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Abstract: The main geological structures in the Dammam Dome are defined by integrating geophysi-
cal measurements and applying new methodological approaches. Dammam Dome is characterized
by a well-developed fracture/joints system; thus, high complexity of the subsurface is expected.
Direct Current Resistivity (DCR) and Seismic Refraction (SR) geophysical survey aimed to map the
Dammam Dome’s near-surface features. The geophysical data were acquired along two profiles
in the northern part of Dammam Dome. To maximize the results from conducting DCR and SR
measurements over a complex area, a combined local and global optimization algorithm was used to
obtain high-resolution near-surface images in resistivity and velocity models. The local optimization
technique involves individual and joint inversion of the DCR and SR data incorporating appropriate
regularization parameters, while the global optimization uses single and multi-objective genetic
algorithms in model parameter estimation. The combined algorithm uses the output from the local
optimization method to define a search space for the global optimization algorithm. The results show
that the local optimization produces satisfactory inverted models, and that the global optimization
algorithm improves the local optimization results. The joint inversion and processing of the acquired
data identified two major faults and a deformed zone with an almost N–S direction that corresponds
with an outcrop were mapped in profile one, while profile two shows similar anomalies in both the
resistivity and velocity models with the main E–W direction. This study not only demonstrates the
capability of using the combined local and global optimization multi-objectives techniques to estimate
model parameters of large datasets (i.e., 2D DCR and SR data), but also provides high-resolution
subsurface images that can be used to study structural features of the Dammam Dome.

Keywords: direct current resistivity; seismic refraction; local optimization; global optimization; joint
inversion; Dammam Dome

1. Introduction

Geophysical investigations are most effective in areas with sufficient subsurface geo-
logical contrasts, such as layer boundaries and lateral changes, including fractured/faulted
or, in general, deformed zones [1]. These contrasts create a specific geophysical response in
the field observations (geophysical measurements) and are interpreted with respect to the
geological setting of the survey area. Conceptually, the method(s) applied in geophysical
exploration depends on the physical properties, the contrast between the anomalies and
the surroundings, and the location/geometry of expected anomalies [2]. The Dammam
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Dome, which has been related to salt and tectonic processes since Jurassic and Cretaceous
times [3–5], offers an opportunity to apply both Seismic Refraction (SR) and Direct Current
Resistivity (DCR) geophysical methods. It should be mentioned that resistivity (DCR) and
seismic methods are suggested as the optimum methods for natural resources exploration,
engineering, and environmental purposes [1]. This area has been chosen because extended
earthworks are in progress for highway construction. As a result, an open cutting of the
Dammam Dome was exposed, providing a unique opportunity to apply the aforementioned
geophysical methods and thus get an insight into the stratigraphy and the well-developed
fracture system of the Dammam Dome, as reported by previous studies [3,6–9].

The primary goal of inverting geophysical data is to generate a model that will give
a theoretical response similar to the geophysical field measurements [10]. However, it is
unusual to have a unique solution due to the ill-posed characteristics of the most geophys-
ical inverse problem. To reduce uncertainties associated with the inversion of a dataset
belonging to a single geophysical method, many researchers have applied the concept of
local optimization methods and joint inversion [11–17] or data integration of more than
one method, which provides better model resolutions than individual inversions [18–22].
For the local optimization method, the structural data coupling approach, which involves
the cross-gradient constraint method, was applied [11]. The local optimization techniques
are used iteratively to obtain an updated model that minimizes the objective function,
which may not be the global solution of the inverse problem [23,24]. The global optimiza-
tion algorithm in geophysical inversion is used to search for a solution space to avoid
being trapped in the local minimum of the objective function [25–30]. Global optimization
algorithms have been successfully applied to solve geophysical problems involving the
gravity method [31,32], Magnetotelluric [33,34], and traveltime tomography [26]. Among
the global optimization applicable to geophysical inversion, the genetic algorithm has been
mostly applied because it does not involve complex computation and uses a crossover
operator that enables information sharing among the models in the population [35].

Consequently, only the best solutions make it to the next generation. Some studies
present integrated local and global optimization algorithms in hybrid form to extract the
advantage of both optimization algorithms [25,26]. For this study, the genetic algorithms
were used in two different forms. In the first one the genetic algorithm (GA) for a single
objective function case was applied, and for the joint processing of the DCR and SR data
the non-dominated sorting genetic algorithm 2 (NSGA II) for the multi-objective joint
optimization approach was used. The use of genetic algorithms in a single objective
function is a well-known and controlled problem [26], whereas one of the major challenges
in applying the genetic algorithm or global optimization method to a multi-objective
function (different geophysical datasets) is the determination of the optimum solutions that
do not dominate each other [30].

