
Citation: Lee, Y.G.; Na, G.; Byun, J.

Detection of Double-Compressed

Videos Using Descriptors of Video

Encoders. Sensors 2022, 22, 9291.

https://doi.org/10.3390/s22239291

Academic Editor: Antonio Guerrieri

Received: 31 October 2022

Accepted: 24 November 2022

Published: 29 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Detection of Double-Compressed Videos Using Descriptors of
Video Encoders
Yun Gu Lee 1,*,†, Gihyun Na 2 and Junseok Byun 2

1 School of Software, Kwangwoon University, Seoul 01897, Republic of Korea
2 Digital Analysis Division, National Forensic Service, Gangwondo 26460, Republic of Korea
* Correspondence: harmony96@gmail.com; Tel.: +82-2-940-8112
† Current address: Department of Electronic Materials Engeering, Kwangwoon University, Kwangwoon-ro 20,

Nowon-gu, Seoul 01897, Republic of Korea.

Abstract: In digital forensics, video becomes important evidence in an accident or a crime. However,
video editing programs are easily available in the market, and even non-experts can delete or modify
a section of an evidence video that contains adverse evidence. The tampered video is compressed
again and stored. Therefore, detecting a double-compressed video is one of the important methods in
the field of digital video tampering detection. In this paper, we present a new approach to detecting a
double-compressed video using the proposed descriptors of video encoders. The implementation
of real-time video encoders is so complex that manufacturers should develop hardware video
encoders considering a trade-off between complexity and performance. According to our observation,
hardware video encoders practically do not use all possible encoding modes defined in the video
coding standard but only a subset of the encoding modes. The proposed method defines this subset of
encoding modes as the descriptor of the video encoder. If a video is double-compressed, the descriptor
of the double-compressed video is changed to the descriptor of the video encoder used for double-
compression. Therefore, the proposed method detects the double-compressed video by checking
whether the descriptor of the test video is changed or not. In our experiments, we show descriptors
of various H.264 and High-Efficiency Video Coding (HEVC) video encoders and demonstrate that
our proposed method successfully detects double-compressed videos in most cases.

Keywords: video forgery detection; video tampering detection; double compression detection; digital
forensics

1. Introduction

The price of digital imaging systems today has become considerably low, and the use
of devices equipped with cameras has become a fact of daily life. Numerous surveillance
cameras on roads and streets are constantly recording our surroundings, and when an
accident or a crime occurs, video becomes important evidence for digital forensics [1,2].
For example, a video recorded by a car’s digital video recorder (DVR) camera (or black
box camera) can be used as important evidence in the case of a car accident. Digital
forensics is a forensic science that encompasses all types of digital media devices and
digital technologies [3,4]. Delp defines digital forensics as scientific techniques for the
preservation, collection, validation, identification, analysis, interpretation, documentation,
and presentation of digital media evidence acquired from digital devices [5]. On the other
hand, video editing programs are becoming popular, and even non-professional users can
easily use such programs to delete or modify a section of an evidence video that contains
adverse evidence. Therefore, detecting a forgery video plays a key role in digital forensics.

A video basically consists of a sequence of images (or frames). The forgery video can
be detected by applying image tampering detection methods [6–8] to each frame of the
video. However, the performance of this approach was not satisfied due to many reasons [9].

Sensors 2022, 22, 9291. https://doi.org/10.3390/s22239291 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239291
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s22239291
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239291?type=check_update&version=1


Sensors 2022, 22, 9291 2 of 20

Therefore, many algorithms have been proposed to detect forgery videos. Sitara [9] classi-
fied video tampering detection methods into three types: double compression detection,
video inter-frame forgery detection, and region tampering detection. In video inter-frame
forgery, a target video is tampering in the temporal domain. Typical methods are frame
removal, frame duplication, and frame insertion. Since this type tampers the target video
in the temporal domain, detection methods usually analyze motion, prediction error, and
residuals in P frames [10–13]. In region tampering, an attacker copies a small region of
a frame and pastes it at another frame. Chen [14] proposed a method to detect region
tampering using features from motion residuals. Lin’s method utilizes temporal copy-
and-paste and exemplar-based texture synthesis to detect tampered videos [15]. Su [16]
utilized the difference between the current and a non-tampered reference frame to de-
tect dynamic foreground removal from static background video. The last type of video
tampering detection is double compression detection. Figure 1 represents a procedure
of video forgery using double compression. The original video (compressed) is decom-
pressed first. Then, an attacker modifies the decoded video (uncompressed) using editing
software according to his or her wish. Finally, the forged video is compressed using a
software video encoder again. To detect a double-compressed video, Wang [17] proposed a
method using specific static and temporal statistical perturbations of a double-compressed
Moving Picture Experts Group (MPEG) video. The double quantization effect is used
in [18] to detect double MPEG compression. Markov-based features are proposed to detect
double compression artifacts in [19]. A method to detect double Advanced Video Cod-
ing (AVC)/HEVC [20,21] encoding was proposed under the assumption that the former
compression has a lower quality than the latter compression [22]. In [23], the probability
distribution of quantized non-zero AC coefficients is utilized as features to detect double-
compressed video. He et al. [24] proposed a method to detect double compression based
on local motion vector field analysis in static-background videos. Bestagini [25] proposed
a method to identify the codec and the size of a group of pictures that are used in the
first coding step and analyze double-compressed videos. Based on quality degradation
mechanism analysis, Jiang et al. [26] proposed a method to detect double compression
with the same coding parameters. Recently, Li [27] proposed a semi-supervised learning
method to detect double-compressed video using Gaussian density-based one-class clas-
sifiers. Mahfoudi proposed the statistical H.264 double-compression detection method
based on discrete cosine transform (DCT) coefficients [28]. A motion-adaptive algorithm
is proposed to detect HEVC double compression with the same coding parameters [29].
Since video forgery is normally performed on uncompressed domains, the process of video
tampering consists of decoding the compressed video, editing the uncompressed video,
and compressing the edited video again [27]. Therefore, double compression detection is
generally an effective method of video forensics [14,27,30]. Hence, our study focuses on
double compression detection.

Software 

video decoder

Original video 

(compressed)

Decoded video

(uncompressed)

Editing
Forged video

(uncompressed)

Software

video encoder

Forged video

(compressed)

Authoring tool

Figure 1. Procedure of video forgery by double compression.

This paper presents a novel method to detect a double-compressed video under condi-
tions that are slightly limited but frequently occur in practice. There are two assumptions
in our study. The first assumption is that the model name of a camera that took a test video
is known. Here, the test video denotes the video to be checked for tampering. Since the test
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video is submitted as evidence of a crime, the model name of the camera that took the test
video is generally known. The second assumption is that an attacker is not enough of a
video coding expert to develop his (or her) own software video encoder. Therefore, when
compressing a forged uncompressed video, the attacker utilizes a software video encoder
available either publicly or on the market. In other words, the software video encoder
shown in Figure 1 should be available publicly or on the market. The main idea behind the
proposed method is that video encoders usually utilize a subset of encoding modes among
all possible modes in a trade-off between complexity and performance. The proposed
method defines this subset of encoding modes as a descriptor for each video encoder. If the
test video is double-compressed for forgery, the descriptor of the double-compressed video
should belong to the descriptor of the software video encoder used for the last compression,
not the descriptor of the camera model from which the test video was taken. Therefore, the
proposed method detects the double-compressed video by comparing the descriptor of the
camera model with the descriptor of the test video.

