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Abstract: Vehicular edge computing (VEC) has emerged in the Internet of Vehicles (IoV) as a new
paradigm that offloads computation tasks to Road Side Units (RSU), aiming to thereby reduce the
processing delay and resource consumption of vehicles. Ideal computation offloading policies for
VEC are expected to achieve both low latency and low energy consumption. Although existing
works have made great contributions, they rarely consider the coordination of multiple RSUs and the
individual Quality of Service (QoS) requirements of different applications, resulting in suboptimal
offloading policies. In this paper we present FEVEC, a Fast and Energy-efficient VEC framework,
with the objective of realizing an optimal offloading strategy that minimizes both delay and energy
consumption. FEVEC coordinates multiple RSUs and considers the application-specific QoS require-
ments. We formalize the computation offloading problem as a multi-objective optimization problem
by jointly optimizing offloading decisions and resource allocation, which is a mixed-integer nonlinear
programming (MINLP) problem and NP-hard. We propose MOV, a Multi-Objective computing
offloading method for VEC. First, vehicle prejudgment is proposed to meet the requirements of dif-
ferent applications by considering the maximum tolerance delay related to the current vehicle speed.
Second, an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) is adopted to obtain
the Pareto-optimal solutions with low complexity. Finally, the optimal offloading strategy is selected
for QoS maximization. Extensive evaluation results based on real and simulated vehicle trajectories
verify that the average QoS value of MOV is improved by 20% compared with the state-of-the-art
VEC mechanism.

Keywords: vehicular edge computing; resource allocation; computation offloading; multi-objective
optimization

1. Introduction

With the rapid development of sensing and communication technologies in the auto-
motive industry, the IoV has become a fundamental information infrastructure for intel-
ligent transportation systems [1]. IoV technology facilitates a broad range of compelling
applications, including traffic management, navigation, and passenger entertainment [2].
These applications are usually computation-intensive, and have stringent timelines [3].
For example, connected vehicles need to process an enormous amount of data in real
time (at often GB/s rates) with extremely tight latency and energy cost constraints [4].
Although cloud computing can provide powerful computing resources, long-distance data
transmission and heavy transmission overhead may cause unacceptable latency and affect
the application’s QoS [5].

Recent advances in VEC [6] create new opportunities for vehicular applications pro-
cessing in a timely manner by integrating MEC (Mobile Edge Computing) into vehicular
networks. VEC extends centralized computing capability to the network edge which is in
proximity to the vehicle [2]. Specifically, VEC can reduce the end-to-end delay and save
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both the communication and computational resource of the vehicle by offloading compu-
tation tasks to an RSU equipped with roadside edge servers (RES) [3]. Unlike traditional
MEC, VEC faces more dynamic network conditions due to the fast mobility of vehicles, and
it has a more rigorous timeliness requirement in the driving scenario. Although VEC offers
significant benefits, it is critically reliant on the complicated communication characteristics
between vehicles and RSUs and the computational resources they provide. A key chal-
lenge faced by VEC is the development of appropriate offloading strategies that deal with
frequently changing communication conditions and limited computational resources [2,6].

Recently, there has been growing interest in studies related to the ideal computation
offloading strategy via vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) commu-
nications, with the expectation of achieving both low latency and low energy consumption.
Researchers have utilized powerful vehicles to assist in offloading via V2V; however, this
approach cannot provide stable service due to unreliable V2V links and dynamic compu-
tation capacity [7]. To improve reliability, many works have made extensive innovations
to offload tasks to the RSU via V2I [8,9]. However, these often neglect highly dynamic
network conditions or limited edge resources, meaning that the user may suffer from
service disruption when the vehicle travels out of the current RSU, and do not consider
cooperation between adjacent RSUs. Recent research has promoted the use of reinforcement
learning (RL) to cope with network and resource dynamics. However, RL-based solutions
are limited to a small number of vehicles (e.g., the maximum number of vehicles in the
evaluation of [7] is 25) due to the curse-of-dimensionality problem.

Further, existing works often neglect application-specific QoS requirements, which
can lead to sub-optimal offloading policies. Note that different tasks usually have different
requirements in VEC. For example, a navigation task has higher delay demand than energy
consumption, while an entertainment task may prefer low energy consumption to low
latency. Moreover, different vehicles have different speeds over time, which has an impact
on the maximum delay tolerance with respect to a given task.

Motivated by these limitations, we present FEVEC, a Fast and Energy-efficient VEC
framework which considers the application-specific QoS requirements and makes optimal
offloading decisions, thereby minimizing both delay and energy consumption by coordi-
nating multiple RSUs within the coverage area of RSU. FEVEC estimates the uplink rate of
each vehicle according to its distance to the RSU and the number of vehicles in the RSU
coverage. To estimate the energy consumption, FEVEC establishes a resource consumption
model to analyze the computing and transmission energy consumption. Moreover, FEVEC
considers the individual needs of different applications in its offloading policy as well as the
relationship between current speed and maximum tolerance delay. Finally, the offloading
decisions are made in terms of the allocation of communication resources and computing
resources to support various types of services. The main contributions of this work are
summarized as follows:

1. We propose FEVEC, a Fast and Energy-efficient VEC framework to find the optimal
offloading strategy. FEVEC comprehensively considers frequently changing network
conditions and limited computation resources, aiming to minimize overall delay and
energy consumption.

2. We formalize the problem of devising an offloading strategy as a multi-objective
optimization problem, and propose a multi-objective computing offloading method
for VEC named MOV to obtain the optimal offloading policy. Compared with other
works, this approach considers the collaboration between multiple RSUs and the
application-specific QoS requirement, where an improved Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) is employed to generate the Pareto-optimal solutions
with low complexity.

3. We evaluate FEVEC using real-world and simulated vehicle trajectories. Extensive
evaluations are provided to demonstrate the effectiveness of our proposed MOV com-
pared to the state-of-the-art schemes; the proposed method leads to an improvement
of about 20% on average compared with PSOCO [3].
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The rest of this paper is organized as follows. Section 2 describes the motivation
behind this paper. Section 3 introduces the VEC offloading framework and formalizes it
as a multi-objective optimization problem for an urban IoV scenario. Section 4 provides
a multi-objective computing offloading method for VEC (MOV) to solve the problem
with low complexity. Section 5 describes the evaluation results of the Pareto-optimal
solutions and the overall QoS performance. Section 6 discusses related works involving
different offloading strategies. Finally, Section 7 concludes this paper and proposes future
research directions.

2. Motivation Example

To illustrate the motivation behind FEVEC, we provide two examples where exist-
ing techniques can only make sub-optimal offloading decisions. We compare FEVEC to
PSOCO [3], a state-of-the-art VEC offloading mechanism which aims to minimize delay
and energy cost. PSOCO considers offloading the computation tasks to the nearest RSU,
ignoring the possibility of collaboration between multiple RSUs. Here, we assume that two
RSUs (RSU1 and RSU2) are adjacent and the coverage radius of each RSU is 200 m. Details
are provided in Table 1.

