the total dataset and tiny targets accounting for 42.5% [23].

Size distribution of TT100K traffic signs

- small
small — Medium

Medium

Figure 5. Size distribution of TT100K traffic signs.

The TT100K dataset has a high resolution, with each image having a resolution of
2048 x 2048 pixels and the largest traffic signs among the small targets accounting for
less than 0.1% of the entire image, posing a significant challenge to the target detection
algorithm. Small targets have limited features and necessitate great localization precision.
Despite the introduction of the FPN structure in YOLOv3 to leverage multi-scale feature
fusion to produce predictions by fusing the findings of distinct feature layers, which is
critical for small target identification, the results were still unsatisfactory.

In the YOLOvV3 network, the shallow layer contains less feature semantic informa-
tion but a precise target location, whereas the deep layer has more but a coarse target
location. As a result, shallow convolutional layers are used to predict small targets, and
deep convolutional layers are used to predict large targets. A fourth feature prediction
scale of size 152 x 152 was added to the three feature prediction scales of the YOLOv3
network structure in order to fully utilize the shallow features in the network to anticipate
small targets. With an input image size of 608 x 608, the output image feature size was
152 x 152 after convolution and a two-fold upsampling of the input image, and the feature
layer was induced through the route layer; this feature extraction was fused with the
11th layer feature to increase the fourth feature prediction scale.
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In addition, the SPP module was added to realize the merging of local and global fea-
tures by borrowing the notion of SPPNet and combining it with YOLOv3. Before the YOLO
detection layer, the SPP module was integrated between the fifth and
sixth convolutional layers, and the SPP module’s feature maps and feature maps pooled
were reconnected and passed to the next detection network layer. To accomplish the feature
map level fusion of local and global features, the SPP module’s maximum pooling kernel
should be as close to the size of the feature map to be pooled as possible. To minimize the
computational effort caused by the SPP module, enrich the feature map expression capabil-
ity, and increase the detection impact, the SPP module in this research was composed of
two parallel branches, each of which was composed of a 19 x 19 max pooling layer and a
jump connection. Figure 6 depicts the improved YOLOv3 network structure.
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Figure 6. Structure of the improved YOLOv3 network.

3.2. Improved Loss Function

The loss function of YOLOV3 is composed of the center coordinate loss (lossyy), width-
height coordinate loss (lossy,), confidence loss (l0ss¢yf), and classification loss (losss).
The central coordinate loss is represented by:

bi i\ 2
1055y = Acoord Z 21° ’ {( —#) (v 4) } M
i=0j=
loss of width and height coordinates is represented by:
S B " , -\ 2 . \ 2
1055, =AcoordZZIijJ[(\/w§—\/be) + <\/h7— \/h?) ] )
i=0 j=0
confidence loss is represented by:

lossconf - 120]2 IObb] |:C] IOg(Cl]') + (1 — C;) 10g(1 — C{)]
@)

—Anoobj EOEO 1529 ¢hog(c]) + (1-¢]) 1og(1- )]

and category loss is represented by:

loss.js= —isé)li(;.bj ) {131] log(Pl.j> + (1 - ﬁ{) log(l - PZ)] )

c€Eclasses
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where Aqoorg denotes the coordinate loss weight; Ayo0p; denotes the confidence loss weight

without an object; I?]-bbj denotes whether the jth anchor box of the ith cell is responsible for the
object (1 or 0); I;}Obbj
object; (xifyi,w{: {h{ ,'Cl]: {Pl-]' ) denotes the predicted target box coordinates, confidence, and category;
and (J?f ,yAg ,zbé fz?,élj. ,151.] ) denotes the real target box coordinates, confidence, and category.

The YOLOV3 loss function is represented by Equation (5), where the mean square
error (MSE) loss function is used for the bounding box regression and cross entropy is

utilized as the loss function in loss,,r and loss s.

denotes the jth anchor box of the ith grid that is not responsible for the

loss = lossxy + lossyp — 108Scon s — 10555 (5)

However, utilizing MSE as the bounding box regression’s loss function is unfavorable
to small target detection, sensitive to object scale, and focuses on big-scale targets while
being unfriendly to small-scale objects. To balance the loss of large and small targets and
maximize the detection results by weakening the influence of the bounding box size on the
width and height loss function, the IoU-type loss function was employed in this paper, and
the metric loss generated by IoU was used as a performance Equation (6).

|IANB

I P—
U= 1408

(6)

When the bounding box and the target box do not overlap, IoU = 0 does not reflect
the distance gap between the two boxes; when the prediction box and the labeled box
completely overlap, IoU =1, the bounding box’s center point cannot be determined, and the
size gap with the target box cannot be further optimized. DIoU loss [24] is independent of
size; thus, big sizes will not result in a large loss. Due to the fact that a tiny size produces a
little loss, which can address the problem, this work used the DIoU loss, whose calculation
formula is presented in Equation (7).

