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Abstract: In this study, we propose dynamic model update methods for the adaptive classification
model of text streams in a distributed learning environment. In particular, we present two model
update strategies: (1) the entire model update and (2) the partial model update. The former aims
to maximize the model accuracy by periodically rebuilding the model based on the accumulated
datasets including recent datasets. Its learning time incrementally increases as the datasets increase,
but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes
the model only with a limited number of recent datasets, noting that the data streams are dependent
on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of
accuracy. To verify the proposed update strategies, we extensively apply them to not only fully
trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding
model based on BERT. Through extensive experiments using two real tweet streaming datasets, we
show that the entire model update improves the classification accuracy of the pre-trained offline
model; the partial model update also improves it, which shows comparable accuracy with the entire
model update, while significantly increasing the learning speed. We also validate the scalability of
the proposed distributed learning architecture by showing that the model learning and inference
time decrease as the number of worker nodes increases.

Keywords: event classification; text streams; distributed learning; continual learning; dynamic model
update

1. Introduction

Twitter is one of the popular social networking services dealing with text streams,
which provides a fast and interactive channel where the users write tweets and obtain access
to the written tweets related to the latest events [1]. There have been lots of research efforts
to classify the tweets and detect certain types of events using the collected tweets, focusing
on the offline classification model [2,3]. Because tweets have short texts, it causes great
difficulties in classification. Batool et al. [2] extracted knowledge from tweets and classified
tweets based on the semantics of tweets. Shin et al. [3] proposed a text classification model
for detecting cyber-security-related tweets by introducing two contrastive word embedding
models that are positive and negative to the target events.

Considering that new information and responses to events are rapidly generating,
it is important to quickly reflect data generated in real time into the model. However,
applying the large-scale data streams to the classification model dynamically causes many
limitations because it requires high costs in re-training the model to reflect the new data
generated in real time. To confirm the overhead of the learning process, we conduct a
preliminary experiment that compares the data ingestion, learning, and inference time
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by scaling the number of tweets. For this experiment, we used one of the datasets used
in the experiments, i.e., the CSI dataset, and the bidirectional LSTM (Bi-LSTM)-based
classification model. Table 1 shows the results that clearly confirm the learning process is a
bottleneck in the entire classification pipeline considering its portion and the increased ratio
according to the data scale compared to the ingestion or inference time. In the previous
study [4], the relatively high portion of learning time over the data ingestion time has been
presented to show the necessity of effective data ingestion to retain the ingested datasets for
further learning. In this study, we focus on how the portion of the learning time becomes
longer compared to the ingestion time as the data increases, showing the necessity of the
efficient model update for large-scale data streams. Specifically, the learning time over the
ingestion time is 5.43 times in the case of 200,000 tweets, whereas it is 4.42 times in the
case of 50,000 tweets. This indicates that we need an effective model update method in an
environment where the streaming data continuously flows in by efficiently learning the
classification model while maintaining the model accuracy.

Table 1. The elapsed time for ingesting, learning, and inferencing tweets.

Number of Tweets Ingestion Time Learning Time Inference Time

50,000 266 s 1120 s 0.0671 s
100,000 523 s 2467 s 0.0784 s
150,000 751 s 4076 s 0.0854 s
200,000 1094 s 5604 s 0.1345 s

In this study, we deal with the problem of updating the text classification models
dynamically in a distributed environment to respond to the streaming data flowing in at a
fast speed. In this regard, we claim two research objectives of this study. First, according to
the continuously changing event trends in the streaming data, we need to efficiently reflect
the changes into the existing model to respond to those changes in a real-time manner.
Second, considering that large-scale streaming data flows at a high speed, we need to design
a scalable architecture based on the distributed environment, accelerating the learning
and inference speed of the model. We note that the existing classification models for the
streaming data were not effective in terms of their efficiency and scalability in reflecting the
dynamic changes into the model in a distributed environment.

There have been lots of research efforts to increase the performance of event classifi-
cation in data streams [3,5–12]. Because the performance of the classifier is significantly
affected by the underlying embedding models, effective word-embedding methods have
been proposed [3,6,11]. On the other hand, a few studies have investigated building a set of
classifiers and selectively utilizing them to respond to non-stationary data streams [9,10,12].
However, a scalable architecture for the streaming event classification in a distributed
environment, which is required to efficiently respond to detect and track the events from
data sources with large volumes and high velocity, has not been considered before.

Learning the model in a centralized server has an inherent limitation in providing
scalability for dealing with massive-scale data. Therefore, distributed learning has evolved
as the solution by distributing the overhead of maintaining a global model in a centralized
server into multiple nodes. Lots of recent research efforts have focused on the cooperation of
multiple nodes to update a global model [13–17]. On the other hand, the efficient reflecting
of local changes in each local model in a distributed environment has also been addressed
in several studies [18–21]. However, there have been no research efforts to dynamically
update the distributed classification model to respond to the changing non-stationary
event streams.

To respond to non-stationary data streams, distributed online learning has been ex-
plored in various fields [22–26], and they target common research goals of dynamically
updating the model in a distributed environment. All previous studies focused on improv-
ing the model performance targeting a specific model, but it is essential to immediately
update the model by reflecting newly generated data streams to the model in order to
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respond to a new event trend in real-time data streams. In this regard, our distinguish-
ing research goal that is different from the existing distributed online learning methods
is proposing an efficient model update method while minimizing the accuracy loss, not
improving the model performance. Furthermore, we do not focus on a specific classification
model and, instead, identify common trainable modules for the typical classification models
and apply the update strategies to the various classification models.