The contributions and novel parts of our study are as follows. First, this paper intro-
duces a new approach in the field of detecting a double-compressed video. While most
existing methods analyze only the test video itself, the proposed algorithm considers the
characteristics of the hardware video encoder that took the test video. This approach is one
of the novel parts of our study. Second, the proposed method can complement the existing
method to further improve detection accuracy. For example, the proposed method first
checks a test video to see whether it is tampered with or not. If the proposed method fails
to detect anything, the existing methods can be applied to further examine the test video.
Finally, if the proposed method decides a test video is a forgery video, the probability of a
wrong decision is extremely low, which can be used for strong evidence in a crime. There is
no risk that an unforged video is determined to be a forgery video.

The rest of the paper is organized as follows. Section 2 illustrates how video encoders
utilize a subset of encoding modes among all possible modes for a trade-off. Section 3
introduces the H.264 and HEVC descriptor and proposes a method for detecting a double-
compressed video. In Section 4, we show experimental results. Finally, we conclude our
work in Section 5.

2. Characteristics of Hardware Video Encoder
2.1. Encoder Complexity

A video encoder for international video coding standards, such as using H.264 [20] and
HEVC [21], is usually much more complex than the corresponding video decoder [31,32].
The video encoder should choose the best prediction modes from possible candidates,
which requires high computation. As the number of modes (or options) to choose increases,
the complexity of the video encoder increases. Let us consider the encoder complexity in
brief in terms of block sizes and prediction modes. In H.264, a macroblock (MB) of a size
of 16 × 16 is encoded in an intra mode or an inter mode. The intra mode supports two
types of block sizes: 16 × 16 blocks or four 4 × 4 blocks. There are nine intra prediction
modes in the 4 × 4 block and four intra prediction modes in the 16 × 16 block. The detailed
prediction modes are given in [20]. The video encoder should decide the block size of
the intra block, whether it is predicted as a 16 × 16 block or four or a 4 × 4 block. It also
predicts the intra prediction mode for each sub-block. In the inter mode, the best matching
block for an MB is found within previously reconstructed frames, which is called motion
estimation and compensation. H.264 supports a block partition technique that divides
the MB into sub-blocks to improve motion compensation performance. The MB is first
partitioned into one of 16 × 16, 16 × 8, 8 × 16, and 8 × 8. For the 8 × 8 partition case, each
8 × 8 block can be further partitioned into 8 × 8, 8 × 4, 4 × 8, or 4 × 4 blocks. The video
encoder should estimate the block partition size for each MB. HEVC is an international
video coding standard that supports more flexible prediction modes than H.264. While the
basic coding unit of H.264 is an MB of size 16 × 16, the basic processing unit of the HEVC
is a coding tree unit (CTU) [21] whose size is variable: 64 × 64, 32 × 32, 16 × 16, and 8 × 8.
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Further, the number of intra prediction modes in HEVC is 35, which is much more than
those of H.264. Therefore, the complexity of HEVC is higher than that of H.264.

There are two approaches to the implementation of a video encoder: software and
hardware. Software-based video encoders are inherently very flexible in modifying and
upgrading algorithms. Further, there is no limitation on the size of input videos. As the
size increases, the processing time increases only. This flexibility makes the software-based
encoder adaptable to various types of applications. As the software-based encoder does
not guarantee real-time processing, it is suitable for offline applications. Meanwhile, since
the processing blocks in a hardware-based encoder run in parallel, its processing speed
(or throughput) is generally faster than that of a software-based encoder. However, the
hardware video encoder cannot process a video larger than the designed hardware specifi-
cation due to limitations of memory size, operation frequency, etc. Once the video encoder
is implemented in an application-specific integrated circuit (ASIC), it is very difficult to
modify or upgrade the encoding algorithms. Hence, hardware-based video encoders are
suitable for consumer electronics where real-time encoding is an essential feature.

2.2. Implementation of Video Encoder in Hardware

This paper proposes a method to detect a video forged from a video shot with a
camera, such as a car DVR (or a black box). Here, the camera encodes input frames using a
hardware video encoder. Hence, this subsection examines the hardware implementation of
video encoders.

To achieve high coding performance, video encoders generally need to examine all
possible prediction modes and choose the best mode among the candidates. For example,
HEVC video encoders need to examine 35 intra-prediction candidates and choose the
best one among the 35 candidates. Recent video coding standards are so complex that
even hardware-based video encoders are not practical to carefully check and evaluate all
possible prediction modes in real-time. Therefore, many researchers have proposed new
hardware architectures with novel fast algorithms to efficiently reduce the processing speed
and implementation cost while maintaining the coding efficiency. Video encoders need to
determine many parameters, such as block size, block partition, intra prediction mode, and
so on. Top-tier hardware vendors can develop all new advanced algorithms that run in
real-time for high-performance video encoders. However, since the development of the new
advanced algorithms increases the development cost, other hardware vendors may find
it difficult to develop all new advanced algorithms to determine encoding modes. These
hardware vendors may need to consider a trade-off between the development cost and
the encoder performance. Therefore, some hardware vendors often consider simple and
straightforward methods to efficiently reduce the development cost while the performance
degradation is not significant.

One of the simple and straightforward methods is to use only a subset of encod-
ing modes among all possible ones. Since three intra predictions of modes 0 (vertical),
1 (horizontal), and 2 (DC) for 4× 4 block are statistically dominant in most video sequences;
hardware vendors may develop a video encoder that uses only the three intra prediction
modes among the nine intra prediction modes in 4× 4 blocks. This encoder does not include
any hardware block for processing or predicting the six intra prediction modes. Although
this simple approach may degrade the coding performance for some videos, it significantly
reduces the development cost, hardware complexity, and processing speed. According
to our observations, many hardware manufacturers frequently adopt this simple way of
implementation. This proposed method utilizes this feature to detect a tampered video. In
the experimental results, we will show real examples of this simple implementation.

For a video decoder to comply with the video coding standard, the decoder should
have the capability to decode all encoding modes defined in the standard. On the other
hand, if the bitstream generated from a video encoder is decodable by the standard decoder,
the video encoder is considered to generate the bitstream that conforms to the video coding
standard. Hence, the video encoder can comply with the standard even if only some of
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encoding modes defined by the standard are implemented. For example, an H.264 video
encoder that uses only three intra prediction modes for the 4 × 4 intra block complies with
the video coding standard.