*(0b7)

DIoU loss =1 — IoU + —a (7)
where b and b8? denote the central points, p is the Euclidean distance, and c is the diagonal
length of the smallest enclosing box covering the two boxes.

DIoU loss minimizes the distance between two target frames directly, converges
quickly, and is more in line with the target frame regression mechanism, which takes into
account the distance between the target and anchor, the overlap rate, and the scale, making
target frame regression more stable, while still providing the gradient direction for the
bounding box when it does not overlap with the target frame.

3.3. Generating Priori Frames Based on K-Means Clustering Algorithm

The anchor mechanism was implemented in YOLOv2, and the number of anchors was
increased to nine in YOLOv3 to make the generated candidate regions more similar to the
genuine labeled frames and boost the detection network’s recall. It was not appropriate to
use the original anchor, since traffic signs are primarily small and medium targets, with fewer
large targets in the TT100K dataset. For a specific dataset, choosing a suitable initial anchor
can improve the detection effect, make the network easier to learn, and increase the detection
rate of the bounding box. The flow of the K-means clustering algorithm to obtain candidate
boxes is shown in Figure 7. In the TT100K dataset, the enhanced YOLOvV3 network structure
included a feature prediction scale, resulting in four scales and twelve anchors: (4, 5), (5, 6),
(7,7),(7,13), (8, 8), (9, 10), (11, 12), (13, 14), (16, 17), (20, 22), (27, 29), and (41, 44).
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Figure 7. K-means clustering algorithm flow chart.

4. Experiments and Analysis of Results
4.1. Dataset and Evaluation Indicators

There are a few big, publicly available traffic sign datasets, the majority of which use
the GTSDB, but the GTSDB is not the same as Chinese traffic signs. CTSDB, CCTSDB, and
TT100K, among others, are Chinese traffic sign datasets. The CCTSDB was expanded on
the basis of CTSDB, and its categories were divided into warning signs, directional signs,
and prohibition signs, without detailed classification of traffic signs. The TT100K traffic
sign collection was created in collaboration between Tencent and Tsinghua University. It
offered thorough categorization and identification of traffic signs, covered various climatic
and lighting circumstances, and was more accurate for actual driving situations. Therefore,
TT100K traffic sign dataset was used in this paper, and some of the traffic signs and the
category information are shown in Figure 8.

@
® B>

®
&

Figure 8. TT100K dataset partial traffic signs and category information.

pl40

® >0
@0
B>

pn pé

The TT100K dataset has 100,000 photos with a resolution of 2048 x 2048 pixels, although
there are unlabeled traffic sign images, and some categories have only a few images or
duplicate images, reducing the detection effect. Therefore, this paper removed the unlabeled
and duplicate traffic sign images from the dataset and selected 45 categories with a high
number of traffic signs, where the 45 traffic sign categories were: pn, pne, i5, pl1, pl40, po,
p150, pl80, io, pl60, p26, i4, pll00, pI30, il60, pl5, i2, w57, p5, p10, ip, pl120, i180, p23, pr40,
ph4. 5, w59, p12, p3, wb5. pm20, pl20, pg, pl70, pmb55, i1100, p27, w13, p19, ph4, ph5, wo, p6,
pm30, and w32, and the number of each traffic sign category is shown in Figure 9.
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Statistics on the number of categories in the TT100K dataset

2500 A

2000

1500 1

number

1000 +

500 4

Y &L NP R OV VD PO ND P X 20 PO 109 LA 00 &P QDN P,
MR R R S CE AR S SO R i A 7 Sy RS O

category

Figure 9. TT100K-45 comparison of the number of each traffic sign category.