In this study, we propose the dynamic model update methods for the adaptive classifi-
cation model of data streams in a distributed learning environment. Based on the scalable
architecture in a distributed environment, we present two model update strategies: (1) the
entire model update and (2) the partial model update. The former aims to maximize the
model accuracy by accumulating all the datasets including recent datasets and rebuilding
the model periodically as the trends in data streams change. Accordingly, its accuracy
increases over time as the data increases, but the learning time significantly increases at the
same time. The latter fine-tunes the model only with a limited number of recent datasets,
noting that the data streams are dependent on a recent event. Therefore, it accelerates the
learning speed while maintaining a certain level of accuracy. To verify the effectiveness of
the proposed update strategies, we extensively evaluate not only fully trainable language
models based on CNN, RNN, and Bi-LSTM but also a pre-trained word-embedding model
based on BERT. In particular, we identify the partial modules that can be effectively updated
with a marginal overhead for all the models in common.

The contributions of the paper can be summarized as follows:

• We design a scalable classification model based on a distributed learning environment
that enhances the parallelism of the model learning. Therefore, it can resolve the bottle-
neck that occurred during the learning process in the entire event stream classification
pipeline (Section 3.1).

• Based on a distributed learning architecture, we propose two kinds of model update
strategies: (1) the entire model update and (2) the partial model update. Because
they have their distinguishing properties in terms of learning efficiency and model
accuracy, they can be selectively chosen according to the needs of the target applica-
tions (Sections 3.3 and 3.4).

• As the target classification models, we consider not only fully trainable language
models based on CNN, RNN, and Bi-LSTM but also a pre-trained word-embedding
model based on BERT. In particular, we identify the trainable partial modules that are
commonly applied in the deep learning-based classification models (Section 3.2).

• We conduct extensive experiments using two real tweet datasets and show the ef-
fectiveness of the proposed update strategies. Specifically, the entire model update
gradually improves the classification accuracy in the range of 28.96∼58.63% compared
to the pre-trained offline model; the partial model update improves it in the range of
12.34∼50.92%, while significantly reducing the learning time by 69.35∼93.95% com-
pared to entire model update strategy. We also confirm the scalability of the proposed
distributed learning architecture by showing that compared to using a single worker
node, the learning time decreases by 34.03% in the entire model update and by 45.21%
in the partial model update, respectively, when using three worker nodes (Section 4).

The remainder of this paper is organized as follows. In Section 2, we describe the
related work. In Section 3, we present the proposed dynamic model update methods. In
Section 4, we present the experimental results. In Section 5, we conclude the paper and
discuss future work.

2. Related Work
2.1. Data Stream Classification

Lots of research efforts for detecting the events based on the classification model
from the streaming data have been conducted. Mittal et al. [27] described the necessity
of incremental algorithms to achieve the consistent accuracy of the classifier in streaming
environments to respond to the concept drift. They evaluated five data stream mining
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algorithms in various drifting settings and found that none of each algorithm outperforms
the others in all settings due to a trade-off between the model accuracy and training speed
of the algorithms. Nishida et al. [5] proposed a classification model for streaming tweets
by examining the changes in class distributions and probabilities of word occurrences.
Weiler et al. [6] monitored shifts in the inverse document frequency (IDF) of terms to
identify events from large-scale SNS streams. Zyblewski et al. [9] proposed a dynamic
classifier based on ensemble selection methods to classify the non-stationary data streams.
Shin et al. [3] proposed a text classification model that detects cyber-security-related tweets
by introducing a contrastive word-embedding model that defines positive and negative
embedding models to the target event. Malialis et al. [12] proposed a new density-based
active learning strategy based on the similarity in the latent space for non-stationary and
imbalanced data streams. Nguyen et al. [7] extracted and tracked social events on real-time
data streams by aggregating discrete signals representing relevant keywords from the
tweets collected by the event categorization. Eddaoudy et al. [28] proposed a distributed
machine learning model on streaming data based on Apache Spark to learn the event
streams and to predict events in real time.

The previous studies have not considered the classification model that can be dy-
namically updated as the input stream changes. In this problem, because event trends
fluctuate over time, we need to periodically re-train the classification model to maintain the
model accuracy. However, re-training of the entire model iteratively requires considerable
costs and time. To resolve this challenge, we propose a partial model update strategy that
effectively updates the model with a marginal update overhead while maintaining the
model accuracy.

2.2. Distributed Learning

Distributed learning has become popular due to the explosion in the size and com-
plexity of datasets to be learned. Gupta et al. [29] proposed a model partitioning strategy
over multiple agents and further incorporated it with semi-supervised learning using a
few labeled samples. Huang et al. [30] combined approximate augmented Lagrangian
function with time-varying gaussian noise addition in a distributed learning framework
with differential privacy, providing performance improvement. Chen et al. [15] updated a
central model in an asynchronous manner to cope with the heterogeneity of distributed
edge devices. Wang et al. [16] proposed a distributed modulation classification model
based on the cooperation of multiple edge devices and a model averaging algorithm. They
achieved lower computing overhead than centralized modulation classification to achieve a
similar convergence speed. Park et al. [20] presented a communication-efficient distributed
learning framework that enables edge nodes to proactively and independently react to
local changes. Gao et al. [31] divided the learning process of graph neural networks into
two stages to resolve the mismatch between the graphs. They first learned nonlinear repre-
sentations from raw data at the training stage and retrained the linear representations at
the testing stage.

