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Abstract: The monitoring of emotional state is important in the prevention and management of
mental health problems and is increasingly being used to support affective computing. As such,
researchers are exploring various modalities from which emotion can be inferred, such as through
facial images or via electroencephalography (EEG) signals. Current research commonly investigates
the performance of machine-learning-based emotion recognition systems by exposing users to
stimuli that are assumed to elicit a single unchanging emotional response. Moreover, in order to
demonstrate better results, many models are tested in evaluation frameworks that do not reflect
realistic real-world implementations. Consequently, in this paper, we explore the design of EEG-based
emotion recognition systems using longer, variable stimuli using the publicly available AMIGOS
dataset. Feature engineering and selection results are evaluated across four different cross-validation
frameworks, including versions of leave-one-movie-out (testing with a known user, but a previously
unseen movie), leave-one-person-out (testing with a known movie, but a previously unseen person),
and leave-one-person-and-movie-out (testing on both a new user and new movie). Results of feature
selection lead to a 13% absolute improvement over comparable previously reported studies, and
demonstrate the importance of evaluation framework on the design and performance of EEG-based
emotion recognition systems.

Keywords: affective computing; EEG; emotion classification; AMIGOS dataset; machine learning;
feature selection

1. Introduction

According to the Mental Health Commission of Canada, 50% of Canadians have or
will have had a mental health illness by the age of 40 [1], with mood and anxiety disorders
among the most common types of mental health disorders [2]. Given that individuals
with mental health illnesses respond well to early intervention [3], there is hope that early
awareness could play a significant role in supporting the mental health needs of Canadians.
Early detection of frequent changes in emotions has been recognized as a cornerstone in
the treatment of both mood and anxiety disorders. To this end, researchers in the field of
affective computing have been developing systems to elicit and recognize emotion using
various modalities. For example, Mower et al. determined emotions from the audio and
visual data of actors as they performed emotionally evocative scripts [4]. Valstar and Pantic
showed short films to induce disgust, happiness, and surprise in participants [5], and used
the Face Action Coding System (FACS) to determine the experienced emotions. Niu et al.
used songs to induce emotions in participants while collecting physiological signals (electro-
cardiography (ECG), galvanic skin response (GSR), electromyography (EMG), respiration
(RESP)) [6]. Likewise, He et al. collected physiological signals but induced emotions using
video clips [7]. The authors noted the benefit of physiological signals (ECG, RESP) for indi-
viduals experiencing mental illnesses, as these individuals may avoid exhibiting changes
in facial expressions, tone of voice, body posture, and gestures. Since emotion is a highly
cognitive process, it is particularly valuable to understand how electroencephalography
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(EEG) signals relate to emotion. Several studies have used EEG for emotion recognition
as its measurement uses relatively inexpensive, noninvasive technology that yields high
temporal resolution [8–10]. Due to the increased demand for Human–Computer-Interaction
(HCI) and the desire to understand emotions, the field of affective computing has been
growing in recent years.

Despite this growth, it can be argued that the field remains limited in applicability
due to the experimental conditions employed in most research. For example, the ma-
jority of emotion recognition studies are conducted using stimuli that last less than ten
minutes [11,12]. Generally, studies are based on short stimuli, as psychologists have rec-
ommended eliciting discrete emotions to alleviate challenges with obtaining ground truth
labels for the data [13,14]. The use of such short stimulus presentation to participants,
however, cannot then reflect the temporal and contextual evolution and continuum of
emotions. This is further confounded by the nature of label generation. For example, it is
common practice in existing studies to have participants provide an annotation (i.e., happy
or sad) at the end of the period of stimulation [15,16]. This is necessary because having
them continuously record annotations throughout the stimulus would preclude immersion
for the subject, thus changing the observed emotions. Providing retrospective annotations,
however, is highly error-prone and so participants are commonly asked to provide only a
single label for the entire period. This only further adds to the challenge of understanding
the evolution of emotion over time. Although longer stimuli may provide a more dynamic
range and context of emotion, potentially facilitating a better understanding of emotion,
they are complicated by the above mentioned challenges associated with accurate labeling.
The objective of this work is, therefore, to investigate how different design factors impact
the performance of EEG-based emotion recognition systems in the context of longer stimuli.

Furthermore, in the literature, emotion recognition performance is typically evaluated
using cross-validation schemes such as leave-one-person-out (LOPO), k-fold, or leave-one-
sample-out (LOO) [17,18]. Cross-validation schemes like LOPO (which are applicable only
when a user is exposed to a known, previously seen stimulus) provide limited insight into
how well a laboratory-created model may generalize to the real-world. However, other
validation schemes such as leave-one-movie-out (LOMO) and leave-one-person-and-movie-
out (LOPMO) are considered better representations of the generalizability of a system [19].
Specifically, the LOPMO scheme has not yet been widely adopted in the literature, presum-
ably because it severely reduces the observed performance of emotion recognition systems.
Nevertheless, LOPMO best reflects the goal of a real-world implementation, as it would
represent a truly generalizable subject- and stimulus-independent affective computing
system. Consequently, in this work, we evaluate the performance of the developed systems
in the context of each of these frameworks to evaluate the continuum between possible and
probable performance.