Figure 9 shows that even if 45 categories with a large number of traffic signs were
chosen, there was still a significant imbalance in the amount of data between each category,
resulting in poor model prediction accuracy. As a result, as illustrated in Figure 10, this
work balanced and expanded the dataset by employing tactics such as color dithering,
Gaussian noise, and image rotation to ensure that the amount of each category was as equal
as feasible.

(a) Original

(b) Dithering (c) Gaussian noise (d) Rotate 15° to the right

Figure 10. Strategies for dataset balancing and expansion.

The Mosaic approach reads four images at a time, scales and alters the color gamut of
each image, arranges them in four directions, and then stitches the images together to create
the target’s true frame. The enhancement method stitches four images, which is equivalent
to calculating the parameters of four images with one input. This can reduce the number of
images for batch input, reduce the training difficulty and training cost, improve the training
speed, and largely enrich the number of samples in the dataset, which is conducive to the
learning of features by the model.

In this paper, the evaluation metrics of the COCO dataset, including mAP,y = 950,
APs, APy, AP, and several other metrics, were used to evaluate the performance of the
model. In particular, most of the traffic signs in the TT100K traffic sign dataset belonged
to small targets, so special attention needed to be paid to the detection accuracy of small
targets. The specific meanings of the evaluation metrics are as follows:

AP: The area below the P-R curve, where P-R is precision and recall, respectively.
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mAP,U = 050 When the IoU threshold is set to 0.50, it is the average of all categories
of AP in the dataset, which is the evaluation index of the PASCAL VOC dataset and
corresponds to AP,y = 0,50 in the COCO evaluation index.

APsg: average value of mAP for small objects: area < 322, and IoU = range (0.5, 1.00, 0.05)
for a total of 10 IoUs.

APy medium objects: 322 < area < 962, and IoU = range (0.5, 1.00, 0.05) mean value
of mAP for a total of 10 IoUs.

APy : average value of mAP for large objects: area > 962, and IoU = range (0.5, 1.00, 0.05)
for a total of 10 IoUs.

4.2. Experimental Results and Analysis
4.2.1. Improved YOLOv3 Comparison Experiment

Three YOLOV3 networks with enhanced methods were compared and tested in this
study, utilizing the TT100K traffic sign dataset and input images that were 608 x 608 pixels
in size. Figure 11 displays the mAP and AR of M-YOLOv3 trained on the TT100 dataset.
The detection results for various sizes of targets are shown in Figure 12 and Table 1. Among
them, YOLOv3-DK adopted the strategy of improving the loss function DIoU loss and
the re-clustering anchor; YOLOv3-SPP adopted the fusion space strategy of the pyramid
pooling structure; YOLOv3-41 adopted the strategy of adding the fourth prediction feature
layer with 152 x 152 scales; and M-YOLOv3 was the YOLOv3 network structure using all
the improved strategies.
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Figure 11. M-YOLOv3 mAP and AR trained on the TT100 dataset.
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Figure 12. Plot of M-YOLOV3 versus other improved strategies on the TT100K dataset.
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Table 1. Comparison of the improved YOLOv3 algorithm.
Algorithm APg APm AP mAP,Uu=-05
YOLOV3-608 0.379 0.557 0.549 0.689
YOLOv3-DK 0.385 0.561 0.552 0.702
YOLOv3-SPP 0.411 0.567 0.563 0.732
YOLOv3-41 0.467 0.583 0.556 0.751
M-YOLOv3 0.484 0.608 0.567 0.773

Table 1 and Figure 12 show that the average mean accuracy of the original YOLOvV3
without employing any strategies was 68.9%, whereas the mAP of the upgraded YOLOvV3
with all methods was 77.3%, an improvement of 8.4% in detection. The DIoU loss function
and re-clustering anchor technique enhanced detection accuracy by 1.3%; however, the
improvement was due to faster loss function convergence during training, which made
the target box regression more stable and improved the recall rate. More pronounced
improvements in mAP were seen in YOLOvV3, which included an SPP structure and
achieved a 73.2%. The SPP structure combined local and global characteristics, enhancing
the feature map’s ability to express itself and significantly increasing detection accuracy.
Using the method of adding a fourth prediction feature layer with 152 x 152 scales, the
mAP was also considerably improved. The accuracy of tiny-target detection was enhanced
by 10.5% when compared to YOLOv3, which made full use of the shallow features in the
network for small-target prediction, resulting in a considerably improved detection effect,
but at the cost of increased network complexity and processing. The best improvement was
M-YOLOvV3, which combined the three improvement procedures and achieved a mAP of
77.3%, which is 8.4% higher than the original YOLOv3's average mean accuracy. Figure 13

depicts the test results of M-YOLOv3 on TT100K.
MAP y_5=77-3%
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Figure 13. Test results of M-YOLOvV3 on TT100K.
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4.2.2. Comparison of the Improved YOLOv3 Algorithm with Other Algorithms