Recently, Apache Spark [32] became a popular choice to convey big data analytics or
machine learning tasks for large-scale datasets based in a distributed environment. Several
research efforts for distributed learning of neural networks have been conducted based
on Apache Spark. Dunner et al. [33] proposed practical techniques to achieve the best
performance in Apache Spark, targeting any distributed algorithms and infrastructures.
Zhao et al. [34] proposed a scalable stochastic optimization method on Apache Spark that
achieves both computation and communication efficiency. Alkhoury et al. [35] proposed
the communication-efficient distributed learning model on Apache Spark and applied it to
image segmentation on large-scale datasets. In this study, we deal with the dynamic model
update problems on deep learning-based classification models on Apache Spark, which
has not yet been studied before.
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2.3. Continual Learning

Continual learning deals with the problem of learning from potentially infinite data
streams with the goal of preserving and extending acquired knowledge. This is also re-
ferred to as lifelong learning or incremental learning in the literature. The main challenge
with continual learning is catastrophic forgetting, which is a tendency of neural networks
that forget previously learned knowledge in the learning process for new data. Various
methodologies [36–50] for continual learning have been proposed to effectively handle
sequential new tasks while maintaining the classification accuracy of previous tasks. The
methodologies can be largely categorized into four groups: (1) regularization-based meth-
ods, (2) knowledge distillation methods, (3) rehearsal-based methods, and (4) dynamic
architecture methods.

Regularization-based methods modify the gradient of parameters for optimization
by assigning constraints to the weights to be updated. Kirkpatrick et al. [36] proposed
a regularization to model parameters by selectively learning important weights for old
tasks. In a similar way, Zenke et al. [37] extended the loss function to penalize changes to
parameters that are unimportant for old tasks. Mirzadeh et al. [38] assessed the impact of
different training regimes on catastrophic forgetting and widened the curvature of each task
to prevent catastrophic forgetting. Yoon et al. [51] decomposed the entire model parameters
into task-generic parameters and task-specific parameters to maintain inference accuracy
between different tasks.

Knowledge distillation methods attempt to alleviate the catastrophic forgetting issue
by distilling the knowledge learned from the previous data when learning new tasks.
Li et al. [39] preserved the knowledge learned from past tasks by using a distillation loss.
Rebuffi et al. [40] re-defined the loss function using both classification loss and distillation
loss to distill the knowledge learned from the existing tasks when learning new tasks.
Castro et al. [41] trained the deep learning-based models by minimizing both cross-entropy
loss to learn new classes and distillation loss to retain the previous knowledge.

Rehearsal-based methods build and store a memory of the knowledge learned from
old tasks and periodically replay the model to strengthen connections with previous knowl-
edge. Rebuffi et al. [40] maintained the exemplar set of previous representative data samples
in memory and updated them when new data are observed. Chaudhry et al. [42] built a
dynamic episodic memory of parameter gradients during the learning process for lead-
ing to a faster learning process while not forgetting each individual task. Wang et al. [43]
performed meta-learning of the model to learn a better initialization for local adaptation.
Some studies generated synthetic data by learning the data distribution of previous tasks
and used them in learning new tasks. Shin et al. [44] proposed a novel framework with
a deep generative model to enable previous training data to be sampled and interleaved
with those for a new task. Wang et al. [45] replayed data sampled from the conditional
generative adversarial network. They selectively stabilized the parameters of the discrimi-
nator for discriminating the pairs of old unlabeled data and their predicted pseudo-labels
to overcome the catastrophic forgetting of unlabeled data.

Dynamic architecture methods are typically used in task-incremental learning to learn
the task-specific parameters or networks. Rebuffi et al. [49] introduced universal parametric
families of neural networks that contain both domain-shared parameters among multiple
domains and domain-specific modular adapters and attached them to the network for new
tasks. Rusu et al. [46] proposed a training method that grows a network hierarchically to
handle new coming data. Mallya et al. [47] pruned and retrained the network by obtaining
the sparsity masks for the tasks and utilizing them to freeze the corresponding network
weights. Mallya et al. [48] masked unimportant parameters for previous tasks to train the
parameters for new tasks. Ashfahani et al. [50] proposed an autonomous deep learning
algorithm based on the self-constructing structure generating different depths and widths.
Cano et al. [52] proposed an ensemble architecture with the concept drift to deal with
imbalanced data streams by reflecting them to the model in an online manner.
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Previous studies for continual learning focused on preserving and extending the ac-
quired knowledge in the process of learning new data to prevent catastrophic forgetting. In
contrast, in this study, we focus on the efficient model update that can respond to the contin-
uously changing data streams while maintaining a certain level of classification accuracy.

2.4. Distributed Online Learning

Time-dependent data learning has drawn a lot of attention to an online learning frame-
work in the last few years. Specifically, introducing a distributed environment aims to
minimize the computing overhead and to provide scalability to the increased data scales
while maintaining the model performance. Tekin et al. [22] proposed distributed online
learning algorithms that lead each processor to learn itself for maximizing the total expected
rewards from its own actions without the interaction between processors. Zhang et al. [23]
explored an online conditional gradient algorithm with simple linear optimization steps
in the distributed online learning setting. Li et al. [24] developed a privacy-preserving
distributed online learning framework by building independent local models based on
local datasets and exchanging intermediate parameters with neighboring nodes to achieve
convergence. They showed that the Euclidean distance of all learnable parameters became
shorter over iterations. Wang et al. [14] managed the dynamic resource constraints by adap-
tively and periodically choosing the optimal global aggregation frequency, considering the
network cost and model performance simultaneously. Wu et al. [26] proposed a distributed
hierarchical online learning approach to enhance the robustness by reducing the long-term
cost when converging to a new local optimal.