This study presents the combined local and global optimization approach [36] to jointly
invert SR and DCR data to improve the lateral and in-depth resolution and, thus, fully
characterize the study area and delineate the presence of anomalous zones. In particular,
we aim to outline probable near-surface features such as faults or fractures in the study area
that can be correlated with the background geology (outcrop). This process would provide
probable validation for the interpreted resistivity and velocity models. The unique aspect of
this study is that it is the first time real DCR and SR datasets are used to test the feasibility
of the combined optimization approach, utilizing single and multi-objective methods.

2. Materials and Methods
2.1. Geology of Study Area

The study area is located on the right side of the road from Al Dhahran to Ad Dammam
airport and about 2.7 km north of the King Abdulaziz Center of World Culture–Ithra
crossroad, eastern Saudi Arabia (Figure 1a). The exposed sedimentary rocks in the area
build up the northern part of the large oval-shaped dome [4]. The latter is the first, and
main, hydrocarbon structural trap found in the Eastern Province of Saudi Arabia, and is
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widely known as the Dammam Dome [3]. More precisely, the Dammam Dome covers
an area of ca. 500 km2 encompassing the cities of Al Khobar, Al Dhahran, and part of Ad
Dammam [3]. Powers et al. [37] grouped the exposed sedimentary rocks of the Dammam
Dome into the following formations from bottom to top: (a) Rus Formation; (b) Dammam
Formation; (c) Hadrukh Formation; and (d) Dam Formation, with the first two formations
dated in Eocene, whereas the next two upwards dated to Lower Miocene due to a major
unconformity that is generally referred to as the Pre-Neogene Unconformity (PNU) [7]
(Figure 1b). Based on the above, the Rus formation can be considered as the bedrock for
our geophysical survey. Powers et al. [37] mapped in detail the Dammam Dome, whereas
a geological compilation of the Dammam Peninsula from existing source maps [6,7,38] on
a modern road map was compiled by Weijermars [4]. Hariri and Abdullatif [8], Al-Fahmi [9],
Al-Fahmi et al. [39], and Hariri [3] have analyzed the fracture patterns of the Dammam
Dome, which vary from place to place, but into which the NNW–SSE trending fractures
form the regional fracture set. Based on the fracture patterns, Hariri and Abdullatif [8],
Al-Fahmi [9], Al-Fahmi, et al. [39], and Hariri [3] concluded that the dome, as part of
the interior of the Arabian platform, was far away from the Zagros Mountains belt and
therefore was not influenced by the deformation processes taken part along the Zagros due
to the convergence between the Arabian and Eurasia plates.

Figure 1. (a) Satellite image of the study area and (b) geological map of the wider study area (modified
from Weijermars [4]). Red rectangle shows the study area; (c) Field view of the wide ‘megabreccia’
zone (MBZ) disrupting the sedimentary rocks of the Dammam Formation along the roadcut. The
location from where the photo for figure (c) is taken, is shown. The DCR and SR profiles performed
herein are shown with red (DCR1, DCR2) and green (SR1, SR2) lines; (d) The stratigraphy of the
Dammam formation and the disruption (MBZ) zone of the sedimentary sequence are presented.
The DCR1 (red arrow) and SR1 (green arrow) profiles collected along the under-construction road
are depicted.

A more recent study by Tranos and Osman [5] dealing with the soft-sediment de-
formation in the area defined that the site in the Eocene was under a transtension stress
regime associated with ENE–WSW compressive stresses, which originated along the Za-
gros mountain belt due to the collision between the two plates mentioned above. Such
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a transtensional stress regime was also defined by the orientations of the ENE–WSW strik-
ing, km-long, and almost vertical tectonic lines, which were found to cut the Dammam
Dome after a geophysical exploration on the King Fahd University campus [40].

The site under investigation is a NE–SW road of ca. 500 m cutting across the sedimen-
tary rocks of the Dammam Formation [7]. The Dammam Formation, coined by Bramkamp
in 1941 (unpublished Saudi Aramco report; see Powers et al. [37]), rests conformably on
top of the Rus Formation and is subdivided into five members [37]. From bottom to top,
these are: (1) Midra Shale; (2) Saila Shale; (3) Alveolina Limestone; (4) Khobar limestone
member; and (5) Alat dolomitic limestone/marl member. The three upper members are of
Lutetian age (52.0 to 43.8 Ma) [41], whereas the two lower members are of Ypresian age
(57.8 to 52.0 Ma) [41].

On the exposed NW slope roadcut (Figure 1c), the predominant feature is an NNW–
SSE wide fault zone of ca. 30 m that disrupts the rocks of the Dammam Formation.
In particular, the bedding seen clearly outside the fault zone cannot be traced within the
fault zone due to the intense cataclasis and mingling, processes that make the fault zone
appear like a ‘megabreccia’ zone (MBZ) (Figure 1d). As a result, the fault zone disrupts
and mismatches the continuation of the bedding. This deformed zone has been recently
interpreted by Alkhalifa and Kurison [42] as a karst collapse zone.