Table 1. Simulation parameters

Descriptions Parameter Value

Coverage radius of RSU r 200 m

The number of vehicles N 50–90

Uplink bandwidth of RSU1 W1 100 MHZ

The uplink transmission
power of vehicle n with RSU1 pRSU1,up

n,m 1 W

The uplink power gains of
vehicle n with RSU1 hRSU1,up

n,m 1

Path loss exponent v 3.5

Coefficients related to power
in vehicle and RSU1 [10] kn,kr1 1.25× 10−26, 10−29

Local maximum processing capacity Fn 3× 109 cycles/s

RSU1 maximum processing capacity FRSU1 1× 1010 cycles/s

White Gaussian noise powers σ −100 dBm

The delay threshold for LPA TLPA 0.8 s

The speed of vehicle s 0–60 km/h

Example 1: The first example considers a simple scenario where only one vehicle
is in the communication range of two RSUs. As shown in Figure 1, suppose that only
vehicle A is traveling along a road, leaving RSU1 and approaching RSU2. At this moment,
vehicle A is 160 m away from RSU1 and 190 m away from RSU2. Vehicle A generates a
task with a data size of 5 MB. PSOCO makes the offloading decision to offload part of
the data (80%) to RSU1 and execute the other part locally. The corresponding delay and
energy consumption can be calculated as 0.767 s and 4.43 J. As a comparison, FEVEC can
coordinate two RSUs and make better offloading decisions, achieving 0.507 s delay and
1.38 J energy consumption.

Example 2: In our second example, vehicles run multiple applications with different
QoS requirements. Consider a scenario in which a vehicle is performing a navigation
task with highly delay requirement, while at the same time another vehicle is running an
entertainment task that prefers low energy consumption to low latency. Because PSOCO
considers the latency and energy costs to be equally important for all applications, PSOCO
makes sub-optimal offloading decisions for both tasks, achieving 2 s latency and 3.27 J
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energy consumption. In contrast, FEVEC is able to consider the individual requirements of
different applications and make more reasonable offloading decisions. Therefore, FEVEC
can achieve 1.45 s latency and 2.76 J energy consumption, reaching a QoS value above 0.9.

Figure 1. FEVEC framework.

In summary, a number of difficulties exist in the PSOCO mechanism, including in-
ability to (1) coordinate multiple RSUs and (2) consider the individual QoS requirements
of different applications. These difficulties can hinder PSOCO from making optimal of-
floading decisions in a practical scenario. This motivates us to design an approach that
can make optimal offloading decisions by carefully considering the cooperation of multi-
ple RSUs as well as the application-specific QoS requirements. Thus, we present FEVEC,
which is able to cooperate with multiple RSUs within their communication range while
considering frequently changing network condition and limited computation resources.
In addition, our offloading mechanism is able to satisfy the varying QoS requirements of
different applications.

3. System Model And Problem Formulation

In this section, we introduce the overall system model and problem formulation. We
first introduce the definition and assumption, then describe the system model, includ-
ing the communication and computation model. Finally, the problem of multi-objective
optimization is formalized, which is NP-hard [11]. Key notations are described in Table 2.

3.1. Definitions And Assumptions

VEC framework design: We consider a practical urban IoV scenario for FEVEC
consisting of a unidirectional road along which the coverage of RSUs overlaps, as shown
in Figure 1. In FEVEC, RSUs are located along the roadside; the communication radius
of each RSU is r, meaning that a vehicle can be covered by up to two RSUs. Each RSU is
equipped with one RES with limited computing capability, which is capable of dealing with
complex computation tasks in parallel through reasonable resource allocation. An RSU
can communicate with another RSU via wire link to share information and further make
the optimal offloading decisions. We assume that there are N vehicles within the coverage
of two adjacent RSUs, and each vehicle is equipped with a single antenna that can be
connected to one RSU through V2I wireless communication to broadcast status messages.

Time-slot based system: We consider a system based on time slots in which both
the number and location of vehicles change dynamically over time, along with their
communication and computation conditions. Without loss of generality, we suppose that
the offloading task at any slot can be completed before the next slot within the coverage
area of two adjacent RSUs.

Task definition: At time slot t, various tasks are generated from vehicles for road
safety and passenger entertainment. We denote a computation task of vehicle n as Tn,
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Tn = {Dn, Cn, tmax, λn, µn}. Here, Dn is the data size of the task Tn on the vehicle n, Cn is
the computation intensity (in CPU cycles per bit), and tmax is the delay tolerance of task
Tn, which is related the current speed; λn and µn are weight coefficients, indicating the
requirements for delay and energy consumption, respectively. The computation task is
divided into several parts, and has up to three offloading destinations, namely, local, RSU1,
and RSU2, which are processed in parallel. We define αn, βn, and γn (0 ≤ αn, βn, γn ≤ 1)
as the offloading decision variables of task Tn, which denote the offloading ratio of a task
to RSU1, RSU2, and local, respectively. Thus, the amount of data offloaded to RSU1 and
RSU2 is αnDn bits and βnDn bits, and the amount of data executed locally is γnDn bits.

Table 2. Key notations and descriptions.

Notations Descriptions

r A coverage radius of one RSU

N The number of vehicles

Dn The data size of the task on the vehicle n

Cn Computation intensity (in CPU cycles per bit)

tmax Delay tolerance of the task Tn

dRSU
n Distance between vehicle n and RSU

αn, βn, γn Offloading ratio of vehicle n to RSU1, RSU2 and local

W1 Uplink bandwidth of RSU1

M The number of subchannels in the uplink of RSU1

pRSU1,up
n,m The uplink transmission power of vehicle n to RSU1

hRSU1,up
n,m The uplink power gains of vehicle n to RSU1

σm White Gaussian noise powers on subchannel m

v Path loss exponent

kn,kr1 Coefficients related to power in vehicle n and RSU1

f l
n,Fn Processing capability for task Tn and maximum processing capability of vehicle n

f r1
n ,FRSU1 Processing capability for task Tn and maximum processing capability of RSU1

am
n Indicator indicating whether subchannel m is allocated to vehicle n

We assume that a vehicle n runs at a speed s, and that the distance between vehicle
n and an RSU is dRSU

n . Due to the high-speed mobility of the vehicle, the vehicle n might
leave the communication range of the current RSU during task transmission. We denote
the dwell time of vehicle n within the coverage of the current RSU as tstay, which can be
calculated as

tstay =
l
s

, (1)

where l is the distance between vehicle n and the coverage edge of the current RSU in the
direction of the vehicle. Both s and dRSU

n can be known from GPS data [12]. For example,
if vehicle n is traveling in the direction of the RSU, we have l = r + dRSU

n . Otherwise, if
vehicle n is moving away from the current RSU, l is calculated as l = r− dRSU

n .
Offloading procedure: For an offloading task of (1-γn)Dn bits, the procedure includes

three parts. First, the task is uploaded to the RSU, then processed, and finally the RSU
returns the result to the vehicle. Specifically, when the vehicle leaves RSU1 and approaches
RSU2, it can adaptively upload αnDn-bit (which can be 0) data to RSU1 according to
network conditions. After driving into RSU2, the result of RSU1 is transmitted to RSU2
and finally returned to the vehicle when RSU2 finishes. For example, in vehicle video
monitoring, a task defined as processing the video stream generated by each time slot, the
offloading ratio is the number of frames that are offloaded to the edge for execution.
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3.2. Communication Model