In this study, we target the problem where the trends in the data streams are continu-
ously changing. In this problem, we need to update the model periodically to reflect new
data streams according to the changing events, requiring intensive learning overhead. To
address the problem effectively, we propose a distributed architecture on Apache Spark that
can reflect real-time data streams by updating the model with an appropriate time overhead.
The architecture provides methods for dynamically updating the model in a distributed
learning environment by considering both learning efficiency and classification accuracy.

2.5. Summary

In this study, we aim to provide an efficient model update method in a distributed en-
vironment while maintaining a certain level of accuracy. Table 2 summarizes the coverage of
related studies in terms of (1) streaming classification, (2) distributed learning, (3) dynamic
model update, and (4) model learning efficiency, which are the four main focuses of this
study. As shown in the table, none of the previous studies have considered all four focuses
of this study. Distributed online learning, which was described in Section 2.4, has dealt with
the most similar issues to our study but has not considered an environment where large
amounts of data flow in, requiring the immediate reflection of them to the model [14,23]. As
a result, they are not appropriate to be used for updating the classification model efficiently
to respond to the streaming data flowing in at a fast speed. To the best of our knowledge,
our study is the first research effort to update the model in an online manner to classify the
streaming data in a distributed environment.

A preliminary version of this study was presented as a conference short paper [4].
In this paper, we fully rewrite and extensively extend it. The major extensions include
(1) proposing a completely new dynamic model update strategy, partial model update,
which is a more effective and practical method by providing immediate model updates
while maintaining a certain level of accuracy, compared to the entire model update strategy
in the preliminary version, (2) extensive experiments on two tweet datasets using two
model update strategies, (3) extensive applications of the idea to not only the fully trained
language models based on CNN, RNN, and Bi-LSTM but also the pre-trained word-
embedding model based on BERT, and (4) the detailed and extensive literature reviews for
related work.
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Table 2. Comparison between the previous studies and our model.

Papers Streaming
Classification

Distributed
Learning

Dynamic Model
Update

Model Learning
Efficiency

[5] O O

[7] O

[12] O O

[14] O O O

[20] O O

[23] O O O

[29] O

[30] O O

[40] O O

[48] O

[51] O O

[52] O O O

Our model O O O O

3. Proposed Method
3.1. Overall Framework

Figure 1 shows the overall architecture of our proposed framework. For distributed
learning and classification, our framework is designed to run on an Apache Spark clus-
ter with one master node and a set of worker nodes. We run Spark ML pipelines on the
cluster to classify streaming data in real time and update classification models for each
time window in a distributed manner. In our experimental settings, we prepare a total
dataset related to the target event in advance and feed them by the time window to con-
trol the data streams according to our intention. Here, we use a set of seed keywords
defined for an event. Our classification model on each worker node can determine if each
streaming data (e.g., tweet selected using the seed keywords) is actually related to the
event in real time. To efficiently handle large-scale streaming data in a scalable manner, we
distribute the collected data to the worker nodes, which take data using the data stream
consumer. We develop our distributed training and classification pipelines using the trans-
formers (e.g., feature vector generation, classification using a learned model) and estimators
(i.e., learning algorithms) provided by Spark’s machine learning library (Apache Spark
MLlib). The word representation update module processes each data to use it as an input
for model training or classification and has two main processing steps: (1) pre-processing
step, including stemming and lemmatization, and (2) word-embedding step, including
text vectorization. To dynamically update our classification model using recently collected
data, our framework has the batch jobs scheduler that updates the frequent word list and
coordinates model updates. For the model updates, our framework assumes that all or
a part of the newly collected data in the current window are labeled by using any avail-
able labeling techniques, such as crowdsourcing-based labeling and emerging approaches
(e.g., active learning, semi-supervised learning, and self-supervised learning) [53–58]. It
is worth noting that our study focuses on reflecting non-stationary features presented in
real-time data streams more efficiently on the model, not improving model performance
using more accurate labeling. For distributed model updates on the cluster, we initialize a
deep learning-based model on the driver of the master node and ship its serialized version
to the worker nodes with model parameters. Each worker node deserializes the model,
trains it using its chunk of data, and sends its gradients back to the master node, which
aggregates the gradients and updates the master model. We distribute the updated master
model to worker nodes and replace the classification model with the updated one to classify
streaming data in real time.
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Figure 1. Overall framework architecture.

3.2. Classification Model

In the data streams, the trends of the data can be dynamically changed over time.
In particular, the streaming data are significantly sensitive to recently occurred events.
Therefore, we need to respond to them by incrementally updating the model using the
newly collected data, in particular, focusing on recent data. However, as streaming data are
continuously reached, reflecting them to the existing models is a challenging issue because
the learning overhead of the models significantly increases as described in Table 1. In this
study, we focus on the efficient model update reflecting the evolving recent trends in the
streaming data while maintaining the accuracy of the classification model. In particular,
we consider the learning model in a distributed environment to deal with massive-scale
datasets with continuously increasing volumes. We present two kinds of model update
strategies: (1) the entire model update (described in Section 3.3) and (2) the partial model
update (described in Section 3.4).