2.2. Geophysical Data Acquisition and Quality Control

Two DCR and SR profiles were conducted along road cuts, as shown in Figure 1.
Profile 1 is 350 m long and addressed from southwest to northeast, while profile 2 is about
200 m long and acquired from almost north to south in the study area (Figure 1b). DCR
data were acquired using the multi-electrode Syscal Pro Switch 96 resistivity instrument,
using 75 electrodes with 5 m electrode spacing on profile 1, and 49 electrodes with the same
spacing on profile 2. The dipole–dipole (DD) acquisition protocol was used in both DCR
profiles 1 and 2 since the DD acquisition protocol provides the best lateral resolution [1],
and based on the visual evidence mainly lateral changes were expected to be found. For the
SR data, 120 shots and receivers at 3 m intervals were used on profile 1, while 40 shots and
receivers at 5 m intervals were used on profile 2. The DCR data were converted to a format
readable with our Matlab inversion algorithm that prepares the data for inversion. Data
preparation for the SR method involves mainly the first arrival picking. The first arrival
picking technique, similar to the method applied by Sherif et al. [43], was used in this study,
and the supervirtual seismic refraction interferometry (SVI) technique [44,45] was used for
part of the SR data, having low signal-to-noise ratio (SNR). After that, the local and global
optimization algorithms were applied.

2.3. Optimization Principle
2.3.1. Local Optimization Principle

The forward problem in a geophysical inversion is usually solved to describe the
relationship between measured data and theoretical data before considering the inverse
problem [10]. The solution to the forward problem includes theoretical computation of
model response to the earth perturbation, with the assumption of known model parameters
and source and receiver positions related to measured data. The field observations can be
described as a function of the model parameters due to earth perturbation, plus a certain
amount of noise as shown in Equation (1).

F(m) = dobs + n, (1)

F is the function that describes the sensitivity of the earth model to the earth pertur-
bation, m is the model parameter or physical property of the earth, and n is noise due
to the field survey process. Because the forward operator F can be generally expressed
as a differential equation, we often solve the forward problem using numerical solution
methods such as FD, FE, and IE.
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We aim to estimate the model parameters that produced the noisy field observations
in the inverse process. This task is more complicated than the forward calculations because
the field observation is sparse relative to the size of the earth model, making the available
resources (data) insufficient. Any solution obtained with these limited resources is non-
unique; consequently, we add adequate a priori information about the model and the
field observations to arrive at the best solution. One such important information source
is the data covariance; the theoretical data should vary similarly to the field observations.
Additionally, we impose some constraints or apply a smoothness function to the model
to obtain a more meaningful geologic interpretation. Generally, we formulate the cost
function (Φ) by algebraically summing up the data residual and smoothness terms as:

Φ
(
mp
)
= R

(
mp
)
+ αpD

(
mp
)
, (2)

where R is the data misfit term, D is the stabilizer term which is controlled the smoothness
or regularization of model parameters, while αp is a regularization parameter to balance
the weights between data misfit term and stabilizer term, and mp is a vector representing
the model parameter. Specifically, we present the cost function for individual DCR and SR
methods as:

Φ(mdcr) =‖Wdcr(ddcr − gdcr∆mdcr) ‖2 + αdc‖
(
∇2mdcr

)
‖

2
, (3)

Φ(msr) =‖Wsr(dsr − gsr∆msr) ‖2 + αsc‖
(
∇2msr

)
‖

2
. (4)

In Equations (3) and (4), W is a weight matrix used for biasing the data, d is the field
observations, g is the Jacobean or sensitivity matrix that is used to obtain the theoretical
responses at every model perturbation, ∆mp is the model correction vector, and ∇2 is the
Laplacian operator. We minimized the objective function by taking the derivative of the
model parameter. Thereafter, the model parameter correction vector for both DCR and SR
can be represented as:

∆mdcr =
(

gT
dcrW

T
dcrWdcrgdcr + αdcrCTC

)−1(
gT

dcrW
T
dcrWdcr∆ddcr − αdcrCTCmi−1

dcr

)
, (5)

∆msr =
(

gT
srW

T
srWsrgsr + αsrCTC

)−1(
gT

srW
T
srWsr∆dsr − αsrCTCmi−1

sr

)
, (6)

where C is called as smoothing matrix and includes and includes the Laplacian of the model
parameters. Equations (5) and (6) can be simplified as follows:

∆mdcr = G−1
dcrndcr, (7)

∆msr = G−1
sr nsr. (8)