For V2I communication, the non-orthogonal multiple access (NOMA) technique is
leveraged to provide massive connectivity. The RES transmits signals to multiple vehicles
and separates the bandwidth to multiple subchannels. The vehicle can use multiple
subchannels for transmission, and a subchannel can be accessed by multiple vehicles [13].
This technology is different from traditional wireless communication in IoT, where WiFi
and Bluetooth are more unpredictable.

Based on the transmission task, we model the channel between RSU and the vehicle
during one slot by considering the distance between them and the number of vehicles
in RSU coverage to estimate the link rate. Accordingly, the available uplink data rate of
vehicle n over subchannel m in RSU1 after successive interference cancellation (SIC) [13],
rRSU1,up

n,m , is

rRSU1,up
n,m =

W1

M
log2 (1 +

pRSU1,up
n,m hRSU1,up

n,m

ξ
RSU1,up
n,m + σm(dRSU1

n )v
), (2)

where we define the uplink bandwidth of RSU1 as W1, M is the number of total subchannels
of the RSU1 server, pRSU1,up

n,m is the transmission power, hRSU1,up
n,m is the power gain, ξ

RSU1,up
n,m

and σm denote the interference signal power from other vehicles on channel m and the
White Gaussian noise power, respectively, dRSU1

n is the distance between vehicle n and
RSU1, and v is the path loss exponent. Now, let aRSU1,up

n,m indicate the uplink binary channel
allocation indicator, while aRSU1,up

n,m = 1, expressing subchannel m, is allocated to vehicle n
on the uplink of RSU1; otherwise, aRSU1,up

n,m = 0. Therefore, the data transmission rate of
vehicle n on the uplink of RSU1 is

RRSU1,up
n =

M

∑
m=1

aRSU1,up
n,m rRSU1,up

n,m . (3)

Thus, the upload time of αnDn bits to RSU1 is tRSU1,up
n ,

tRSU1,up
n =

αnDn

RRSU1,up
n

. (4)

Accordingly, the energy consumption of uploading the αnDn bits of data to RSU1
is ERSU1,up

n ,

ERSU1,up
n =

M

∑
m=1

pRSU1,up
n,m tRSU1,up

n . (5)

Because the delay and energy consumption for the downlink is much less than for the
uplink, for the sake of simplicity we ignore the delay and energy consumption in the
downlink [2].

3.3. Computation Model

Further, we formulate a task computing model of the vehicle and RSU in which
the resource allocation of different platforms is considered. We define the maximum
computing capability of a vehicle n as Fn (CPU cycles/s), while f l

n(0 ≤ f l
n ≤ Fn) represents

the computing resources allocated for task Tn when γnDn bits of data are executed locally.
Then, the time required for local task execution, tl

n, can be calculated by

tl
n =

CnγnDn

f l
n

. (6)

The energy consumption for γnDn bits of data by vehicle n is

El
n = tl

n pl
n = knCnγnDn( f l

n)
2, (7)
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where pl
n is the power consumption of vehicle n, pl

n = kn( f l
n)

3, and kn is a chip coefficient
related to the power available to vehicle n [3].

For a computation task with αnDn bits of data executed on RSU1, the processing time is

tRSU1,ex
n =

CnαnDn

f r1
n

. (8)

where f r1
n (0 ≤ f r1

n ≤ FRSU1) represents the computing resources allocated for task Tn
by RSU1 and FRSU1 is the maximum computing capability of RSU1. Thus, the energy
consumption of RSU1 is

ERSU1,ex
n = pRSU1

n tRSU1,ex
n = kr1CnαnDn( f r1

n )2, (9)

where pRSU1
n = kr1( f r1

n )3 is the power consumption of RSU1 and kr1 is a chip coefficient
related to the power available to RSU1 [3].

3.4. Problem Formalization

We have already obtained the delay and energy consumption for local computation
and V2I offloading; however, these cannot simply be added together. Based on our scenario
in Figure 1, vehicle n may be located in different positions, with concurrent differences in
offloading delay and energy consumption.

3.4.1. Delay Analysis

Position 1: If vehicle n is in the coverage of RSU1 (β = 0) or RSU2 (α = 0), the task
can only be offloaded to one RSU or performed locally. Let to f f be the offloading delay,
which is to f f = tRSU1,up + tRSU1,ex or to f f = tRSU2,up + tRSU2,ex.

Position 2: If vehicle n is within the cross-coverage area of adjacent RSUs, it may
drive out of RSU1 during offloading, causing service interruption. To solve this issue, the
two RSUs can collaborate with each other and make optimal offloading decisions. There
is a period of overlapping time between uploading to RSU2 tRSU2,up and processing on
RSU1 tRSU1,ex. For example, after αnDn bits of data are transferred to RSU1, the vehicle
can connect to RSU2 to upload βnDn bits of data while RSU1 is computing. To this end,
we consider two task offloading cases with different offloading delays according to the
execution time of the αnDn-bit data on RSU1, as shown in Figure 2. We ignore the resulting
transmission delay between RSUs with wired connections [14]. The blue arrow illustrates
the critical path for processing data on RSU1 and RSU2.

(a) Case 1 (b) Case 2

Figure 2. Delay analysis of two offloading strategies.

Case 1: In Figure 2a, vehicle n with a data size of αnDn bits is first transmitted to the
RSU1 server (T2-T1). The execution time of αnDn bits of data on RSU1 is less than the time
to transmit βnDn bits of data to RSU2 (tRSU1,ex < tRSU2,up). When RSU1 finishes (T3), the
results are transmitted to RSU2 (T4-T3). Afterwards, RSU2 processes the βnDn bits of data
(T6-T5) and then returns the calculations of RSU1 and RSU2 to the vehicle n (T7-T6). Let to f f
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(T7-T1) be the offloading delay, which includes the delay of uploading to RSU1 tRSU1,up, the
delay of uploading to RSU2 tRSU2,up, and the delay of execution on RSU2 tRSU2,ex, which
can be expressed as

toff
n = tRSU1,up

n + tRSU2,up
n + tRSU2,ex

n . (10)