For dynamic model updates in this study, we employ learning architectures based
on three typical neural networks (CNN, RNN, and Bi-LSTM) and a transformer-based
pre-trained language model (BERT) as shown in Figure 2 in which trainable layers are
highlighted in gray. In the CNN-, RNN-, and Bi-LSTM-based architectures, an embedding
layer consists of a 100-word sequence of each sentence. A sequence of integers with text
data is fed as input, which corresponds to word indices in a sentence to the layer. The layer
generates up to 100-word embeddings for each text using the top-5000 frequently occurred
keywords in the text corpus and learns the vector representation of each word. We denote
this embedding model as event-specific word embedding, fully training the embedding layer
with the datasets for the target event, and we also apply it to the BERT-based architecture to
compare it with the original BERT pre-trained word embedding. By continuously updating
the top 5000 keywords, the embedding layer can reflect trend changes in streaming data.

In the CNN-based architecture (Figure 2a), the word embeddings of input data are
connected to a 1D convolutional layer that extracts features by sliding along the word
embeddings in sequence to look at embeddings of multiple consecutive words at the
same time.In the RNN-based architecture (Figure 2b), the ordered word embeddings of
data (i.e., an embedding sequence) are used as an input to a hidden layer that processes
the sequence in the forward direction. In the Bi-LSTM-based architecture (Figure 2c), by
processing the embedding sequence in the forward and backward directions, we can keep
track of information in the sequence from both directions. Each architecture has a dense
layer with the sigmoid activation function as its last layer to perform binary classification
for each data. The BERT-based architecture is described in Section 3.5.
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(a) (b)

(c) (d)
Figure 2. Deep learning-based architectures with trainable layers (a) CNN, (b) RNN, (c) Bi-LSTM,
(d) BERT.

3.3. Entire Model Update

As the first strategy for dynamic model updates, we propose the entire model update,
which trains a new classification model from scratch using all accumulated data in each
time window, as shown in Figure 3. It is worth noting that the word frequency list is
being continuously updated as our framework takes new data, and we utilize the updated
top-5000 frequent keywords in each time window for the entire model update to reflect
the recent trends of streaming data. After the model is trained with new input vectors, it
is serialized and shipped to the distributed worker nodes and used to classify the newly
generated data streams during the upcoming time window. Even though the entire model
update can generate a more accurate model by digesting all accumulated data, one main
limitation of this strategy is limited scalability, because we need to keep all collected data
on our Spark cluster, and consequently, the model learning time will continuously increase
as we use more data for training in each window, as evidenced in Table 1.

3.4. Partial Model Update

To address the limited scalability of the entire model update strategy, we propose
a lightweight strategy, called the partial model update, that updates only a portion of the
classification model based on the pre-trained offline model, as shown in Figure 3. In this
strategy, we pre-train a classification model using previously collected data in an offline
manner and fine-tune only a part of the model using newly streamed data in the current
time window. Specifically, only the dense layer is fine-tuned with the newly streamed
data in each time window. Like the entire model update strategy, the word frequency list
is continuously updated as our framework takes new data, and we utilize the updated
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top-5000 frequent keywords in each time window to reflect the recent trends of streaming
data. Unlike the entire model update strategy, the partial model update strategy does
not keep all accumulated data on a cluster because it needs only newly streamed data
in the current window for fine-tuning. Assuming a similar number of streaming data in
each window, we expect that the partial model update (i.e., fine-tuning) would require a
consistent learning time for all windows, tackling the scalability issue of the entire model
update strategy.

Figure 3. Continual machine learning pipeline for classification supporting dynamic model update.

3.5. Application to Pre-Trained Embedding Model

In this study, we also consider pre-trained embedding models, which have been
known to show better performance than the typical fully trained deep learning models in
most natural language processing (NLP) tasks. Devlin et al. [59] proposed Bidirectional
Encoder Representations from Transformers (BERT) that is trained using unlabeled data
extracted from BooksCorpus [60] and English Wikipedia. It can be fine-tuned by adding
the output layer tailored to target NLP tasks. There is a major computational advantage
of pre-computing representations of input data and then using lightweight models on
top of these representations to apply them to downstream tasks. As shown in Figure 2d,
BERT reads a complete sequence of words in parallel, enabling the model to understand
each word’s context as a result of the relationship with neighboring words. We update the
top-5000 frequent keyword sets in the tokenization process similar to the other models
before embedding processes (e.g., token embedding, segment embedding, and position
embedding). Here, we set the maximum word sequences for each sentence as 100. By
embedding updated keywords that are considered important at each time window, this
model can also adaptively respond to the changes in input data streams. BERT has a total of
110 million trainable parameters, and such high model complexity calls for expensive com-
putational resources and extremely excessive training costs. Thus, the iterative re-training
of BERT to respond to the streaming events is not a feasible approach [61,62]. Therefore,
we consider only the partial model update strategy for the BERT-based architecture in our
proposed framework.

4. Performance Evaluation

In this study, we perform extensive experiments to verify the effectiveness of our
proposed framework using real-world datasets. The experiments aim to show that our
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strategies for the dynamic model updates are feasible to respond to the trend changes
in the data streams in terms of both model accuracy and learning efficiency. Here, we
apply two model update strategies (entire and partial) described in Section 3. We collected
two kinds of datasets related to different target events from Twitter: (1) the cybersecurity
intelligence (CSI) dataset and (2) the disaster dataset. To control the input data events as the
time varies as we want, we prepare two kinds of datasets for each event: (1) the relevant
dataset to the event and (2) the irrelevant dataset to the event. Then, we divide them into
sub-datasets to feed each sub-dataset to each time window. The datasets used for training
the model in each time window depend on each update strategy. We extensively apply
our proposed dynamic model update strategies into three typical neural networks (CNN,
RNN, and Bi-LSTM) and a transformer-based pre-trained model (BERT). We measure the
classification accuracy and the learning time as the evaluation metrics.