We apply the Gauss–Newton optimization algorithm to estimate the model param-
eter correction vector, and cooling approximation is used to estimate the regularization
parameters [46]. Regarding the joint inversion approach, the cross-gradient (structural)
constraint is applied as suggested by Gallardo and Meju [11] and Ismail et al. [16,17]. The
cross-gradient algorithm considers that the gradient of the model parameters in the joint in-
version must be parallel, non-parallel, or equal to zero, which are essential criteria required
to satisfy the algorithm. This cross-gradient function for the joint inversion of DCR and SR
is given as:

∂(mdcr, msr) = ∇mdcr ×∇msr, (9)

∼= ∂(m0dcr, m0sr) + B
(

mdcr −m0dcr
msr −m0sr

)
, (10)

where ∂ is the cross-gradient function for all the pixels in the model, m represents the
model parameters in both DCR and SR methods, and B is the vector of the derivates of the
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cross-gradient with respect to model parameters. Therefore, the cost function for the joint
inversion is formulated as:

Φ(mdcr, msr) = R(mdcr, msr) + αpD(mdcr, msr) + ε∂(mdcr, msr), (11)

subject to Φ(mdcr, msr) = 0. In Equation (11), the symbol ‘ε’ is used to represent the
regularization parameter of the cross-gradient function. The data residual and smoothening
terms can be represented as:

R(mdcr, msr) =‖Wdcr(ddcr − gdcr∆mdcr) ‖2+ ‖Wsr(dsr − gsr∆msr) ‖2, (12)

D(mdcr, mSr) = ‖
(
∇2mdcr +∇2msr

)
‖

2
. (13)

After performing the minimization of the cost function in Equation (11) as expressed
in Demirci et al. [16], the model parameter vector can be represented as:

∆m = G−1nG−1BT
(

BG−1BT
)−1[

BG−1n− B∆mi−1 + ∂(mi−1)
]
. (14)

Moreover, the variables ∆m, G, and n in Equation (14) can be expressed in matrix
form as:

∆m =

[
∆mdcr
∆msr

]
, G
[

Gdcr 0
0 Gsr

]
, while n =

[
ndcr
nsr

]
. (15)

Similarly, to the individual local optimization algorithm, we apply the Gauss–Newton
optimization algorithm to estimate the model parameter correction vector, and cooling
approximation is used to estimate the regularization parameters.

2.3.2. Global Optimization Principle

Generally, five (5) global optimization algorithms can be used in geophysical inver-
sion [35]; however, the genetic algorithm was applied in this study due to its computational
simplicity and it can be easily adapted to parallel computing [35]. Compared with other
stochastic methods applied in 1D full waveform inversion, the genetic algorithm provides
optimal performance [47]. Fundamentally, the genetic algorithm uses the evolutionary
operators selection, crossover, and mutation to compute the solution of an optimization
problem [30]. Because the genetic algorithm involves population-based optimization, it is
initialized by creating subsets of all the possible solutions in relation to the fitness function
of the inverse problem. To obtain the optimality of the global optimization algorithm, both
single and multi-objective genetic algorithms were applied. The single objective genetic
algorithm involves one fitness function, i.e., only DCR or SR optimization can be run at
a time. The binary coding scheme is commonly used to create the initial population for
the single objective optimization [35]. Thereafter, genetic algorithm operators are used to
search for an optimum solution from the population; this process could be referred to as
the stochastic optimization approach.

The multi-objective genetic algorithm is similar to the single objective; however,
instead of coding its population, the model parameters are used directly to initialize
the population. In addition, the fitness function is created such that the entire misfit is
partitioned according to the number of objective functions, in this case two (i.e., DCR and SR
methods). Finally, each portion of the misfit is evaluated with respect to the corresponding
fitness functions described in Equations (16) and (17).

Mdcr =
100× (‖ ddcr − tddcr ‖2)

‖ ddcr ‖2
, (16)

Msr =
100× (‖ dsr − tdsr ‖2)

‖ dsr ‖2
, (17)
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where d is the field observation (real data), while td is the theoretical data for both the DCR
and SR methods. The misfit from both DCR and SR objective functions are combined in the
multi-objective optimization as:

Mdcr sr =
[
Mdcr Msr

]
. (18)

To perform the multi-objective optimization in a way that the contribution of each
misfit function must be optimized to avoid one method dominating the other (i.e., solutions
in the DCR and SR objectives domain are not better than each other), the non-dominating
sorting genetic algorithm (NSGA II) is applied here. The concept of this algorithm is shown
in Appendix A and discussed explicitly in Deb et al. [48], and has been applied in some
geophysical-related studies [29,30,36]. The NSGA II the basic genetic algorithm operators
(i.e., selection crossover, and mutation) were used to to create off springs from the initial
population and combine both parents and offspring in non-dominated sorting. At the initial
stage in this approach, some sets of optimal solutions (non-dominated solutions) arrive at
a common front known as Pareto optimal front. These solutions are momentarily set aside in
the algorithm while other sets of solutions improve and become non-dominated. Thereafter
the principle of elitism [49] is applied to all the non-dominated solutions to determine
the sets of optimal solutions that go to the next generation. The combined optimization
algorithms involve the application of the output (model) of the local optimization to define
a search space (lower and upper bounds) for the global optimization algorithm. A detailed
description of the combined optimization algorithm is presented in Edigbue et al. [50].