Case 2: Unlike Case 1, in Figure 2b the execution time of αnDn bits of data on RSU1
is more than the time needed to transmit βnDn bits of data to RSU2 (tRSU1,ex > tRSU2,up).
Therefore, after RSU2 completes the calculation task (T4-T3), it is necessary to receive
the results of RSU1 (T6-T5) and return them to vehicle n (T7-T6). Let to f f (T7-T1) be the
offloading delay, which includes the delay of uploading to RSU1 tRSU1,up and the delay of
execution on RSU1 tRSU1,ex, which can be expressed as

toff
n = tRSU1,up

n + tRSU1,ex
n . (11)

Thus, based on the above two case analyses, the offloading delay of vehicle n can be
expressed as

toff
n = tRSU1,up

n + max
{

tRSU1,ex
n , tRSU2,up

n + tRSU2,ex
n

}
. (12)

3.4.2. Energy Analysis

The offloading energy consumption of vehicle n is independent of location, including
transmission and calculation in RSUs. Let Eo f f

n be the offloading energy consumption of
vehicle n, which is expressed as

Eoff
n = ERSU1,up

n + ERSU1,ex
n + ERSU2,up

n + ERSU2,ex
n . (13)

3.4.3. Task Offloading Problem

Our goal is to minimize the delay and energy consumption of all vehicles in order to
arrive at a reasonable resource allocation strategy. Hence, the offloading ratio, communica-
tion resource, and computing resource allocation all need to be optimized. Here, we use X
to represent the offloading ratio, Y to represent the allocation (local, RSU1, and RSU2) of
computing resources, and Z to represent the uplink subchannel allocation of vehicle n to
RSU1 and RSU2 over subchannel m and n; X, Y, and Z can respectively be denoted by

X = {α1, α2, . . . , αN , β1, β2, . . . , βN , γ1, γ2, . . . , γN},

Y =
{

f l
1, f l

2, . . . , f l
N , f r1

1 , f r1
2 , . . . , f r1

N , f r2
1 , f r2

2 , . . . , f r2
N

}
,

Z =
{

a1
1, . . . , aM

1 , . . . , a1
N , . . . , aM

N , b1
1, . . . , bK

1 , . . . , b1
N , . . . , bK

N

}
.

(14)

Therefore, the multi-objective optimization problem can be expressed as

min
{X,Y,Z}

t =
N

∑
n=1

max
{

tl
n, toff

n

}
,

min
{X,Y,Z}

E =
N

∑
n=1

(El
n + Eoff

n ).

(15)

Accordingly, the problem in Formula (15) can be rewritten under constraints as Formula (16).

min
{X,Y,Z}

t =
N

∑
n=1

max

{
CnγnDn

f l
n

,
αnDn

RRSU1,up
n

+ max

{
CnαnDn

f r1
n

,
βnDn

RRSU2,up
n

+
CnβnDn

f r2
n

}}

min
{X,Y,Z}

E =
N

∑
n=1

{
knCnγnDn

(
f l
n

)2
+

M

∑
m=1

pRSU1,up
n,m tRSU1,up

n + kr1CnαnDn

(
f r1
n

)2

+
K

∑
k=1

pRSU2,up
n,k tRSU2,up

n +kr2CnβnDn

(
f r2
n

)2
}

(16)
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s.t. 0 ≤ αn, βn, γn ≤ 1, n ∈ N (16a)
αn + βn + γn = 1, n ∈ N (16b)
0 ≤ f l

n ≤ Fn, n ∈ N (16c)
0 ≤ f r1

n ≤ FRSU1, 0 ≤ f r2
n ≤ FRSU2, n ∈ N (16d)

∑N
n=1 f r1

n ≤ FRSU1, ∑N
n=1 f r2

n ≤ FRSU2 (16e)
am

n , bk
n ∈ {0, 1}, n ∈ N, m ∈ M, k ∈ K (16f)

∑N
n=1 am

n ≤ 2, ∑N
n=1 bk

n ≤ 2 (16g)
tRSU1,up
n ≤ tstay, n ∈ N (16h)

tn ≤ tmax, n ∈ N (16i)

The constraints in (16a) and (16b) show the relationships between α, β, and γ; (16c),
(16d), and (16e) are the computing capacity constraints for vehicle n and the RSUs; and (16f)
shows uplink communication resource allocation as a binary vector. In (16g),a subchannel is
limited to being allocated to two vehicles at most, as SIC makes the network more complex;
(16h) bounds the transmission latency of vehicle n to the RSU to within the current RSUs,
where the dwell time within the coverage of the current RSU is tstay; (16i) limits the delay;
and (16h) and (16i) are related to the current vehicle speed.

4. Computation Offloading Algorithm

Formula (16) contains continuous and binary variables; thus, this problem is a Mixed-
Integer Nonlinear Programming (MINLP) problem, which is NP-hard [11]. Such problems
are difficult to solve using traditional optimization methods, such as game theory [5], con-
vex optimization [5], etc., because they are more suitable for problems with low complexity
and a single objective [9]. Therefore, we propose a multi-objective computing offloading
method for VEC (MOV) considering individual QoS requirements, with an improved
NSGA-II algorithm used to generate the Pareto-optimal solutions [15]. Below, we provide a
detailed introduction to our method.

The NSGA-II algorithm is based on biological evolution, and is suitable for complex
and multi-objective optimization problems [15]. Compared with the original NSGA algo-
rithm, it achieves faster and more accurate search performance, and is widely used. There
are three main improvements: (1) a fast non-dominated sorting algorithm; (2) congestion
degree comparison; and (3) an elite strategy. Based on NSGA-II, we propose using MOV to
solve the offloading optimization problem by satisfying the application-specific QoS. The
novelty is that the vehicle can selectively offload data according to different priorities of
tasks and tolerance delays related to vehicle speed, allowing it to accelerate execution based
on the previous optimal solution. An overview of our algorithm is shown in Figure 3. In
Step 1, the vehicle judges whether execution should occur locally or be offloaded to RSUs
for help according to the priority of the task. In Step 2, an improved NSGA-II is used to find
the Pareto-optimal solutions minimizing delay and energy consumption for the tasks to be
offloaded, where we design a special coding scheme based on the VEC scene. Our method
can accelerate the algorithm execution speed based on the previous optimal solutions. In
Step 3, a QoS model is established to carry out the optimal offloading strategy by achieving
the individual QoS requirements of different applications. The MOV algorithm is shown in
Algorithm 1.
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Algorithm 1 Multi-Objective computing offloading algorithm for VEC, MOV

Input: The number of vehicles N, the offloading task Tn (n ∈ N), the NSGA-II algorithm parameters
S, K, pc, pm.