3. Detection of a Double-Compressed Video
3.1. Descriptor of a Hardware Video Encoder
3.1.1. Descriptor Structure

As mentioned in the previous section, some hardware video encoders support only
a subset of encoding modes among all possible ones. Which encoding modes are in-
cluded in the subset can vary from video encoder to video encoder. Hence, the subset
can be used as the descriptor of a video encoder. Let us first examine the descriptor of
an H.264 video encoder. There are many encoding modes to be determined by the H.264
encoder. The proposed descriptor includes the intra prediction modes and inter block
partition. The profile, level, and group of pictures (GOP) are also included in the descriptor.
Table 1 illustrates an example of the H.264 video encoder’s descriptor. In this example, the
video encoder supports the baseline profile with level 3.1. A plane intra prediction mode
(or mode 3) is not used in intra 16 × 16. The encoder considers only three prediction modes
of 0, 1, and 2 for intra 4 × 4. The 8 × 8 block in the inter block is not decomposed further.
This video encoder supports limited encoding modes compared to the full features of the
baseline profile.

Table 1. Example of the H.264 decoder’s descriptor. BL stands for baseline.

Encoding Mode Number

Profile 66(BL)
Level 3.1

GOP size 6

mode0 385,332
Intra mode1 30,440

16 × 16 mode2 95,570
mode3 0

mode0 690,994
mode1 950,632
mode2 1,476,582

Intra mode3 0
4 × 4 mode4 0

mode5 0
mode6 0
mode7 0
mode8 0

16 × 16 1,935,837
16 × 8 0

Inter block 8 × 16 0
partition 8 × 8 1,171,112

4 × 8 0
8 × 4 0
4 × 4 0

The proposed HEVC descriptor basically includes some parameters from the video
parameter set (VPS), sequence parameter set (SPS), and picture parameter set (PPS), such as
CTU size, minimum coding unit (CU) size, and GOP size. The descriptor also includes the
intra prediction modes and block decomposition types, such as the descriptor of the H.264
video encoder. Since the block partitioning structure in the HEVC standard is very complex,
the definition of the HEVC descriptor is not simple. Let us review its block partitioning
structure in brief. As explained in the previous subsection, the basic processing unit of the
HEVC is CTU, whose size is from 8 × 8 up to 64 × 64. The CTU is recursively partitioned
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into multiple CUs based on a quadtree structure. The minimum size of the CU is specified
in the SPS. For example, a CTU of the size 32 × 32 can be decomposed into CUs of the
size 32 × 32, 16 × 16, and 8 × 8. Each CU in HEVC is categorized into one of three types:
skipped CU, inter coded CU, and intra coded CU. Here, inter and intra coded CUs are
further split into multiple prediction units (PU). HEVC supports two types of PUs for the
intra CU: 2N × 2N and N × N. For the inter CU, there are eight types of PUs: 2N × 2N,
N × N, 2N × N, N × 2N, 2N × nU, 2N × nD, nL × 2N, and uR × 2N. For example, a CU of
the size 64 × 64 can be split into 64 × 64 and 32 × 32 PUs for intra CU and 64 × 64, 64 × 32,
32 × 64, 64 × 16, 64 × 48, 16 × 64, 48 × 64, and 32 × 32 PUs for inter CU. If the size of a CU
is 32 × 32, the CU can be partitioned into 32 × 32 and 16 × 16 PUs for intra CU and 32 × 32,
32 × 16, 16 × 32, 32 × 8, 32 × 24, 8 × 32, 24 × 32, and 16 × 16 PUs for inter CU. Hence, the
structure of the HEVC descriptor will be very complex, like the block partitioning structure
of the HEVC.

It is not easy to organize the proposed HEVC descriptor into a single table due to
the complex coding tree structure, which consists of several tables. The proposed method
constructs the descriptor according to the size and type of the CU that is a leaf node of the
coding tree rather than the coding tree structure of the CTU. Table 2 represents an example
of the HEVC encoder’s descriptor according to the CU sizes and types. Splitting CU into
four equal-size PUs (or N × N) is conceptually similar to four equal-size CU partitions with
2N × 2N. For example, four 16 × 16 PUs for 32 × 32 CU is like four 16 × 16 PUs for four
16 × 16 CUs. Hence, HEVC allows N × N PUs only if the CU size is equal to the minimum
CU size. The HEVC descriptor in Table 2 requires four additional tables to show the intra
prediction modes: three 2N × 2N intra prediction mode tables for 32 × 32 CU, 16 × 16 CU,
and 8 × 8 CU and one intra N × N prediction mode table for 4 × 4 CU. Table 3 shows an
example of intra 2N × 2N prediction modes for 32 × 32 CU. The HEVC descriptor also
includes the block partitioning information for inter coded CUs. Each inter coded CU in
Table 2 has a corresponding table to describe the block partitioning information. Table 4
represents an example of the block partitioning information of a 32 × 32 inter CU. In this
example, the HEVC encoder utilizes only 2N × 2N PU.

Table 2. Example of CU sizes and types in HEVC encoder’s descriptor.

CU Type
CU Size

64 × 64 32 × 32 16 × 16 8 × 8

Skip CU 11,609 48,399 35,748 28,864
Intra CU 0 35,040 35,838 26,458
Inter CU 16,097 32,277 14,679 6978

Table 3. Example of intra 2N × 2N prediction modes of 32 × 32 CU in HEVC encoder’s descriptor.
Here, IPMN stands for intra prediction mode number.

IPMN Number IPMN Number IPMN Number IPMN Number

0 12,864 9 0 18 198 27 0
1 49,047 10 2908 19 0 28 0
2 1550 11 0 20 0 29 0
3 0 12 0 21 0 30 0
4 0 13 0 22 0 31 0
5 0 14 0 23 0 32 0
6 0 15 0 24 0 33 0
7 0 16 0 25 0 34 519
8 0 17 0 26 1854
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Table 4. Example of block partitioning information of 32 × 32 inter coded CU in HEVC encoder’s de-
scriptor.

Size Number Size Number

32 × 32 1,535,249 16 × 16 0
32 × 16 0 16 × 32 0
32 × 8 0 32 × 24 0
8 × 32 0 24 × 32 0

3.1.2. Prediction of Encoder’s Descriptor

Hardware video encoder manufacturers usually provide the basic specifications of
video encoders, such as the profile and level, which are some of the components of the
proposed descriptor. Even if the manufacturers do not provide the specification, these
values for the descriptor are directly readable from VPS, SPS, and PPS. However, most
values of the descriptors in Tables 1–4 are closely related to algorithms adopted by the
video encoder, and the algorithms are rarely public. For example, intra prediction and inter
block partition algorithms are not public. Once a video encoder is implemented in the
hardware, it is not possible to figure out how algorithms work in the encoder. Therefore, it
is not possible to directly find the values in the descriptor through algorithms. We cannot
see the internal processing of a video encoder, but we can generate tons of video clips with
the video encoder. Therefore, in this paper, we present an indirect method by statistically
analyzing the video clips and predicting the values of the proposed descriptor.