4.1. Datasets

Table 3 shows the dataset name, the number of tweets, the number of time windows,
and the time period for our datasets. By leveraging the accounts and keyword sets that are
relevant to the target event, we collect the actual tweets by crawling them in time order.
We use 80 percent of the data in each time window to train and validate the model and
the remaining 20 percent to test the model performance. We explain the details of CSI and
disaster datasets in Sections 4.1.1 and 4.1.2, respectively.

Table 3. The used twitter datasets.

Dataset Name Total Data Size Number of Time
Windows

Target Written
Duration (Years)

CSI Dataset 1,000,000 tweets 6 2007 ∼ 2015
Disaster Dataset 1,400,000 tweets 5 2007 ∼ 2015

4.1.1. CSI Dataset

For collecting the CSI-related dataset, we focus on the tweets containing the keyword
‘exploit’. Through the analysis engine on the target tweets by Recorded Future (https:
//www.recordedfuture.com (accessed on 31 October 2022)), we obtain 100 accounts and
639 keywords relevant to the cyber-security, e.g., ‘Internet-security’, ‘flaw’, ‘PoC’, and
‘CVE’. We collect all the tweets from 2007 to 2015 posted by the selected accounts. Then,
we filter only the tweets containing at least one keyword in the relevant keyword set
and define them as the CSI-related dataset. For the CSI-unrelated dataset, we collect
random tweets containing general keywords, which are in the top-10 most commonly
used English words, such as ‘the’, ‘to’, and ‘a’, based on an analysis of the Oxford English
Corpus (http://oxforddictionaries.com/us/words/the-oxford-english-corpus (accessed
on 31 October 2022)). This dataset has one million tweets including 500,000 CSI-related
tweets and 500,000 CSI-unrelated tweets. Examples of CSI-related tweets are as follows:
“A very deep dive into iOS Exploit chains found in the wild” and “Binary Exploitation—
Buffer Overflow Explained in Detail”. We use 400,000 tweets to pre-train the model and
an additional 100,000 tweets to re-train the model for each time window, with the same
portion between CSI-related and CSI-unrelated datasets.

4.1.2. Disaster Dataset

For the disaster-related dataset, we use a disaster-related keyword set consisting of
24 keywords (e.g., Flood, Epidemics, Windstorm) identified by Apronti et al. [63]. Since
some of them could not be related to actual disasters, we collect the tweets satisfying the
following conditions: (1) containing at least two keywords in the disaster keyword set,
(2) having more than 10 characters, and (3) having more than five distinct words. We collect
tweets satisfying the conditions posted from 2007 to 2015. For the disaster-unrelated data,
we collect them in the same way as the CSI-unrelated dataset. This dataset has 1.4 million
tweets including 700,000 disaster-related tweets and 700,000 disaster-unrelated tweets.

https://www.recordedfuture.com
https://www.recordedfuture.com
http://oxforddictionaries.com/us/words/the-oxford-english-corpus
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Examples of disaster-related tweets are as follows: “Ian Downgraded to Tropical Storm,
Flooding Threats Remain.” and “typhoon linpha causes flooding in northern philippines
storm natural disaster”. We use 400,000 tweets to pre-train the model and an additional
200,000 tweets for each time window, with the same portion between disaster-related and
disaster-unrelated datasets.

4.2. Experimental Methods and Environments

For the experiments, we use one master node and three worker nodes with Apache
Spark 2.4.7 managed by Hadoop Yarn. Each node is equipped with Intel Xeon Silver
4210R 2.40 GHz CPU and 32 GB RAM and runs Ubuntu 18.04. To focus on the distributed
environments, we only utilize the CPU-based environments without GPU devices. To apply
the proposed method to various deep learning models, we evaluate four kinds of deep
learning-based classification models: (1) CNN, (2) RNN, (3) Bi-LSTM, and (4) BERT. For
training the event-specific word embedding of the first three models, we feed a sequence
of integers with 400,000 data samples as input and learn the vector representation of
each word.

For the model based on CNN, we employed a one-dimensional convolutional neural
network layer with 256 units for feature extraction and one hidden layer for the classifier.
For the model based on RNN, we adapted three SimpleRNN layers with 256 units for
feature extraction and one hidden layer for the classifier. For the model based on Bi-LSTM,
we adapted the Bi-LSTM layer with 128 units for feature extraction and one hidden layer
after the embedding layer for the classifier. For all models, we adapted the dense layer with
the sigmoid activation function after the hidden layer and performed binary classification
for input tweets using the Adam optimizer. We commonly set the number of epochs
to 10, the batch size to 128, and binary cross-entropy as a loss function in all settings.
Using Elephas Estimator (https://github.com/maxpumperla/elephas (accessed on 31
October 2022)) supported by Spark MLlib, we run distributed classification models at
scale on Apache Spark. For the fine-tuning of BERT-based architecture, we use another
BERT model supported by SparkNLP (https://github.com/JohnSnowLabs/spark-nlp
(accessed on 31 October 2022)) because we actually observe that the fine-tuning of BERT-
based architecture only for the final dense layer using Elephas Estimator takes more
than an hour in processing one epoch with 100,000 data samples, which is infeasible to
apply to the dynamic model update in the streaming classification. SparkNLP utilizes the
transformer itself of Spark MLlib without the process of abstracting the learning algorithm
for customizing the transformer tailored to the datasets, efficiently fine-tuning the model.
Although there might occur accuracy loss in the trained model, we use the SparkNLP-based
approach to focus on the efficient model update according to our research goal.