Output: The optimal offloading strategy of vehicles, [X, Y, Z].
1: Separate task categories according to vehicle pre-judgment
2: Initialize the population P(gen) according to a priori knowledge
3: Encode the variables [X, Y, Z]d to each chromosome Ci, i ∈ S
4: Some chromosomes were selected to produce offspring O(gen)
5: for gen in K do
6: PO(gen)← P(gen) ∪O(gen)
7: Calculate the fitness values ti and Ei of each chromosome Ci, i ∈ 2× S
8: PO(gen)← Non-dominated sorting(PO(gen))
9: PO(gen)← Crowding distance(PO(gen))

10: P(gen + 1)← Elite strategy selects(PO(gen))
11: O(gen + 1)← Crosses and mutates(P(gen + 1))
12: gen← gen + 1
13: Get the Pareto-optimal solution set Z according to the limits in (16)
14: Store {[X, Y, Z]z} and {[t, E]z} for Z, z ∈ Z
15: for z in Z do
16: QoSz ← QoSmodel(λn, µn), n ∈ N
17: optimal_z← max(QoSz)
18: return optimal_z

Figure 3. MOV overflow.

4.1. Step 1: Vehicle Prejudgment

In actual traffic scenarios, the scale of the joint optimization problem increases rapidly
with an increasing number of vehicles. If all tasks are optimized in a centralized way, this
results in severe complexity. Thus, we consider that different tasks have different priorities
in terms of delay to offload partial data to RSUs. We divide tasks into two categories,
high-priority applications (HPA) and low-priority applications (LPA), according to their
different delay priorities. An HPA is a task with a high delay requirement, such as one
related to autonomous driving or road safety. The on-board system of the vehicle should
always be designed to have sufficient capacity to meet the resource needs of such tasks [16].
Thus, for this type of task, we consider processing it locally. For LPAs, tasks with relatively
low latency requirements, such as navigation and entertainment activities, can be offloaded
to the RSUs servers for help. At the same time, we consider that the maximum tolerance
delay of the LPA is related to the current vehicle speed, which means that a vehicle traveling
at a low speed can tolerate a relatively high delay compared to a vehicle at high speed.
Here, we use a function to describe the maximum delay tolerance model according to
vehicle speed for an LPA as follows [17]:

tmax(sn) = TLPA
1√
2πρ

exp
(
− s2

n
2ρ2

)
/

(
1√
2πρ

exp
(
− smax 2

2ρ2

))

= exp
(
− s2

n − s2
max

2ρ2

)
TLPA.

(17)
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where TLPA is the delay threshold for the LPA, which is consistent. To ensure that the
probability of vehicle speed data within the allowed maximum vehicle speed is within
the 95 percent confidence interval, we denote the standard deviation as ρ, expressed
as ρ = smax/1.96 [18], where sn and smax represent the current and maximum vehicle
speeds. This solves the time limitation of delay-sensitive tasks while reducing resource
competition among multiple vehicles according to vehicle prejudgment of task types and
vehicle velocity.

4.2. Step 2: Obtaining the Pareto-Optimal Solutions

(1) Encoding. Here, we combine the NSGA-II algorithm into the actual vehicle offload-
ing problem and design a real coding scheme based on the offloading ratio and resource
allocation which contains vectors and matrices. In this algorithm, each chromosome Ci in
the population represents an offloading strategy for the computation tasks collection N,
where each gene represents an offloading decision variable of vehicle n. A set of chromo-
somes/solutions form a population. For example (see line 2 of Algorithm 1), a chromosome
Ci denotes a set of X, Y, and Z, which can be defined as an array Ci = [X, Y, Z]d, where d is
the size of the array and is defined as d = 5× N + 2× 2×M. In each Ci, the size of X and
Y is 2× N and 3× N in (14), respectively, which are vectors. The size of Z is 2× 2×M,
which indicates that a subchannel can be allocated to two vehicles at most in the uplink of
RSU1 and RSU2. Further, it can be extended into a 0–1 matrix with size N×M to deal with
the subchannel allocation problem.

(2) Fitness function and constraints. The fitness functions in this paper include two
categories, namely, delay and energy consumption, as presented in (15). They both must be
minimized, and we aim to achieve trade-offs among the two objectives while satisfying the
edge computing capability, delay tolerance, and task assignment constraints in (16a)–(16i).

(3) Initialization. In this algorithm, certain parameters should be initialized, includ-
ing the population size S, maximum iteration K, crossover probability pc, and mutation
probability pm. In a chromosome Ci, the variable corresponding to each gene is initialized
with the constraints ranges in (16a), (16c), (16d), and (16f). Under the generation rule
of a single chromosome, multiple chromosomes can be randomly generated to form an
initial population P = {C1, C2, . . . , CS}, where each chromosome Ci contains two fitness
values, which can be defined as Ci = {ti, Ei}. In Algorithm 1 lines 2–3, the novelty lies in
initialization with the stored offloading decision variables, which can greatly reduce the
evolutionary process.

(4) Selection. In parent population P(gen), we select the chromosomes with the best
fitness as parents to produce offspring O(gen) by performing tournament selection, as this
method has a low computational cost. Then, the parent population P(gen) and the offspring
population O(gen) with size S form a new population PO(gen) with size 2S. Next, we
compute the fitness value of all chromosomes in PO(gen) and obtain the non-dominated
rank and crowding distance of each chromosome. Finally, S chromosomes are selected to
form the next generation parent P(gen + 1) based on the elite strategy, which has better
performance (see lines 4–10).

(5) Crossover and mutation. After generating the parent population P(gen + 1) with
size S, we recombine the offloading variables of different chromosomes for crossover
operation to generate new solutions. Certain variables are modified according to the
mutation probability, thereby avoiding local convergence (see line 11).

(6) Iteration. Based on crossover and mutation for P(gen + 1), let gen = gen + 1 and
return to the previous steps (4)–(5) until the stop number of iterations is reached (in line 12).

(7) Storage. After all iterations, the Pareto-optimal solutions are saved as a priori
knowledge, as NSGA-II is a one-shot planning algorithm which tries to compute the
optimal offloading strategy according to the current system state and may have high
complexity. Using this prior knowledge-based mechanism, the decision variables are
directly used for encoding in the next optimization, making the optimal strategy faster and
reducing time complexity (see line 13-14).
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4.3. Step 3: Selection Of Optimal Offloading Strategy

After obtaining the optimal Pareto solution set Z, an offloading strategy z represents
the hybrid offloading decisions of N tasks that meet the minimum delay and energy cost.
Note that our goal is to provide a flexible QoS model to satisfy different performance
metrics. Thus, we propose a concrete objective with QoS. Then, the optimal offloading
strategy that maximizes the QoS value of all vehicles is selected.

As mentioned above, λn and µn denote the weight of vehicle n corresponding to delay
and energy consumption, and their sum is equal to 1. The values of the delay and energy
consumption variables are negative indicators, which mean that lower delay and energy
consumption values represent a better solution. A relatively small λn indicates relatively
high tolerance with respect to latency, while a larger value indicates that the application is
deeply concerned with real-time performance. We define the QoS model of vehicle n with
strategy z as follows:

QoSn
z =

λn(tmax
z − tn

z )

tmax
z − tmin

z
+

µn(Emax
z − En

z )

Emax
z − Emin

z
. (18)

where tmax
z and Emax

z are the maximal latency and maximal energy consumption with
strategy z. The goal of the MOV is to make the optimal offloading decisions for QoS
maximization. The MOV takes as inputs the sum of the QoS values of all vehicles with
each solution, then outputs the optimal offloading strategy with the largest QoS value.