The descriptor analyzer monitors the process of decoding video clips. Whenever a
mode in the proposed descriptor is found in the video clip, the analyzer increases the
variable to record the number of how many times the corresponding mode is used in the
video clip. For example, let us assume that an H.264 decoder processes an MB in a video
clip. If the MB is an intra 16 × 16 and its prediction mode is 0 (DC), the analyzer increases
the variable for an intra prediction mode 0 of intra 16× 16 block by 1. The number of MBs in
a single frame with a full high-definition (HD) resolution is 8160. There are 2.448 × 106 MBs
in a full HD video with 30 frames per second (fps) if the running time of the video is 10 s.
Hence, the number of MBs (or CTU) from video clips is so high that the probability of
not selecting the mode used in the video encoder is very low. If the number of videos for
analysis is insufficient, we can shoot new videos and analyze them. Consequently, the
descriptor analyzer can statistically figure out which modes are used in the encoder by
decoding a video clip.

3.2. Tampered Video Detection

Figure 2 depicts the key idea of the proposed method. Video encoder 1 supports
encoding modes of M0, M2, and M3. Therefore, the descriptor of a video compressed by
video encoder 1 also has encoding modes of M0, M2, and M3, which are the characteristics
of video encoder 1. In the process of decoding the compressed video, the uncompressed
video loses the characteristics of video encoder 1. A double-compressed video has the char-
acteristics of video encoder 2, whose descriptor includes M0, M1, and M3. The descriptor of
the double-compressed video is different from the descriptor of video encoder 1. Therefore,
the proposed method compares the descriptor of a test video with the descriptor of the
video encoder used in the first compression. If the test video is a double-compressed video,
its descriptor may be different from that of the video encoder used in the first compression.
The details will be given in the following sections.

3.2.1. Structure of the Proposed Detector

Let us assume that a test video (or an evidence video) is submitted to check whether
the video is forged or not. Conventional methods usually focus on the test video itself.
They carefully analyze the test video to find out tiny changes due to double compression.
Meanwhile, the proposed method takes a different approach from the previous methods. It
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does not analyze only the test video but compares the test video with other videos shot
by the same video encoder from the viewpoint of the proposed descriptor. Since the test
video is submitted as evidence of a crime, the model name of the camera (or video encoder)
that took the test video is generally known. We can generate new videos using the same
camera if necessary. Hence, the test video can be compared to other videos shot with the
same camera.

Video decoder

Original video 

(compressed)

Decoded video

(uncompressed)

Video encoder 2
Double 

compressed video

Video encoder 1

M2 M3M0 M2 M3M0

M1 M3M0M1 M3M0

Figure 2. Key idea of the proposed algorithm.

Figure 3 illustrates the proposed detection system. The first step of the proposed
system is to decode a test video and extract its descriptor or DT according to the method
described in Section 3.1.2. In digital forensics, when the test video (or evidence video)
is submitted, the model name of the camera that the video evidence was taken with is
usually provided. In the figure, the model name for the test video is Model b. Then, the
proposed method searches the descriptor of the corresponding model (Model b) in the
model database. If the descriptor for the corresponding camera model is not in the model
database, new videos are taken using a camera of Model b. Then, the proposed method
predicts the descriptors of the new videos and stores them in the video database. In the
figure, two videos, #3 and #4, were taken, and their descriptors are D3 and D4, respectively.
The descriptors of the new videos are merged to generate the video encoder’s descriptor
(or Db) in the model database. Here, the numbers to indicate how many times each mode is
used are simply added for the encoder’s descriptor. Finally, the proposed method compares
the test video’s descriptor (DT) to that of the video encoder’s descriptor (Db) to determine
whether the test video is tampered with or not.

3.2.2. Comparison of Descriptors

In Figure 3, the descriptors predicted from videos taken with the same camera are
merged to generate the descriptor in the model database. The number of times each mode
is used in a video is recorded in a descriptor in the video database. The proposed method
simply adds the number of descriptors in the video database. If a particular mode is
implemented in the video hardware, the number of times corresponding to the mode will
be greater than zero. When comparing two descriptors, the proposed scheme compares
whether a specific mode is implemented or not. Therefore, the scheme does not directly
compare the number of two descriptors but rather checks whether each number is greater
than zero. In Table 5, the numbers for M0, M1, and M2 in videos #1 and #2 are greater than
zero, and the numbers for M3 and M4 are zero. Hence, the descriptors of two videos of #1
and #2 are consistent with each other. However, the numbers of M0, M1, M2, M3, and M4
in video #3 are 15249, 292342, 0, 125242, and 8754, respectively. Only the number of M2 is
zero, and the others are non-zero. Hence, the descriptor of video #3 is not consistent with
the descriptors of video #1 or #2.
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Table 5. Example of descriptor comparison. N1, N2, and N3 are the number of times that each mode
is used in Videos #1, #2, and #3.

Mode Video #1 Video #2 Video #3

M0 142,342 51,244 15,249
M1 522,342 123,142 292,342
M2 152,342 24,922 0
M3 0 0 125,242
M4 0 0 8754

Test video
Extract descriptor

(video decoder)

Video Model Descriptor

video #1 Model a D1

video #2 Model a D2

video #3 Model b D3

video #4 Model b D4

video #5 Model c D5

�✁ ✂✄ ☎✆

video Model b DT

Extracted data

Video database

Model Descriptor

Model a Da

Model b Db

✝✞ ✟✠

Search

Comparison

Model database

Model b

Figure 3. Proposed detection system.

There is an important issue. We mentioned in Section 3.1.2 that the method can
statistically predict the video encoder’s descriptor if the number of videos for analysis
is sufficient. Since we know the camera model used to shoot the evidence video, we can
take as many videos as we need, and the above assumption is valid for predicting the
descriptors of video encoders. The issue is that the test video’s descriptor is predicted from
a single video. Is the descriptor from the single video comparable to the video encoder’s
descriptor predicted from multiple videos? It depends on the statistical situation. Table 6
shows an example of the desirable case in H.264. Videos #1 and #2 are shot by the same
camera model. The running times of the two videos are 60 and 20 s, respectively. In this
example, the video encoder determines 1.19% and 5.59% of the total MBs as 4 × 4 intra
prediction mode. The total numbers of MBs for 4 × 4 intra prediction mode are 174,639
and 273,562, respectively. Hence, the number of MBs is statistically enough to determine
whether the video encoder includes the hardware logic for the corresponding mode. In this
case, the descriptor from the single test video is identical to the video encoder’s descriptor
predicted from multiple videos. Now let us consider another example in Table 7. This
table represents an example of an undesirable case in HEVC. Videos #1 and #2 are shot by
the same camera model. The running times of the two videos are 5 and 5 s, respectively.
The total number of CUs for 2N × 2N intra prediction of 32 × 32 CU are 6,851 and 70,871,
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respectively, which are 2.2% and 23%. While the number of H.264 intra prediction types is
9, the number of HEVC intra prediction modes is 35, which is much larger than H.264’s.
Further, in this example, most intra prediction modes belong to DC and planar modes
(more than 80%), rather than angular prediction. Therefore, the numbers that belong to
angular prediction are not statistically enough to determine whether the video encoder
includes the hardware logic for the mode. Mode 4 was used in video #2 but not in video #1.
In this situation, the descriptor from the single test video will not be identical to the video
encoder’s descriptor, even if they were shot by the same camera model. On the other hand,
the descriptor in the model database is a super-set of all descriptors of videos taken with
the same camera model. Hence, videos #1 and #2 are subsets of the descriptor in the model
DB, as shown in the table.