3. Results
3.1. Profile 1

The local optimization results for the individual and joint inversions of both DCR and
SR are presented in Figure 2. The resistivity model shows that the DCR method penetrates
at a depth of 100 m, while the SR method reached the maximum depth of 60 m. It should
be mentioned that we decided not to trim the DCR1 data at 60 m depth to be directly
comparable with the SR1, since detecting deep structures was one of this study’s objectives.
Despite the disparity in depth, both methods show some similarities in the delineating
features. The SR method did not significantly trace some of the shallow anomalies, even
after applying the joint inversion; this was unlike the DCR method, probably due to the
resistivity contrast of these anomalies with respect to the surrounding rock materials.
Specifically, surface stratigraphic characteristics, such as the smooth dipping of the layers
of the Dammam formation to the east, were detected only on the final inverted individual
DCR model. It should be mentioned that the vertical (depth) axis in all final tomographic
models is exaggerated by 1.35. Thus, the slope of the layers is much smoother than it
appears in the models.

Moreover, low (around 1 Ohm.m.) resistivity vertical structures were depicted at
the 150 m and 240 m offset at the DCR final model. From the individual inversion of the
seismic refraction data, only the high-velocity structures at the beginning and the end of
the model (the bedrock of the study area) are shown, and a wide (more than 100 m thick,
from 120–240 m along the SR1 profile), low-velocity zone was presented. However, after
applying the joint inversion of the DC (DCR1) and Seismic (SR1) data, the major anomalies
were reconstructed with higher resolution. This could be due to the impact of the structural
constraint that is applied in the joint inversion. Generally, the DCR and SR data’s joint
inversion shows improved structural similarity compared to their individual inversions.
Specifically, after applying the joint inversion and using structural constraints, the vertical
high resistivity and the in-between low resistivity structure are better depicted, and the
shallow structures seem more continuous. The exposed deformed (MBZ) zone and its
extent in depth are better seen in the seismic model. In all cases, the final misfit and RMS
error are very low, varying from 4.1–5.2% and 0.006–1.6, respectively.
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Figure 2. DCR and SR inversion using local optimization method: (a) individual inverted resistivity
model; (b) joint inverted resistivity model; (c) individual inverted velocity model; and (d) joint
inverted velocity model. All geophysical models are vertically exaggerated by 1.35.

The final tomographic models using the global optimization results and applying
both single and multi-objective algorithms are presented in Figure 3. The outputs of the
single objective global optimization for both data sets (Figure 3, upper row) are structurally
similar to the local optimization results. This was partially expected since the search space
for the next generation was fed by the output of the local optimization algorithm. At best, it
shows a slight improvement in the resolution of the DCR and SR models and significantly
decreases the misfit and RMS errors. Minor changes and improvements in the final models
were observed by using the multi-objective optimization. Only the misfit and RMS errors
are lower. The same resistivity and velocity features were depicted.

Figure 3. DCR and SR inversion using global optimization method: (a) single objective optimization
resistivity model; (b) multi-objectives optimization resistivity model; (c) single objective optimization
velocity model; and (d) multi-objective optimization velocity model. All geophysical models are
vertically exaggerated by 1.35.



Sensors 2022, 22, 9337 9 of 17

3.2. Profile 2

Both DCR2 and SR2 data were collected along the same profile. The final tomographic
results show that the total penetration depth is 50 m for both the applied techniques.
Figure 4, (first column, a and b) shows the results of inversion using a local optimization
algorithm for individual and joint inversion of both (DCR and SR) geophysical data. Both
tomographic models found the bedrock (high resistivity) formations in the southern part
of the acquired profile at 20 m below the ground surface. From the final individual/joint
inversion DCR models, the bedrock disappears at around 120 m offset from the north
(beginning of the profile). A medium resistivity (100 Ohm.m) formation covers the whole
area. In the first 50 m of the profile, and from the 20 m depth to the bottom of the model,
a very low resistivity (10 Ohm.m) layer was detected. The final misfit and RMS errors for
the final resistivity models are low, varying from 4.76–9.24% and 1.59–3.08, respectively.

Figure 4. DCR2 and SR2 (see Figure 1b for location) inversion using local optimization method:
(a) individual inverted resistivity model; (b) joint inverted resistivity model; (c) individual inverted ve-
locity model; and (d) joint inverted velocity model. All geophysical models are vertically exaggerated
by 1.35.