Complexity analysis. Finally, we discuss the complexity of MOV. Using prior knowledge,
the complexity of initializing the population of the size S is O(1). Compared with random
reinitialization, our MOV is reduced by O(S× N′ × d), where N′ is the number of tasks to
be offloaded with low delay priority and d is the dimension of decision variables mentioned
above. To this end, the time complexity of our method using the MOV is O(S2). Based
on experiments, after vehicle prejudgment in Step 1, the average running time of our
algorithm is less than 0.1 s. In addition, the memory space occupied by the storage of a
priori knowledge is 5 KB, which is acceptable.

5. Evaluation

In this section, we evaluate our proposed method MOV and compare it with the
following schemes:

(1) Process-Local-Only (PLO): In this scheme, the tasks of all vehicles are processed
locally.

(2) Offload-RSUs-Only (ORO): In this scheme, the tasks of all vehicles are offloaded to
two RSUs for processing.

(3) PSOCO [3]: A state-of-the-art VEC offloading scheme which considers offloading
the tasks to the nearest RSU, ignoring the possibility of collaboration between RSUs.

5.1. Simulation Setup

In this section, we our experiments based on realistic and simulated vehicle trajectories.
Considering a realistic scenario of the Yanta area in Xi’an, China, we verify our experiments
based on the GAIA Open Dataset containing mobility traces from DiDi Express [19]. We
select a one-way two-lane road with a length of 1000 m. The dataset includes GPS data for
Xi’an city collected over a 30 day time range from 1 November 2016 to 30 November 2016.
Each trajectory consists of a vehicle ID, timestamp, longitude, and latitude. After prepro-
cessing the raw data, the vehicle trajectories of 50–90 vehicles are extracted. We take the
average value from ten experiments as the experimental result. Additionally, we carry out
simulation experiments with different traffic congestion levels. We use OpenStreetMap [20]
to import the Xi’an map into SUMO and generate vehicle trajectory data, as shown in
Figure 4. The two RSUs are located at the roadside and their coverage is overlapped. There
are N vehicles with different speeds on the road. The simulation parameters with RSU1 are
shown in Table 1, and RSU2 is similar. For the simulation environment, we use a GPU-based
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server with an Intel Core i5-9400F CPU with 16 GB memory. The software environment is
Python 3.7 on Ubuntu18.04 LTS.

Figure 4. Evaluation scenario based on SUMO.

5.2. Simulation Results
5.2.1. Pareto-Optimal Solutions

To comprehensively examine the proposed MOV with vehicle prejudgment and speed-
aware delay constraint, the results of our method are compared with that of ORO, PLO, and
PSOCO. The different performances of these algorithms when the number of vehicles is 50,
60, and 70, respectively, are shown in Table 3. To be specific, it concludes the min/max delay
and the min/max energy consumption of the Pareto-optimal solution. At the same time,
we compare the QoS values of the different algorithms, in which each task has different
performance indicators. The results presented here are from ten experiments. In Table 3, it
can be seen that ORO has the shortest delay and the highest energy consumption compared
to the other algorithms, while PLO is the opposite, with the highest delay and the lowest
energy consumption. As for QoS value, ORO and PLO have the lowest results with different
numbers of vehicles. Because they only consider one offloading destination, the limited
computing capacity of the vehicle and the cost of excessive communication resources are
ignored. In the same circumstances, MOV has a better result than PSOCO in both delay
and energy consumption. In terms of QoS value, our method shows the best results with
different numbers of vehicles. This is because our proposed algorithm can better consider
the differences between applications with different performance indicators, especially for
HPA, allowing the offloading and resource allocation strategy to be adjusted for each
vehicle and thereby further reducing task completion delay and energy consumption. We
consider the maximum tolerance delay related to the current speed as well.

In order to fairly and specifically compare the delay and energy consumption, we
establish five sets of experiments with vehicle prejudgment based on the above four of-
floading schemes, with the number of vehicles between 50–90. Realistic and simulated
vehicle trajectories are used at different speeds. The Pareto-optional solutions with differ-
ent schemes are shown in Figure 5. It can be easily observed that the delay and energy
consumption of all tasks increases for any scheme as the number of vehicles increases.
This is because more vehicles have more tasks to process, resulting in more delays and
energy consumption given the limited RSU resources. In addition, a trade-off between
two objectives is obtained for MOV and PSOCO-pre (the PSOCO algorithm with vehicle
prejudgment), which can guide optimal offloading decisions made for different types of
tasks. If a solution with lower delay is selected, this produces higher energy consumption.
This is because more vehicles have high requirements for delay, which leads to more tasks
being offloaded to RSUs to reduce the delay due to the powerful computing capability of
the RSUs. However, this may increase energy consumption because of the occupation of
edge resources. For example, when the number of vehicles N is 70, in Figure 5d, among
the “N = 70 P-o solutions” there is a solution with the delay of about 35 s and energy
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consumption of about 13 J. This means that more vehicles results in high requirements for
delay, while few vehicles leads to high requirements for energy consumption, which in
turn leads to more tasks being offloaded to RSUs for processing to reduce the overall delay.

Table 3. The values of indicators using different algorithms obtained with different numbers of vehicles.

The Number of Vehicles Algorithm QoS Value
Delay (s) Energy Consumption (J)

Min Max Min Max

N = 50

ORO 0.45 6.811 9.187 11.139 12.462

PLO 0.47 58.858 123.820 0.080 3.332

PSOCO 0.63 27.957 78.406 2.590 14.915

MOV 0.74 23.834 53.703 3.180 10.342

N = 60

ORO 0.52 7.638 14.002 16.807 18.243

PLO 0.54 64.372 140.077 0.147 3.535

PSOCO 0.65 39.507 88.564 3.261 16.070

MOV 0.71 27.243 55.769 5.002 13.850

N = 70

ORO 0.51 8.439 13.989 20.882 22.855

PLO 0.49 83.505 190.345 1.255 4.950

PSOCO 0.66 41.045 119.717 3.632 17.562

MOV 0.75 31.626 65.433 5.669 17.310

Note: Bold indicates minimum delay and energy consumption.

(a) PLO-pre. (b) ORO-pre. (c) PSOCO-pre. (d) MOV

Figure 5. Pareto-optimal solutions under different schemes.