Table 6. Example of 4 × 4 intra prediction in H.264. Here, descriptors from two videos shot by the
same camera are identical to each other. Here, O and × represent ‘used’ and ‘not used’, respectively.

Encoding Mode Video DB
Model DB

(4 × 4 Intra Pred.) Video #1 Used Video #2 Used

mode0 722,157 O 1,095,886 O O
mode1 747,453 O 1,490,516 O O
mode2 1,324,614 O 1,790,590 O O
mode3 0 × 0 × ×
mode4 0 × 0 × ×
mode5 0 × 0 × ×
mode6 0 × 0 × ×
mode7 0 × 0 × ×
mode8 0 × 0 × ×

Table 7. Example of 2N × 2N intra prediction in 32 × 32 CU in HEVC. Here, descriptors from two
videos shot by the same camera are not identical to each other. Here, O and × represent ‘used’ and
‘not used’, respectively.

Encoding Mode Video DB
Model DB

(2N × 2N Intra Pred.) Video #1 Used Video #2 Used

mode0 3210 O 25,622 O O
mode1 2702 O 31,559 O O
mode2 54 O 1205 O O
mode3 2 O 399 O O
mode4 0 × 14 O O
mode5 1 O 21 O O
mode6 0 × 183 O O

. . . . . . . . . . . . . . . . . .
mode34 0 × 48 O O

When comparing the descriptor of the test video to the descriptor of the video encoder,
there are three types of comparison results. Table 8 represents an example of the three types.
The first case (case1) is when the descriptor of a video encoder in a model database (Db)
is identical to the descriptor of the test video #1 (D1

T), which is Db = D1
T . In the second

one (case2), the descriptor of the test video (D2
T) is included in the descriptor of the video

encoder (Db). In other words, the test video’s descriptor is a subset of the video encoder’s
(D2

T ⊂ Db). The last one (case3) is a case where the descriptors of the test video and the
video encoder are not related to each other. In the table, there is no relation between Db
and D3

T .
If the test video is not double compressed, the descriptor of the test video should

be consistent with or included in the descriptor of the video encoder used to shoot the
test video (DT ⊆ Db). If not (DT * Db), the test video is considered to be forged from the
original one. An attacker usually compresses the tampered video (uncompressed) using
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a software video encoder, such as FFmpeg [33]-based software, Adobe Premier, etc. We
can analyze various types of software video encoders, predict their descriptors, and store
their descriptors in the model database in advance. When the test video is determined to
be forged, we may find which software video encoder is used in forging the test video
by comparing the test video’s descriptor with descriptors from various software video
encoders in the model database, as shown in Figure 4. In this case, the descriptor of the
test video (DT) is compared to the descriptors of the software video encoders in the model
database (Di

S). If DT is a subset of Di
S (DT ⊆ Di

S), the test video may be forged using the
i software.

Table 8. Three types of comparison results. Here, O and × represent ‘used’ and ‘not used’, respectively.

Encoding Mode
Model DB Test Video

Db D1
T D2

T D3
T

A O O O O
B O O O O
C O O × ×
D × × × O
D × × × ×
F O O × O
G O O O ×

DT � Db

DT = Di
SAny Di

S ✁ DT

Test video is forged 

using i software

Test video may be 

forged using 

unknown-software

Not detectable

Test video is not 

forged using 

software in database

Yes

Yes

No
Yes No

No

Test video is forged

Figure 4. Proposed decision rule. DT , Db, and Di
S are descriptors of the test video, the video encoder,

and the i software video encoder, respectively.

Now let us consider a case that the descriptor of the test video is included in or
consistent with the video encoder’s descriptor in the model database (DT ⊆ Db). In this
case, we compare the test video’s descriptor with all descriptors of the software encoder in
the database. If no software encoder’s descriptor in the model database is a subset of the test
video’s descriptor, we conclude that the test video is not double compressed using software
video encoders used in to build the database. If the model database includes descriptors of
most authoring tools used for the forgery of videos and no matching descriptor is found,
it is highly probable that the test video is not double compressed. Unfortunately, if any
Di

S ⊆ DT , we cannot be sure whether the test video is the original one taken with the same
camera model used to build the model database. There is a possibility that the test video is
double compressed using the software encoder that has the same descriptor as the original
camera model. Hence, the proposed method categorizes this case as Not detectable.
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3.3. Refinement of H.264 Descriptors

In the process of decoding videos and extracting H.264 descriptors, we found a peculiar
result, as shown in Table 9. Although a particular mode is implemented in some hardware,
it is rarely used. In the table, the probability of choosing the 16 × 16 intra prediction mode
3 is less than 0.01%, and the probability for the remaining three modes is 99.99%. Since the
mode decision algorithm inside the chip (hardware video encoder) is not public, the exact
reason cannot be analyzed, but it is assumed for the following reason. HEVC video encoder
solutions are still very expensive, so only hardware vendors with advanced technology can
develop them. Meanwhile, H.264 video encoder solutions are popular nowadays, so even
low- or mid-range hardware vendors can develop them. It is expected that the low- or mid-
range vendors might develop immature algorithms, and a particular mode is rarely chosen.
Although the particular mode is implemented in these hardware video encoders, since the
mode is rarely chosen, our method considers that the rarely chosen mode is the ‘unused
mode’. In the descriptor, the mode will be marked as ‘×’. If the probability of choosing
a particular mode is less than 0.01%, the proposed method considers the corresponding
mode as the ‘unused mode’.

Table 9. One example of peculiar results in some H.264 hardware video encoders.

Model

16 × 16 Intra Prediction Modes

Mode 0 Mode 1 Mode 2 Mode 3

Num % Num % Num % Num %

a 122,842 49.184 23,182 9.286 103,715 41.526 10 0.004
b 262,525 66.623 61987 15.731 69535 17.646 1 0.000

4. Experimental Results

Versatile video coding (VVC) [34] is a new generation of the international video coding
standard that was developed by the ITU-T and the ISO/IEC. Unfortunately, VVC hardware
encoders are not available in the consumer market yet. The predecessors, such as H.264
and HEVC, are still popular, and the most available hardware video encoders in the market
belong to either H.264 or HEVC. In recent years, the low cost of the H.264 video encoder
has led to it being widely adopted in low-end and mid-end devices. Since the HEVC video
encoder is relatively expensive, high-end devices are often equipped with the HEVC video
encoder. Accordingly, we built the database and performed experiments for H.264 and
HEVC. As described in Section 3.2.2, the proposed method does not directly compare the
number of times in the two descriptors but compares whether each mode is used or not.
Hence, the tables in the following sections will not indicate the number of times each mode
is used but indicates whether each mode is used with O or ×.