4.3. Experimental Results
4.3.1. Model Accuracy

Figures 4 and 5 represent the accuracy over time when each strategy (i.e., (1) Pre-
trained offline, (2) Entire model update, (3) Partial model update) has been adopted on
the CSI and disaster datasets, respectively. We note that both entire and partial update
strategies show a distinct accuracy improvement compared to the strategy where the initial
pre-trained offline model has been utilized for the inference. The results show that the
entire model update improves the classification accuracy by 28.96∼58.63% compared to
pre-trained offline; the partial model update improves it by 12.34∼50.92%, which indicates
a competitive accuracy compared to the entire model update. The results indicate that both
update strategies show consistent trends for all the employed models over time.

https://github.com/maxpumperla/elephas
https://github.com/JohnSnowLabs/spark-nlp
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(a) CNN (b) RNN

(c) Bi-LSTM (d) BERT
Figure 4. Accuracy comparison between (1) Pre-trained offline, (2) Entire model update, and (3) Partial
model update on CSI dataset.

(a) CNN (b) RNN

(c) Bi-LSTM (d) BERT
Figure 5. Accuracy comparison between (1) Pre-trained offline, (2) Entire model update, and (3) Partial
model update on disaster dataset.

Figures 4d and 5d represent the accuracy of BERT-based architecture over time when
each word embedding strategy (i.e., (1) Pre-trained offline, (2) Partial model update based
on keyword-level word embedding, (3) Partial model update based on BERT Embedding)
has been adopted on the CSI and disaster datasets, respectively. We note that both partial
update models show a distinct performance improvement compared to the pre-trained
offline model. The partial model update based on keyword-level word embedding, which
is fully trained using the datasets defined for a target event, improves the classification
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accuracy by 21.21∼26.60% compared to the pre-trained offline model; that based on BERT
embedding improves it by 12.08∼22.70%.

From the experimental results on both datasets, we point out the following three major
observations. (1) The entire update strategy gradually increases the model accuracy for
all the underlying deep learning-based models as time increases. This indicates that the
accumulated data contribute to the improvement of the model performance. (2) The partial
update strategy significantly improves the model accuracy of the pre-trained offline model
and shows a competitive accuracy to the entire model update with a marginal model update
overhead while maintaining the accuracy over time. This indicates that the partial update
strategy can deal with the changes in the event effectively. (3) BERT is generally known to
perform well by learning a large amount of data. However, despite fine-tuning, it does not
perform well on the event-specific datasets targeted in this study compared to the other
fully trained models using event-related datasets. To verify this, we compare BERT-based
architecture using the original BERT embedding model with it using the event-specific
word embedding for the other models. The results confirm that the model based on the
original BERT embedding shows a classification accuracy of 0.8014 for the CSI dataset
and 0.7833 for the disaster dataset, which are lower than 5.98% and 8.07% compared to
the model based on the event-specific word embedding, respectively. This indicates that
specific events have to be represented by a distinct set of keywords specifically related to
those events, and so we need to build our own language models to represent each event.

4.3.2. Model Learning Time

Tables 4 and 5 represent the model learning time on the CSI and disaster datasets,
respectively, for each time window of the following different update strategies: (1) no
online update, (2) entire model update, and (3) partial model update. Here, we note that as
more data are accumulated over time, the model learning time of the entire model update
proportionally increases. In contrast, the partial update strategy consistently maintains the
learning time as time varies on both datasets. We partially update the model by fine-tuning
only the final dense layer to all the models in common. However, we observe that the model
learning time significantly differs depending on the model. This stems from the inference
complexity of each model because the inference from the fixed model is required for the
input of the dense layer. In the case of BERT, we fine-tune only the dense layer through
SparkNLP by using the learned transformer without fitting it. Accordingly, its learning
time is comparatively short considering the massive-scale pre-trained model of BERT.

Table 4. The learning time of the proposed strategies on the CSI dataset (seconds).

1st Time
Window

2nd Time
Window

3rd Time
Window

4th Time
Window

5th Time
Window

6th Time
Window

CNN
Entire 489.35 530.83 790.23 1040.21 1250.54 1560.38
Partial 130.13 143.62 131.99 156.23 139.37 147.01

RNN
Entire 300.1 440.63 532.44 640.34 784.78 838.81
Partial 91.4 97.17 86.66 78.28 75.91 73.26

Bi-LSTM
Entire 1550.45 1750.27 2250.17 3240.83 4010.45 4630.2
Partial 1430.59 1382.2 1357.06 1436.02 1402.12 1419.21

BERT Partial 60.36 62.27 70.23 51.29 54.33 58.15
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Table 5. The learning time of the proposed strategies on the disaster dataset (seconds).