Next, we clearly describe Pareto-optimal solutions of the four schemes with different
numbers of vehicles, as shown in Figure 6. It can be seen that ORO-pre (the ORO algorithm
with vehicle prejudgment) has a higher energy consumption and a lower delay, while
PLO-pre (the PLO algorithm with vehicle prejudgment) has a higher delay and a lower
energy consumption. The reason for this is that if all tasks are offloaded, more RSUs
resources are allocated to transmit and process tasks, which increases energy consumption
due to resource utilization. However, if all tasks are processed locally, the delay is greatly
increased. This is because vehicle computation capacity is limited to processing tasks. As
for PSOCO-pre and MOV, the two indexes are between those of ORO-pre and PLO-pre,
and our proposed MOV has better performance than PSOCO-pre. This is because we
specifically consider the offloading decision-making at the coverage boundary of the two
RSUs, in which RSE cooperates to complete tasks that avoid service interruption and the
imbalance of RSU load. However, for PSOCO-pre, only the nearest RSU is mentioned, in
order to prevent the vehicle driving out the RSU during task transmission, meaning that
more data is processed locally, resulting in more delay.
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(a) N = 50 (b) N = 60 (c) N = 70

Figure 6. Pareto-optimal solutions of MOV, ORO-pre, PLO-pre, and PSOCO-pre with different
numbers of vehicles.

5.2.2. The Validity of the Proposed Strategy

The unstable communication condition of each time slot is a key challenge during
the task offloading. Figure 7 shows the performance comparison of the QoS value on
100 slots with unstable link bandwidths. Our MOV algorithm achieves better performance
compared with other algorithms under three average QoS weights : “Balanced”(λ = 0.5,
µ = 0.5), “Delay-sensitive”(λ = 0.8, µ = 0.2), and “Energy-sensitive”(λ = 0.2, µ = 0.8). It
can be seen that: (1) MOV achieves a consistently high QoS value and the highest QoS for
“Balance”, as it can use a better offloading strategy considering different task requirements
through cooperation and the real-time speeds related to tolerance delay. PSOCO shows a
smaller QoS value than MOV, as it only considers the nearest RSU to offload tasks without
cooperation of RSUs, resulting in a suboptimal strategy. For PLO and ORO, the QoS values
are the lowest because the cooperation between vehicles and edges is ignored. (2) In
Figure 7b,c,, compared to the ORO, PLO, and PSOCO algorithms, the MOV algorithm
shows better QoS performance. Although ORO achieves the highest QoS value for “Delay-
sen”, its QoS value is the lowest, and it has a large fluctuation for “Energy-sen”. This
is because, while ORO achieves the lowest delay, as mentioned above, because is very
suitable for delay-sensitive tasks, for energy-sensitive tasks its QoS value is the lowest
and fluctuates due to unstable network conditions. On the contrary, while PLO is suitable
for “Energy-sen”, it is the worst for “Delay-sen”. This is because PLO achieves the lowest
energy consumption, which results in the highest delay. Moreover, our algorithm MOV
achieves the highest QoS value compared to PSOCO, especially for “Delay-sen”, because it
considers the speed-related tolerance delay limit, which further reduces task completion
delay. Therefore, MOV is always a better choice to satisfy the QoS requirements of any task.

(a) Balance (b) Delay-sen. (c) Energy-sen.

Figure 7. QoS values of ORO, PLO, PSOCO, and MOV with different requirements.

Considering that there may be traffic congestion on a real road, in this scenario the
speed of the vehicles is low. Thus, when the number of vehicles with different demands at
a certain time is 60, we compare the performance indicators of different traffic congestion
conditions, with the average speed of all vehicles being 4 m/s and 11 m/s based on
simulated data in Figures 8 and 9. It can be seen that: (1) for MOV, there is a higher delay
and lower energy consumption when the average speed is 4 m/s compared to when it is
11 m/s. The reason for this is that a higher velocity causes more offloading failures, and
the vehicle drives out of the current RSU during offloading. Therefore, the vehicle tends
to offload the task to RSUs with low delay when the vehicle speed is high, which leads to
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greater energy consumption during to task processing. (2) Compared with PSOCO, our
method achieves lower delay and energy consumption at any speed, as PSOCO ignores
task offloading failure due to the high mobility of the vehicle. As our method considers
vehicle prejudgment in Step 1, each vehicle can make the optimal offloading decision.
(3) While ORO achieves the lowest latency, it produces the largest energy consumption.
On the contrary, while PLO achieves the lowest energy consumption, its delay is too high,
independent of vehicle speed. As a result, our algorithm can achieve optimal performance,
and is able to select the maximum QoS value relative to the speed of the vehicle.

Figure 8. Results of different velocities on delay.

Figure 9. Results of different velocities on energy cost.

In order to show the performance of our MOV, an optimal offloading strategy is
selected under the QoS model; in this scenario, the number of vehicles is 50. The delay and
energy consumption of each vehicle are shown in Figure 10 with box plots. In Figure 10,
most tasks can be finished in about 0.38 s and 0.12 J within maximum tolerance delay.
This is because our method comprehensively considers cooperation between the RSUs and
limits the possibility of task execution failure, which ensures the delay requirements for
delay-sensitive tasks and avoids RSU overload or resource waste.
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Figure 10. Delay and energy consumption of all vehicles.

Furthermore, we compare MOV with the state-of-the-art existing technique P-PPO [21],
as shown in Table 4. P-PPO is a recent study that adopts deep reinforcement learning (DRL)
to reduce delay and energy consumption with five vehicles. Here, we use the Proximal
Policy Optimization (PPO) algorithm [22] to train a neural network model to make the
optimal offloading strategy, using the RSU as an agent. We compare the reward value
under three average QoS weights: “Balanced”, “Delay-sensitive”, and “Energy-sensitive”,
with the number of vehicles set to 5, 7, and 10. If the number of vehicles is large, this leads
to difficulties in model training and introduces problems with dimensionality due to the
offloading strategy including the allocation of offloading ratio, communication resources,
and computational resources. In Table 4, we set the reward value model as follows:
reward = 10/(10 + λ× t + µ× e), where t and e are the delay and energy consumption,
respectively, of each vehicle. In the P-PPO algorithm, the reward value model is used as
the reward function. In the MOV algorithm, the result is converted into reward value
according to the reward model after obtaining the optimal offloading decisions. From Table
4, it can be seen that the results of MOV with different numbers of vehicles are better than
those of P-PPO. This is because our method can select the optimal solution according to
the QoS model, unlike P-PPOm which obtains a solution each time using a neural network
model. As the number of vehicles increases, resulting in the dimension of optimization
variables increasing, it is difficult for the algorithms to find the optimal solution, and the
reward value decreases, especially for P-PPO. At the same time, we find that the neural
network model is very difficult to train when the number of vehicles is 50 because of the
high dimensionality. Therefore, our proposed method has better performance than this
state-of-the-art existing technique.