The seismic tomographic model of Figure 4c shows a 3-layers velocity model: The
upper first layer with an average velocity and thickness of 1000 m/s and 10 m, respectively.
The second layer, with an average velocity of 1700–2800 m/s, overlays unconformably the
bedrock of the study area, which has an average velocity of 2800–4000 m/s. Figure 4d
is affected by the joint inversion and incorporation of the structural constraints of the
resistivity model/changes to the final resulted velocity model. A low-velocity anomaly
at the first 50 m of the profile was reconstructed, similar to the low-resistivity anomaly
detected at the same location from the DCR individual and joint inversion. The final misfit
and RMS errors for the final velocity tomographic models are acceptable, varying from
3.71–9.24% and 0.002–0.005, respectively.

Results in Figure 5 show that the global optimization algorithm slightly improves
the output of the local optimization algorithm (individual inversion). For instance, in the
local optimization algorithm, RMS in DCR2 is between 1.578 and 3.079, while the RMS is
between 0.260 and 0.175 in the global optimization results. Likewise, in the case of SR2,
RMS is between 0.0024 and 0.0054 in the local optimization result, while RMS is 0.0036
and 0.0016 in the global optimization results. Structurally, the right part of the resistivity
model is similar to the right part of the velocity model. The main difference between the
two different solutions, using the local and global optimization techniques, can be identified
in the models in Figures 4d and 5d. It seems that the structural constraints of the resistivity
models from the use of local optimization are not affected in the same way as the models
in the global optimization. Thus, Figure 5d shows a similar model as in Figures 4c and 5c,
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and only a small lateral discontinuity at around 30 m offset is observed, which is probably
in the order of the accuracy/resolution of our model at that depth.

Figure 5. DCR and SR inversion using global optimization method: (a) single objective inverted
resistivity model; (b) multi-objectives inverted resistivity model; (c) single objective inverted velocity
model; and (d) multi-objective inverted velocity model. All geophysical models are vertically
exaggerated by 1.35.

4. Discussion

The application of the local and global optimization methods was proven promising
by using a joint geophysical inversion and interpretation of acquired resistivity and seismic
data along an open geological section with visible stratigraphy and tectonic features, where
the roadcut was used for ground truthing. The exposed ‘megabreccia’ zone (MBZ), the fault
zone within the Dammam formation deposits, was confirmed by both the geophysical (DC
and Seismic) data but with different resolutions, as expected based on the advantages and
disadvantages of the applied geophysical methods and acquisition protocols used. Based
on the composition of the Dammam formation, a low to medium (from 10–100 Ohm.m)
resistivity is expected. The high resistivity (more than 100 Ohm.m) and velocity (greater
than 2500 m/s) structures at both (west and east) sides of the final geophysical (velocity
and resistivity) models can be associated with the Rus formation as mapped by Tleel [7]
(Figure 1b), and also reported by Alkhalifa and Kurison [42]. Specifically, to the west of the
study area the Rus formation exists in the area, as mapped by Tleel [7], at a distance less
than 500 m from the study area.

In particular, DCR1 profile (Figure 6b) shows in depth the continuation of the MBZ
zone, but also one more deformed zone was detected between 200–240 m along the profile
with the same low resistivity characteristics. Shallow horizontal to sub-horizontal, medium
to high resistivity (50–80 Ohm.m) layers are shown with dashed lines in the eastern part of
the profile, which agree with the stratigraphy as observed and is shown in Figure 6a. The
final resulting velocity (RS1) model has a much lower resolution and can only image the
high-velocity Rus formations at the sides of the model and, with low resolution, the wide
deformed (low velocity) zone from 110–250 m along the profile.

Although no prominent outcrop reveals structural information on profile 2, the geo-
physical results show that the method delineated similar major anomalies. Both DCR and
SR models in Figure 7 show the bedrock (resistivity of more than 200 Ohm.m and velocity
more than 3000 m/s) in the southern part of the profile at a depth of 20 m below the ground
surface. The main difference in the interpretation of the different datasets comes from the
northern part of the profile. DCR2 shows a clear low (10 Ohm.m) resistivity anomaly, from
top to the bottom of the model. In contrast, the SR2 shows the bedrock along the whole
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profile (dashed line), with a lateral discontinuity (depicted as a question mark in Figure 7b)
at the offset of 35–40 m along the profile SR1. This lateral discontinuity, which in applied
geophysics can be considered a fracture/deformed zone, can probably be associated with
the very low (10 Ohm.m) resistivity anomaly at the same offset. Since profile 2 has an almost
N–S direction, it can be safely assumed that the low detected resistivity and probably lower
velocity anomalies are related to a deformed and/or fractured zone of the WSW–ENE
direction. This finding agrees with the direction of the subsurface fractures reported by
Chavanidis et al. [44], supporting the conclusion that deep and thicker fractured/deformed
zones of the WSW–ENE trend, perpendicular to the main axis of the Dammam Dome, exist.