1st Time
Window

2nd Time
Window

3rd Time
Window

4th Time
Window

5th Time
Window

CNN
Entire 210.16 745.88 1140.34 1754.71 2165.9
Partial 138.45 131.62 127.17 134.8 131.01

RNN
Entire 173.3 517.62 820.29 1209.09 1876.43
Partial 116.17 112.53 109.8 128.41 115.69

Bi-LSTM
Entire 1840.23 4073.32 7580.61 8073.73 12587.11
Partial 1770.3 1520.13 1646.1 1602.36 1457.14

BERT Partial 159.66 127.52 133.68 149.84 130.62

4.3.3. Scalability on a Cluster

Table 6 shows the elapsed time for learning the classification model using 50,000 tweets
as the number of worker nodes in the Spark cluster increases. Here, we use 10 epochs to train
the Bi-LSTM model in Section 4.2 and assign one executor to each node consisting of five
cores. The results indicate that the learning time of both entire and partial model updates
effectively decreases as the number of worker nodes increases. Specifically, it decreases the
learning time by 34.03% in the entire model update and by 45.21% in the partial model
update, respectively, verifying the scalability of the proposed distributed learning pipeline.
In particular, in the entire update model, this scalable architecture alleviates its learning
overhead by scaling the distributed environments as we want. In the case of the model
inference time as well, we can observe an explicit tendency where the inference time
significantly decreases as the number of worker nodes increases. Compared to using a
single worker node, a distributed configuration of using three worker nodes decreases the
inference time by 57.41% in the entire model update and by 50.37% in the partial model
update, respectively. Although it only requires a relatively very short time compared to the
learning time, decreasing the inference time is quite important in real-time classification.

Table 6. The elapsed time for training model by the number of worker nodes using proposed strategies
(seconds).

Update Strategy Number of Worker Nodes Learning Time Inference Time

Entire Model Update
1 1834.23 0.1599
2 1587.05 0.0967
3 1210.04 0.0681

Partial Model Update
1 1668.87 0.1362
2 1424.88 0.0857
3 914.30 0.0676

4.3.4. Case Study

Figure 6 shows the ranking changes of selected keywords based on the frequency over
time. As explained in Section 3, we update the list of keyword tokens and their ranking in
each time window. The result indicates that most of the relevant keywords extracted from
the pre-trained offline model have been maintained or become risen in the top keyword
sets, whereas general keywords that are less important to the target events are removed
from the top keyword sets.
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(a) CSI-related keywords. (b) Disaster-related keywords.
Figure 6. The change of keyword ranking over time.

As shown in Figure 6a on the CSI dataset, the ranking of highly relevant keywords,
such as ‘cyberattack’ and ‘ransomware’, has maintained over time. On the other hand, the
ranking of keywords associated with a particular cyber-security event, such as ‘darknet’
and ‘openssh’, is rapidly increasing as the actual event occurs. In contrast, the ranking
of the keywords that were included in the pre-trained offline model, but are not actually
relevant to the target event continues to decrease over time, such as ‘animation’, ‘food’,
and ‘lunch’.

A similar tendency was observed in Figure 6b on the disaster dataset. That is, the
ranking of highly relevant keywords, such as ‘shelter’ and ‘alert’, has maintained in the
ranking of keywords over time; the ranking of keywords associated with a particular
disaster, such as ‘florida’ and ‘haiti’, rapidly increases. In contrast, the ranking of the
keywords that are not actually relevant to the target event, such as ‘hacking’, ‘festival’, and
‘culture’, decreases over time. Here, we note that the degree of changes in the keyword
ranking in the disaster dataset is relatively dynamic compared to the CSI dataset. This
stems from the nature of the disaster events where completely different kinds of new events
occur, in contrast to the cyber-security domain where the used terms are limited across the
domain and domain-specific terms have been continuously used. This indicates that we
need to effectively update the word embedding to reflect newly important keywords and
eliminate less important keywords so that we can effectively track the event changes.

5. Conclusions and Future Work

In this study, we investigated the problem of dynamically updating the classification
model that can adaptively respond to changes in real-time data streams in a distributed
learning environment. We proposed two dynamic model update methods: (1) entire model
update and (2) partial model update. The former updated the entire model using the
accumulated datasets, maximizing the model accuracy with excessive learning overheads;
the latter updated a part of the model using only a limited number of recent datasets,
maximizing the learning efficiency while maintaining reasonable accuracy. A scalable
architecture based on Apache Spark can effectively resolve the bottleneck that occurred
during the learning process in the entire event stream classification pipeline. Through the
extensive experiments using two real-world tweet datasets, we showed that the entire
model update improved the classification accuracy by 28.96∼58.63% compared to the
pre-trained offline model, while its learning overhead incrementally increases. On the
other hand, the partial model update improves the accuracy by 12.34∼50.92%, while
significantly reducing the learning time by 69.35% up to 93.95% compared to the entire
model update strategy.

In this study, we focused on the dynamic model update in a distributed environment
with the efficient learning methods to reflect new tweet streams to the model. However,
as the orders of the event trends are not predictable in practice, the classification model
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not only requires learning new tasks but also needs to effectively maintain the learned
representations of the previous tasks. While the existing model can be adapted to the
current task by incrementally learning the current task based on the previously learned rep-
resentations, they are prone to catastrophic forgetting, i.e., forgetting the previously learned
representations [40]. In this study, we did not focus on maintaining the model performance
for previous tasks, but they are required when the previous tasks are performed repeatedly.
Therefore, as a further study, we plan to investigate continual learning algorithms based
on a distributed environment to resolve those challenges. To achieve this, we will manage
separate models for specific tasks, and each model would be updated differently according
to the degree of event changes in data streams.
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