Finally, in Table 5, we compare the performance of the improved MOV with the
previous work MOV-Simple [23], with the number of vehicles set to 50. Our improved
MOV algorithm is significantly better than the previous MOV-S algorithm in terms of OoS
value, which means that MOV can make more optimal offloading decisions for tasks with
different requirements. This is because we further divide tasks into two categories to reduce
the completion time according to the delay priority. Moreover, it can be seen that the task
completion delay decreases significantly, while the energy consumption increases only
a little, because more tasks are offloaded in order to reduce latency. This is suitable for
a Pareto-optimal solution, and the QoS value is improved. In conclusion, our improved
multi-objective computing offloading method for VEC (MOV) can improve QoS value and
be applied in multiple applications.
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Table 4. Reward values when using different algorithms with different numbers of vehicles.

The Number of Vehicles Algorithm
Reward Value

Balance Delay-sen. Energy-sen.

N = 5
P-PPO 0.94 0.93 0.94

MOV 0.97 0.96 0.98

N = 7
P-PPO 0.89 0.89 0.89

MOV 0.92 0.94 0.90

N = 10
P-PPO 0.87 0.83 0.87

MOV 0.92 0.88 0.93

Table 5. Values of different indicators compared with MOV-S.

Algorithm
Delay (s) Energy Consumption (J) QoS Value

Min Max Min Max Balance Delay-sen. Energy-sen.

MOV-S. [23] 21.33 58.27 3.72 10.15 0.61 0.72 0.68

MOV 15.42 47.15 3.81 14.03 0.68 0.86 0.75

6. Related Work

V2V-based VEC offloading: In VEC, many works offload computation tasks to pow-
erful vehicles for processing. Zhang et al. [1] proposed putting underutilized V2V link
resources to use in order to help with task offloading. Chen et al. [24] focused on the
allocation of computing resources and developed a task-offloading framework V2V to
gain a shorter task execution time. Lin et al. [25] proposed a predicted k-hop-limited
multi-RSU-considered (PKMR) vehicle-to-vehicle-to-roadside unit (VVR) data offloading
method inside a multi-access edge computing (MEC) server, which is able to consider
the time-extended prediction mechanism to find the potential VVR paths and network
conditions. However, the vehicle computation capacity is dynamic and the V2V link is
unstable, which makes it difficult to choose a proper vehicle to offload. Unlike the above
works, we consider an offloading strategy based on V2I for better reliability.

V2I-based VEC offloading: Recently, a large number of works have proposed V2I-
based VEC offloading optimization problems. Ning et al. [26] proposed an offloading
scheme that considers task offloading and content caching delay. Ning et al. [13] tried to
maximize the achievable transmission rate by integrating cellular and RSU approaches,
taking advantage of NOMA and MEC technologies. Zhou et al. [14] optimized energy
consumption and formulated an energy-efficient workload offloading problem with explicit
consideration of the overall energy consumption and latency. However, they focused on
only one performance index. Wan et al. [8] formulated a multi-objective optimization
problem to select suitable destination ENs, with the aims of minimizing the offloading
delay and cost and realizing the load balance of the ENs. However, they ignored the
effects of time-varying networks and rational resource allocation in real scenarios. Different
from the above works, we jointly consider task scheduling, communication resources,
and computing resources allocation according to different QoS requirements in order to
minimize both delay and energy consumption in a vehicular network.

To solve this problem, RL-based methods are often adopted [7,27,28]. Dai et al. [7] de-
veloped an asynchronous task offloading algorithm inspired by the ideas of asynchronous
advantage actor-critic (A3C) and deep Q-networks (DQN), which achieves fast convergence.
Zheng et al. [27] proposed a digital twin-empowered task-offloading problem for IoV and
developed a DRL-based framework to handle huge state spaces; their approach exploits
an asynchronous advantage actor-critic algorithm to accelerate neural network training.
Elham Karimi et al. [28] formulated a new resource allocation problem to guarantee the
required response time and utilized deep reinforcement learning to capture an optimal
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solution. Although the RL (DQN, DDPG) algorithm is comprehensive in dealing with the
dynamic problem of edge resources, it is a black-box process and requires enough data
to ensure its performance. Furthermore, it is difficult to train a powerful neural network
model for use with real-time changes in the number of vehicles, particularly for large-scale
cars, due to the curse-of-dimensionality problem. In our scene, variables that are coupled
lead to difficulties in train. Unlike the above works, our method can flexibly reach the
optimal offloading strategy with low complexity and for a large number of vehicles.

Collaborative computing offloading: The efficient usage of MEC servers is another
key challenge. Zhang et al. [29] designed a two-layer offloading framework based on the
multi-part offloading mode and the collaborations among small cell base station (SBS)
servers to achieve the optimal user experience. However, this is not suitable for high-speed
vehicles. For high vehicle mobility, Pang et al. [30] discussed task retransmission due
to service handover, which increases the delay. Zhang et al. [1] designed a predictive
combination-mode offloading scheme with the cooperation of vehicles. However, it cannot
provide stable service due to time-varying topology. In addition, service migration technol-
ogy is widely used. Yuan et al. [31] investigated the joint service migration and mobility
optimization problem to meet delay requirements. However, frequent service interruptions
may increase service costs, and it is necessary to make accurate location predictions, which
is difficult. Unlike the above works, we propose an offloading framework without trajectory
prediction and collaborative vehicle selection by relying on coordinating RSUs and finding
the optimal offloading strategy.

7. Conclusions

In this paper, we consider a practical urban scenario in with overlapping coverage of
RSUs. We present FEVEC, a Fast and Energy-efficient VEC framework, to make optimal
offloading decisions that minimize delay and energy consumption based on collaboration
between RSUs. Then, we formulate it as an MINLP problem to be solved. We introduce a
multi-objective computing offloading method for VEC named MOV, which employs an
improved NSGA-II algorithm with an a priori knowledge-based mechanism, and introduce
a QoS model to find the optimal offloading strategy with low complexity. Furthermore, we
add constraints on the maximum tolerated delay for tasks related to vehicle speed. Finally,
based on the vehicle’s trajectory as determined by SUMO and a realistic dataset, extensive
experimental results show the superiority of our algorithm in both energy consumption
and delay.

According to the current works, our future research will focus on following several
directions. (1) Flexible decision-making frequency: FEVEC achieves high QoS performance
by adopting a mechanism based on the time slot and finding the optimal strategy at a fixed
frequency. In future work, it could be possible change the frequency of decision-making
according to the actual network conditions. For example, when the network condition
is poor, the frequency of decision-making could be reduced, then increased again with
good network conditions. (2) Reliable task scheduling: FEVEC assumes that the task can
be completed at any slot. However, due to the lack of communication and computation
resources, tasks might not be completed in the current time slot, and a portion of the data
may need to be processed in the next time slot. In future work, we will focus on a more
reliable task-scheduling strategy to minimize delay and energy consumption. (3) Efficient
offloading algorithm: FEVEC applies a heuristic algorithm, NSGA-II, to solve the MINLP
problem, achieving good results. Although it has a high time complexity, we propose an a
priori knowledge-based mechanism to solve it. In the future, this could be replaced with
more efficient multi-objective optimization algorithms.
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