Figure 6. Structural interpretation of the resistivity and velocity models from profile 1: (a) section of
the outcrop (road-cut) showing inclined strata; (b) interpreted resistivity model; and (c) interpreted
velocity model. Notice that both methods (DCR and SR) map similar structures, especially the faults
and the deformed zone. Both geophysical models are vertically exaggerated by 1.35.
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Figure 7. Structural interpretation of the resistivity and velocity models from profile 2 (a) interpreted
resistivity model; and (b) interpreted velocity model.

5. Conclusions

Both local and global optimization algorithms were applied individually and jointly
to achieve the high-resolution resistivity and velocity models presented in this study. The
local optimization results show satisfactory outputs as a result of using appropriate regu-
larization parameters for both DCR and SR data inversion. In the combined optimization
algorithm, results from the individual local optimization algorithm were used as input to
define the search space for the global optimization method. Since the local optimization al-
gorithm performs acceptably, the global optimization method slightly improves the model
resolution and RMS error. Subsurface deformational features such as fractures/faults
were mapped on both profiles in the study area. Profile 1 reveals significant NNW–SSE
faults, as lateral discontinuity of the resulting tomographic models, observed in both the
resistivity and velocity models. Moreover, the observed surface MBZ along the road-cut
was confirmed in-depth. The observed anomalies from both resistivity and velocity models
for profile 2 show similarities to those in profile 1. Specifically, the interpretation of profile
2 has identified low resistivity and low-velocity anomalies which can be safely related
to a deformed zone of WSW–ENE direction. Similar in-trend, subsurface fractures were
reported by Chavanidis et al. [44]. It is shown that data integration, or joint geophysical
data inversion using the combined local and global optimization methods, can unravel the
geology of complex areas in depth. Integrating both DCR and SR data increases the model
resolution and provides well-correlated structural similarities in the models. Moreover,
these results show the feasibility of applying the combined local and global optimization al-
gorithm to jointly interpret real 2D DCR and SR data, using both single and multi-objective
genetic algorithm methods. Although the strength of the genetic algorithm lies in simplicity
and adaptability to parallel computers, however, there is the tendency for early convergence
(weakness), especially when there is over-mutation and crossover. Future studies may
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focus on determining the genetic algorithm optimum parameters (i.e., mutation rate and
type of crossover) for the inversion of large datasets (e.g., 2D DCR data).

Author Contributions: Conceptualization, P.S.; methodology, I.D., I.A., H.H., P.S. and E.C.; software,
P.E., I.D., I.A. and H.H.; validation, I.D., I.A. and H.H.; formal analysis, P.E., I.D., I.A., H.H., P.S. and
E.C.; investigation, P.K., P.S. and S.H.; resources, P.S. and S.H.; data curation, P.E.; writing—original
draft preparation, P.E., P.K., P.S. and M.T.; writing—review and editing, P.E., I.D., I.A., H.H., P.K., P.S.,
M.T., I.S.A.-M., E.C., S.H. and A.A.-S.; visualization, P.E., P.K., P.S. and M.T.; supervision, P.S.; project
administration, P.S.; funding acquisition, A.A.-S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the start-up grant SF18060 from the College of Petroleum
Engineering and Geosciences (CPG) at King Fahd University of Petroleum and Minerals (KFUPM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge CPG for technical and financial support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. A Template of the Combined Application in Seismic and
Geoelectrical Tomograhy

% Input geometrical parameters of 2D model and initial model velocities/resistivities:
% X-limits of model: xmin, xmax
% Node spacing in x and z directions: dx, dz
% Max depth of model: zmax
% Initial velocit model: v
fid=fopen(‘InitModel.md’,‘r’);
[xmin, xmax, dx, dz, zmax,v]=finput(fid);
xnodes=((xmax-xmin)/dx)+1; % Number of nodes along x- direction
znodes=((zmax-zmin)/dz)+1; % Number of nodes along z- direction
nparam=xnodes*znodes; % Number of unknown parameters
%Input measured data (traveltimes, resistivities)
load SR.dat
load Res.dat
%% Local optimization section
% Insert the fittest model as initial model for inversion

niter=10;%number of iterations
[RMS,mnew]=INVgen(xmin,zmin,dx,dz,xmax,zmax,v,idealtt,niter);