M-YOLOv3 was compared with several other classical target detection algorithms
to further validate the detection recognition of the improved network, and the results are
shown in Table 2.

Table 2. Comparison of improved YOLOv3 with other target detection algorithms.

Algorithm mAP FPS
YOLOv3 0.689 27
SSD 0.637 42
Faster-RCNN 0.756 2
M-YOLOv3 0.773 22

Table 2 demonstrates that M-YOLOvV3 had the highest mAP of 77.3%, and SSD had the
best real-time performance, with an FPS of 42. Compared with the original YOLOV3 algo-
rithm, the average precision mean was greatly improved, although the real-time performance
was reduced. Compared with the one-stage algorithm SSD, mAP improved by 12%, but
there was still a gap in real-time performance. Compared with the two-stage target detection
algorithm Faster-RCNN, the FPS was improved to 22, and the mAP was also improved
by 1.7%, which improved the detection speed, as well as the detection accuracy. The trials
showed that M-YOLOV3 performed better in terms of detection accuracy and speed.

4.2.3. Improved Recognition Effect of YOLOv3 on Traffic Signs in a Special Environment

Due to various factors, such as strong light irradiation, nighttime, and special
environments of traffic sign occlusion, that will affect traffic sign detection and recognition
in real-world driving scenarios, it was also necessary to consider the model’s recognition
effect on traffic signs in special environments. In particular circumstances, the upgraded
YOLOv3 model was employed to recognize traffic signs, as demonstrated in Figure 13. In
Figure 14, the detection effect of YOLOvV3 is compared with that of M-YOLOV3 in a special
environment. As shown in Figure 14(b1,cl), the YOLOV3 algorithm failed to detect the
obscured traffic sign in the case of an obscured traffic sign, while the improved YOLOv3
algorithm accurately identified the obscured traffic sign; as shown in Figure 14(b2,c2), the
YOLOV3 algorithm had problems of false detection and missed detection for traffic sign
recognition under the environment of strong light irradiation, while the improved YOLOv3
algorithm recognized all the traffic signs accurately. The improved YOLOv3 algorithm
increased the fourth feature prediction scale for small targets, improving the detection
effect of small targets, whereas the YOLOv3 algorithm had issues with missed detection
and low confidence for small targets, as shown in Figure 14(b3,c3); in dimly illuminated
environments, such as at night, the upgraded YOLOV3 algorithm recognized traffic signs,
as illustrated in Figure 14(b4,c4); however the YOLOv3 method did not detect targets. As
a result, under particular situations, the updated YOLOV3 algorithm still yielded better
detection results.
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' (a3) Original (b3) YOLOV3 (c3) M-YOLOV3

(a4) Original (b4) YOLOvV3 (c4) M-YOLOvV3
Figure 14. Comparison of the recognition effect of traffic signs under special environments.

5. Conclusions

A traffic sign detection and recognition network based on the modified YOLOv3 was
suggested in this research, with the goal of addressing the difficulties of small targets being
difficult to detect and low detection accuracy in traffic sign detection and identification
tasks. The new spatial pyramidal pooling structure enabled the fusion of local and global
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features in this study, as well as increased the fourth feature prediction scale for small
targets to improve the detection effect of small targets. To make the target frame regression
more stable, the DIoU loss was utilized, which had a faster convergence and was more
consistent with target frame regression. The detection network’s accuracy was considerably
improved by damaging the real-time network as little as possible. The mAP increased
by 8.4 points. The upgraded YOLOvV3 algorithm enhanced the network’s complexity and
lowered the detection speed. However, real-time detection is still a long way off; therefore,
boosting detection speed to accomplish the effect of real-time detection will be the next
research area.
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