4.1. Descriptors of HEVC Hardware Video Encoder

In experiments, eight models of car DVR (or black box) cameras, four models of
smartphone cameras, and one GoPro camera were used to evaluate the proposed method.
We took many videos using the above cameras to build the model database. The total
running time of videos shot by each camera model was more than 5 min (9000 frames).
Video resolutions from the car DVR cameras are 2560 × 1440. The resolution of videos shot
by the GoPro is 3840 × 2160. The remaining video’s resolution is 1920 × 1080.

Section 2.2 mentioned that hardware video encoders often adopt simple and straight-
forward methods of using only a subset of the encoding modes among all possible modes.
This subset, indicating whether a particular encoding mode is implemented or not, becomes
a descriptor. Since the structure of the HEVC descriptor is very complex, as described in
Section 3.1.1, it is not appropriate in this paper to show the full descriptor for all camera
models. Further, it is very difficult to compare huge sizes of descriptors from different
camera models one by one. Hence, this paper summarizes the descriptors in terms of intra
2N × 2N prediction, intra N × N prediction, and inter block partitioning.
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Table 10 represents examples of intra 2N × 2N prediction modes of 32 × 32, 16 × 16,
and 8 × 8 CUs in HEVC encoder’s descriptor. The CTU size of all camera models used in
the experiments was equal to 32× 32. The minimum CU size of one of the camera models is
16× 16, and the minimum CU size of the other camera models is 8× 8. Since DC and planar
prediction modes in intra 2N × 2N prediction (mode 0 and 1) are very important, these
modes are commonly utilized in all CUs of 32 × 32, 16 × 16, and 8 × 8 in all camera models.
Camera model 1 uses all angular prediction modes in only 8 × 8 CU. It considers subsets of
angular prediction modes for 32 × 32 and 16 × 16 CUs. Mode2, mode10, mode18, mode26,
and mode34 are used in 32 × 32 CU. Only angular prediction modes with even indices
are considered in 16 × 16 CU. Camera model 2 implemented a subset of intra prediction
modes in 32× 32 CU and a full set of intra prediction modes in 16× 16 and 8× 8 CUs. Intra
2N × 2N prediction descriptors for Camera models 2 and 3 are identical except for mode
34 in 32 × 32 CU. Although we performed a lot of experiments, videos shot with Camera
model 4 did not include mode 33, regardless of the CU size. Camera model 5 supports the
full intra 2N × 2N prediction modes. Camera model 6, whose minimum CU size is 16 × 16,
also supports the full intra 2N × 2N prediction modes. Since the hardware logic to perform
intra 2N × 2N predicted for a large block, such as 32 × 32 and 16 × 16, is expensive, it is
expected that the implementation of a limited number of intra 2N × 2N prediction modes
is preferred in some hardware video encoders.

Table 10. Example of intra 2N × 2N prediction modes of 32 × 32, 16 × 16, and 8 × 8 CUs in HEVC
encoder’s descriptor. CM stands for camera model. Here, O and × represent ‘used’ and ‘not used’,
respectively.

CM CU Size
Intra 2N × 2N Prediction Modes

0 1 2 3 4 5 6 7 8 9 10 11 ... 33 34

32 × 32 O O O × × × × × × × O × ... × O
1 16 × 16 O O O × O × O × O × O × ... × O

8 × 8 O O O O O O O O O O O O ... O O

32 × 32 O O O × × × × × × × O × ... × ×
2 16 × 16 O O O O O O O O O O O O ... O O

8 × 8 O O O O O O O O O O O O ... O O

32 × 32 O O × × × × × × × × O × ... × O
3 16 × 16 O O O O O O O O O O O O ... O O

8 × 8 O O O O O O O O O O O O ... O O

32 × 32 O O O O O O O O O O O O ... × O
4 16 × 16 O O O O O O O O O O O O ... × O

8 × 8 O O O O O O O O O O O O ... × O

32 × 32 O O O O O O O O O O O O ... O O
5 16 × 16 O O O O O O O O O O O O ... O O

8 × 8 O O O O O O O O O O O O ... O O

6 32 × 32 O O O O O O O O O O O O ... O O
16 × 16 O O O O O O O O O O O O ... O O

Four 8 × 8 PUs for 16 × 16 CU are similar to four 8 × 8 PUs for four 8 × 8 CUs. Hence,
HEVC allows N × N PUs only for the minimum CU size. Table 11 shows examples of the
intra N × N prediction mode of 8 × 8 CU in the HEVC encoder’s descriptor. Camera model
a did not implement the hardware logic for intra N × N prediction modes in 8 × 8 CU.
Camera model b supports DC and planar prediction modes as well as intra prediction mode
with odd indices. Camera models c and d do not consider modes 33 and 34, respectively.
In fact, camera model c in Table 11 and camera model 4 in Table 10 are the same camera
model. Camera model e supports a full set of intra N × N prediction modes for 8 × 8 CU.
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Table 11. Example of intra N × N prediction modes of 8× 8 CU in HEVC encoder’s descriptors. Here,
O and × represent ‘used’ and ‘not used’, respectively.

Camera Intra N × N Prediction Modes

Model 0 1 2 3 4 5 6 7 8 9 10 ... 33 34

a × × × × × × × × × × × ... × ×
b O O × O × O × O × O × ... O ×
c O O O O O O O O O O O ... × O
d O O O O O O O O O O O ... O ×
e O O O O O O O O O O O ... O O

Table 12 shows examples of block partitioning of inter coded CU in HEVC encoder’s
descriptor. HEVC has eight types of PUs for the inter CU: 2N × 2N, N × N, 2N × N,
N × 2N, 2N × nU, 2N × nD, nL × 2N, and uR × 2N PUs. Each type of PU is represented in
the table as 0, 1, 2, 3, 4, 5, 6, and 7. For example, index 4 corresponds to 2N × nU. Camera
model a considers only 2N × 2N inter predictions in all CU sizes. Camera model b utilizes
2N × 2N, N × N, and 2N × N inter block partitions in 32 × 32 and 16 × 16 CU sizes, but it
adopts only 2N × 2N inter prediction in the 8 × 8 CU size. Since four N × N PUs (index 3)
for 32 × 32 (or 16 × 16) CUs are identical to four 2N × 2N PUs (index 0) for four 16 × 16 (or
8 × 8) CUs, camera model c can be considered to support all block partitions in 32 × 32 and
16 × 16 CU sizes. It supports three block partitions in 8 × 8 CU. The minimum CU size of
camera model d is 16 × 16. This camera model supports three partitions in 32 × 32 CU and
four partitions in 16 × 16 CU.