[RMS,mnew]=INVgen(xmin,zmin,dx,dz,xmax,zmax,rho,app_rho,niter);
bestfit=RMS;

if RMS<bestfit
arent(loc,:)=mnew1;
arent(loc,:)=mnew2;

end
%% Global optimization section
%Define parameter search spaces for GA by giving a %15 variance to initial values
% define the search space for the global optimization
v=mnew1
rho=mnew2
parmin(1:nparam)=v/1.15; % lower bound of the search space
parmax(1:nparam)=v*1.15; % lower bound of the search space
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%GA parameter definitions
microaga=1; % use of micropopulation instead of mutation
pcross=0.65; % crossover probability
pmutate=0.02; % mutation probability if (microga turned off)
maxgen=30; % number of generations
npopsiz=10*nparam; % An empirical value for the population size

% Generate the initial population randomly
[iparent]=initial(nparam,parmin,parmax,npopsiz);

% Main evolutionary loop
for igen=1:maxgen
% Decode the binary coded strings into decimal

parents=decode(iparent);
if npopsiz>100

% Run forward calculations on local machine
ttminback=refraction(igen,xmin,zmin,dx,dz,xmax,zmax,parents); % vectorized
res=dcr(igen,xmin,zmin,dx,dz,xmax,zmax,parents); % vectorized

else
% Distribute the calculations over the cpu’s

jm = findResource(‘scheduler’, ‘type’,‘jobmanager’, ‘LookupURL’,‘HOSTNAME’);
job1 = createJob(jm);

% SR.dat: Sources - Receivers location
% refraction.m: an algorithm to solve the forward problem

set(job1,‘FileDependencies’,{‘refraction.m’,‘SR.dat’});
dl=1; % down limit
groupsize=npopsiz/(jm.NumberOfIdleWorkers);
ul=groupsize; % upper limit
NumberofTasks=npopsiz/groupsize;
for itask=1:NumberofTasks

createTask(job1,@refraction,1,{igen,groupsize,xmin,zmin,dx,dz,xmax,zmax,parent(dl:ul,:)});
dl=dl+groupsize;
ul=ul+groupsize;

end
submit(job1)
waitForState(job1,‘finished’);
out=getAllOutputArguments(job1);
ttminback=cell2mat(out(:,1)‘)’;
finished_jobs = findJob(jm,‘State’,‘finished’);
destroy(finished_jobs)

end
% Compute measured-calculated traveltimes misfit by means of RMS

load measured_tt.dat;
misfit=norm(measured_tt-ttminback)/sqrt(length(ttminback));
average_misfit(igen)=sum(misfit)/npopsiz;
[bestfit,loc]=min(misfit); %best fitted individual
fittestvel=parrent(loc,:);

% Compute measured-calculated traveltimes misfit by means of RMS
load measured_res.dat;
misfit=norm(measured_res-res)/sqrt(length(res));
average_misfit(igen)=sum(misfit)/npopsiz;
[bestfit,loc]=min(misfit); %best fitted individual
fittestrho=parrent(loc,:);

% Define the fittest velocity models compared to the average misfit
[ix]=find(misfit < (average_misfit(igen)));
nmoditer=length(ix);
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for ii=1:nmoditer;
% Run the forward modeling once more for each selected vel model
% To estimate the Jacobian (derivative) matrix

bestvel=parent(ix(ii),:);
ttminback=refraction(igen,1,xmin,zmin,dx,dz,xmax,zmax,bestvel);
res=dcr(igen,1,xmin,zmin,dx,dz,xmax,zmax,bestrho);
new_min=max(mnew);
new_max=min(mnew);
save (‘parmin.mat’,‘new_max’,‘new_min’);

% The MNEW is the updated velocity model and transformed to
% Binary format to include these best vel models to the original population

if RMS<misfit(ix(ii))
binarray=code2(nparam,mnew,ig2,g0,g1);
iparent(:,ix(ii))=binarray;
misfit(ix(ii))=RMS;

end
end; % End of the inversion of all the fittest models

end;
% End of the check about the partial inversion before continue the gen
% Selection crossover and mutation

mate1=selecter(misfit,npopsiz);
mate2=selecter(misfit,npopsiz);
ichild=iparent(n,mate1);
ras=rand(1,nchrome);
mer=find(ras<=pcross);
ichild(mer,1:npopsiz)=iparent(mer,mate2);

% End of evolution
% Code the new generation

iparent=newgen(ielite,npossum,ig2sum,ibest,npopsiz,ichild,iparent);
if microga==1;

[iparent]=gamicro(npopsiz,nchrome,iparent,ibest);
end

if best<1e-09
break

end
% Save results

string_gen=int2str(igen);
save_file=strcat(‘Results’,string_gen,‘.mat’);
save(save_file, ‘parents’, ‘xp’, ‘zp’, ‘bf’, ‘average_misfit’,‘misfit’);

end % Close the iteration over all generations
fclose(‘all’);
% End of Code
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