Table 12. Example of block partitioning of inter coded CU in HEVC encoder’s descriptors. Here, inter
predict modes 0, 1, 2, 3, 4, 5, 6, and 7 correspond to 2N × 2N, N × N, 2N × N, N × 2N, 2N × nU,
2N × nD, nL × 2N, and uR × 2N PUs, respectively. Here, O and × represent ‘used’ and ‘not used’,
respectively.

Camera CU Type of PU

Model Size 0 1 2 3 4 5 6 7

32 × 32 O × × × × × × ×
A 16 × 16 O × × × × × × ×

8 × 8 O × × × × × × ×

32 × 32 O O O × × × × ×
B 16 × 16 O O O × × × × ×

8 × 8 O × × × × × × ×

32 × 32 O O O × O O O O
C 16 × 16 O O O × O O O O

8 × 8 O O O × × × × ×

D 32 × 32 O O O × × × × ×
16 × 16 O O O O × × × ×

As described above, the hardware video encoders used in our experiments support
a subset of encoding modes rather than the full set of encoding modes. According to our
analysis, the descriptors of camera models used in our experiments are unique to each
other. However, there are many camera models in the commercial market and it is very
likely that different camera models with identical descriptors exist. It should be noted that
uniqueness is not required to detect double-compressed videos in the proposed method.
Details will be shown in Section 4.4

4.2. Descriptors of H.264 Hardware Video Encoder

In our experiments, 11 models of car DVR cameras (or black boxes) were used to
evaluate the proposed method. Table 13 illustrates the basic parameters of H.264 encoder’s
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descriptors. There were baseline, main, and high profiles in car DVR cameras. The resolution
of the H.264 videos with the baseline profile was 1280 × 720, and the other resolutions’
profile was 1920 × 1080.

Table 13. Examples of basic parameters in H.264 encoder’s descriptors.

Model Profile Level Width Height

A Baseline 3 1280 720
B High 4.1 1920 1080
C High 4 1920 1080
D High 4.2 1920 1080
E High 4.2 1920 1080
F High 4.2 1920 1080
G High 4.1 1920 1080
H High 4 1920 1080
I Main 4 1920 1080
J Baseline 3 1280 720
K Baseline 3.1 1280 720

Table 14 shows intra prediction modes in H.264 encoder’s descriptors. Models B, D, E,
and F support all 16 × 16 intra prediction modes, and the rest of the models support only
three without the planar mode (mode 3). Since the planar prediction mode is relatively
complex compared to the others, it is expected that some hardware manufacturers did
not implement planar prediction. For 4 × 4 intra prediction, there were several types of
implementations. The first type does not support 4 × 4 intra prediction. The second one is
to implement only the basic and important prediction modes: DC, horizontal, and vertical
intra prediction. The last one is to support all intra prediction modes.

Table 14. Examples of intra prediction modes in H.264 encoder’s descriptors. Here, O and × represent
‘used’ and ‘not used’, respectively.

Model
Intra 16 × 16 Intra 4 × 4

0 1 2 3 0 1 2 3 4 5 6 7 8

A O O O × × × × × × × × × ×
B O O O O O O O O O O O O O
C O O O × O O O × × × × × ×
D O O O O × × × × × × × × ×
E O O O O × × × × × × × × ×
F O O O O × × × × × × × × ×
G O O O × × × × × × × × × ×
H O O O × O O O O O O O O O
I O O O × O O O × × × × × ×
J O O O × × × × × × × × × ×
K O O O × O O O O O O O O O

Table 15 shows inter block partitions in H.264 encoder’s descriptors. There are four
types of inter block partition implementations in the car DVR models used in the experi-
ments. The first type supports only 16 × 16 blocks, which is a minimum requirement to
support inter block coding. The second type is to support 16 × 16 and 8 × 8 blocks, which
are square blocks. The video encoders of the third type consider 16 × 16, 16 × 8, 8 × 16, and
8 × 8 blocks. The last one supports all inter block partitions defined in H.264.

The above experiments show that since H.264 hardware video encoders used in our
experiments support a subset of encoding modes rather than the full set of encoding modes,
the subset of encoding modes can be used as descriptors of H.264 video encoders. On the
other hand, these H.264 descriptors are not completely unique to each other, unlike the
HEVC descriptors. Models B, C, F, G, H, I, and K were unique to each other. The descriptors
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of models A and J were identical. Models D and E also have the same descriptors. Again,
uniqueness is not required to detect double-compressed videos in the proposed method.

Table 15. Examples of inter block partitions in H.264 encoder’s descriptors. Here, O and × represent
‘used’ and ‘not used’, respectively. The numbers 0, 1, 2, 3, 4, 5, and 6 in inter block partitions denote
16 × 16, 16 × 8, 8 × 16, 8 × 8, 8 × 4, 4 × 8, and 4 × 4, respectively.

Model
Inter Block Partition

0 1 2 3 4 5 6

A O O O O × × ×
B O O O O × × ×
C O × × O × × ×
D O × × × × × ×
E O × × × × × ×
F O O O O O O O
G O O O O × × ×
H O O O O × × ×
I O × × O × × ×
J O O O O × × ×
K O O O O × × ×

4.3. Descriptors of Double-Compressed Video Using Software Video Encoder

Figure 1 depicts the procedure of video forgery by double compression. In order to
validate the proposed algorithm, the procedure of Figure 1 was modified to simple double
compression in Figure 5. The process of editing in Figure 1 is skipped in Figure 5. The
decoded video (uncompressed) from the software video decoder is directly fed to the
software video encoder. Then, the descriptor of the double-compressed video in Figure 5 is
extracted and compared with the descriptor of the original video (compressed).

Software 

video decoder

Original video 

(compressed)
Decoded video

(uncompressed)

Software

video encoder
Double 

compressed video

Figure 5. Validation method of the proposed method

After going through the procedure in Figure 5, the descriptor of a double-compressed
video should be changed to a descriptor corresponding to the software video encoder,
and the descriptor of the double-compressed video should be unrelated to the descriptor
of the original video (compressed). To confirm the above, we conducted a simulation
using JM software [35] for H.264 as the software video decoder and encoder in Figure 5.
Since JM software is essentially a test model for H.264, the JM software video encoder
can fully utilize the full set of encoding modes. We confirmed that the descriptors of the
double-compressed video also utilize the full set of encoding modes in H.264. Since the
decoded video (uncompressed) is simply raw video, it makes sense that the descriptor of
the double-compressed video uses the full set of encoding options. No car DVR model
used in our experiments utilizes the full set of encoding modes. Consequently, there was
no car DVR model in which the descriptor of the original video (compressed) is identical to
the descriptor of the double-compressed video.

Next, we conducted another simulation using an authoring tool (FFmpeg [33]). It is
confirmed that the descriptors of a double-compressed video are unrelated to the descriptor
of the original video (compressed). The descriptors of a double-compressed video are
always changed to a descriptor corresponding to the authoring tool from whatever the
descriptor of the original video (compressed) was. On the other hand, this authoring tool
supports the full set of encoding modes except inter block partitions of 8 × 4, 4 × 8, and
4 × 4 blocks. Hence, the descriptor of this authoring tool is the same as the descriptor of
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Model B in Table 13. Here, we did not consider parameters in SPS and PPS, such as profile,
level, GOP, etc.

In the same way, the experiments were performed on HEVC camera models using
two software video encoders. One is HM software [36], which is a test model of HEVC.
HM software was used for the software video decoder and encoder in Figure 5. Since HM
software is a test model for HEVC, the descriptor from the HM software video encoder also
utilized the full set of encoding modes. Next, we used the same authoring tool as above for
the HEVC software video encoder by changing the configuration of the authoring tool to the
HEVC codec. The descriptor of the double-compressed video was always changed to that
of the software video encoder, whatever the descriptor of the original video (compressed)
was. The authoring tool, unlike the HM software, did not support the full set of encoding
modes. The maximum CU size of the authoring tool was 64 × 64, while the maximum CU
size of HEVC camera models was 32 × 32. However, only inter blocks and skip blocks
are supported except for intra block in 64 × 64 CU. All intra, inter, and skip blocks are
allowed in 32 × 32, 16 × 16, and 8 × 8 CUs. Further, only inter block partitions of 2N × 2N
size are allowed, regardless of CU sizes. A total of 35 types of intra predictions are fully
utilized in 2N × 2N and N × N regardless of CU sizes. There was no camera model where
the descriptor of the original video (compressed) are identical to the descriptor of the
double-compressed videos using the HM software or authoring tool.

4.4. Video Forgery Detection

The proposed method does not replace the existing methods but complements them.
For example, a target video is first examined using the proposed method. If the target video
is determined as ‘Not detectable’, the existing methods are applied to further examine the
target video. Since the proposed method is complementary, it does not matter whether the
proposed method is superior to the existing methods or not. Therefore, only the experimen-
tal results of the proposed double compression detection are presented in this paper. In
practice, the performance of the proposed method is highly dependent on the combination
of encoders used for the first and second compressions.

Table 16 shows the experimental results of the proposed double compression detection
based on Figure 4. It is assumed here that only two software video encoders are available for
tampering videos, and two descriptors are registered in the model database. An unforged
video (or original video) is captured using each camera model. The running time of each
unforged video is about 30 s. Then, two forged videos are generated using two software
video encoders: open-source and HM (or JM) test models. In our experiments, only double
compression is performed without editing the original video, as shown in Figure 5. The
total number of HEVC camera models used in the experiments is 13. The proposed method
successfully decides unforged videos as unforged in all camera models. Further, forged
video inputs are judged as forged, regardless of the camera model that the video is captured
by. The accuracy of detection results is 100%. The reason is that the descriptors of the open-
source and HM software for HEVC are different from the descriptors of all hardware video
encoders used in the experiments, as described in Section 4.3. On the other hand, one
descriptor of camera model b is identical to the descriptor of the open-source authoring tool
based on H.264. Hence, the proposed method cannot judge whether the test video from
camera model b is tampered with or not; the test video is categorized as ‘Not detectable’.
The remaining videos from ten camera models are correctly detected. The accuracy of
the detection results for the ten detectable camera models is 100%. The proposed method
basically checks whether the descriptor of the original video (compressed) is changed to the
new one or not. It does not matter for detecting double compression that two descriptors
from different camera models are identical.

Now, let us consider a situation of tampering with a test video using the new software
video encoder (Dnew

S ) that is not registered in the model database. If the proposed method
decides the test video is forged, DT * Db should be satisfied. This means that the descriptor
of the test video is changed to the new one, and the test video is double-compressed.
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Hence, the proposed method provides the correct result in this case. Meanwhile, when
the proposed method judges the test video as unforged, the decision result could be
wrong if Dnew

S ⊂ Db and all Di
S * DT . Although the test video is double-compressed, the

descriptor of the double-compressed video is still included in Db in this case. The condition
of all Di

S * DT denotes that none of the descriptors the of software video encoder in
the model database are included in the descriptor of the test video or are identical. Then,
the proposed method will decide the double-compressed video as not Not detectable but
unforged. However, we believe that this case is very rare for the following reason. Since
the open-source encoder is free and public, it is very likely that the new software (Dnew

S )
will support at least all of the encoding modes supported by the open-source encoder
(DO), such as FFmpeg [33]. Then, DO ⊂ Dnew

S is satisfied. Since DO is registered in the
model database, the condition of all Di

S * DT will be violated. In other words, Dnew
S should

not support some encoding modes of the open-source encoder in order for the proposed
method to make the wrong decision. However, it is not common that the performance
of the new software video encoder provides worse performance than the open software
encoder that is easily found for free. Note here that when the proposed method decides the
test video is double compressed, the result is always correct.

Table 16. Results of the proposed double compression detection. Here, ‘Accuracy’ refers to the
accuracy of detection results for detectable videos, not including undetectable videos.

Input
# of

Camera
Models

Detectable Not
Detectable

Accuracy
(%)

Unforged Video (HEVC) 13 0 100
Forged Video (HEVC) using open-source 13 13 0 100
Forged Video (HEVC) using HM source 13 0 100

Unforged Video (H.264) 10 1 100
Forged Video (H.264) using open-source 11 10 1 100

Forged Video (H.264) using JM source 10 1 100

5. Conclusions

In this paper, we present a new approach to detecting double-compressed videos using
the proposed descriptor that represents the characteristics of each video encoder. Unlike
human fingerprints, each video encoder’s descriptor is not completely unique enough
to discriminate all video encoders. Nevertheless, we experimentally show that there are
many types of descriptors according to video encoders. Specifically, the descriptors of
hardware video encoders are different from those of software video encoders in most cases.
Therefore, the proposed descriptor can be utilized to detect double-compressed video like
human fingerprints.

The accuracy of the detection results is very important in digital forensics. Specifically,
the untampered video should not be decided as a forgery video in order for the innocent not
to be punished. The proposed method guarantees that the test video judged to be a forgery
is indeed double compressed. In other words, the proposed method never determines a
single-compressed video as a double-compressed video. We believe that this work is very
meaningful for digital forensics. If an attacker is a video coding expert, one can easily find
a way to neutralize the proposed method. For example, by modifying the test models such
as HM or JM software, a software video encoder whose descriptor is identical to a specific
hardware video encoder can be developed.

The proposed descriptor only includes whether a particular encoding mode is used.
Not only whether the encoding mode is used but also the probability that the encoding
mode is selected may be utilized in a descriptor of the video encoder. For example, according
to our experiments, some hardware video encoders have a very high selection probability
of modes 0, 1, and 2 among the 35 modes in HEVC intra prediction, but other encoders
do not. The probability distribution of the chosen encoding modes is also an important
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characteristic of video encoders. We expect that considering the probability distribution
will further improve our study.
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