Independent of framework, previous works have shown many useful features from
the time, frequency, and time–frequency domains that carry effective information for
recognizing different emotions from EEG. More recently, features such as higher-order
crossings, higher-order spectra, etc. have been shown to outperform common features like
power spectral bands [20]. No standard, agreed upon, subset of these features has been
established for EEG-based emotion recognition, but the naive application of all features
could lead to issues with dimensionality [21]. Consequently, different feature selection
methods (filter & wrapper) have been shown to be effective in automatically selecting the
best features given a set of design considerations. Although they can risk over-tuning,
wrapper-based feature selection methods are often preferred as they iteratively assess
interactions between features enabling them to select combinations of features that may
seem irrelevant when considered individually in filter-based methods [21]. In this work,
we implement two simple and widely used wrapper-based feature selection techniques;
sequential forward selection (SFS) and sequential backward selection (SBS). Both of these
techniques are effective at selecting salient features that reduce redundancy and improve
the discrimination of the classification problem [22].
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The main contributions of the paper are, therefore, as follows.

• An analysis of existing EEG features and their selection for recognizing time-varying
emotions induced by longer stumuli.

• An evaluation of the impact of various cross-validation evaluation frameworks, and
thereby use cases, on the design and performance of EEG-based emotion classification.

2. Related Work

EEG has been considered by many researchers as a prominent modality in the devel-
opment of emotion recognition systems [23,24], in part due to the substantial role the brain
plays in regulating and processing sensory inputs and emotion [25]. As with other modali-
ties, however, the reliability of obtaining accurate ground-truth labels and the duration and
intensity of elicited emotions, remain ongoing challenges in the pursuit of automatic affect
recognition systems. For these reasons, most studies have limited experiments to short
stimuli, during which emotions are assumed to be static or stationary. To facilitate this
assumption, many research groups have used stimulus lengths of less than 10 min [11,12].
Conversely, in real life, people experience continuous and mixed emotions in response to
dynamically varying stimuli, resulting in combinations of, and transitions between, emo-
tions. This consideration motivates the exploration of the temporal dynamics of emotion
in affective computing, but raises substantial challenges with labelling. Although some
researchers have attempted continuous labelling, most of the resulting work has focused
on computer vision applications, and not physiological signals such as EEG [26,27]. In 2016,
Soleymani et al. [28] recorded EEG signals from subjects watching short movies, and exter-
nal annotators were subsequently asked to label frontal-view videos of the participants.
More recently, the AMIGOS [29] dataset was released, comprising ECG, EEG, and GSR
data from both short movies (less than 150 s) and longer movies (greater than 14 min).
The dataset includes a time series of emotion labels for the long movies as determined by
three external annotators at twenty-second intervals.

Various machine learning techniques have been investigated to improve the perfor-
mance of emotion recognition and other health related systems (e.g., stroke management)
using EEG [30,31]. Many classical classifiers have been proposed, including support vector
machine (SVM) [32–34], linear discriminant analysis (LDA) [33,34], k-nearest neighbours
(kNN) [33], random forest (RF) [35,36], Naïve Bayes (NB) [32,36], extreme gradient boosting
(XGB) [32], and decision trees [33,36]. The performances achieved by these classifiers vary,
and differences are often overshadowed by the impact of the features chosen as part of these
models. In recent deep learning works, convolutional neural networks (CNN) [18,34,37],
recurrent neural networks (RNN) [18], and extreme learning machines (ELM) [24] have
all been employed with varying degrees of success. For example, in [38], a multimodal
learning framework was developed using EEG-based spectral topographic maps and
facial-expression based action units. The authors showed that facial expressions have a
strong correlation with the emotionally significant EEG features across multiple datasets.
Likewise, inter-channel relationship between EEG signals was recently modeled in [39]
using regularized graph neural networks, using adversarial training and emotion-aware
distribution learning to handle cross-subject EEG variations and noisy labels, respectively.

Whether engineered, such as with handcrafted features, or learned, such as with deep
learning, the extraction of features is a critical step in increasing the information density
of the signal prior to classification. Most commonly, handcrafted features are extracted
from specific frequency bands in the signal (e.g., the alpha, beta, delta, gamma, and theta
bands are used in 89.4% of works) [12]. To extract these features, frequency (Freq) domain
techniques such as power spectral density (PSD) [40,41] and asymmetry (Asymm) [20]
between electrodes have been proposed. Time-domain features can also be extracted, such
as high order crossings [42] and Hjorth parameters [35,43]. Non-linear methods can be
used to extract various entropy measures [44] and fractal dimensions [44,45], and more
recently, features have been learned automatically using deep learning approaches [24].
Jenke et al. [20] reviewed various features extracted from EEG signals, and determined that
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complexity measures such as fractal dimensions are important for emotion recognition,
but suggested that further investigation is needed to better understand the impact of
different groups of features. Similarly, despite their potential benefits, features learned
using deep learning model currently lack interpretability [46].

Despite the known body of features, there is little consensus on a defined set of the
most appropriate features for EEG-based emotion recognition. Very few works exist that
either compare different features [42] or apply some form of feature selection technique [47].
In machine learning, the selection of features with high information density is essential to
improve performance and avoid the ‘curse of dimensionality’, wherein the training data
become sparse due to the high dimensionality introduced by the large number of features.
Atkinson et al. applied the statistical minimum-Redundancy-Maximum-Relevance (mRMR)
approach to eliminate redundant features [48]. Similarly, one-way ANOVA [36] and other
classical filter based approaches were applied in [43] to select optimal features. Other
techniques explored include evolutionary computation [21], transfer recursive feature
elimination (T-RFE) [49] using geometrical distances and locally-robust feature selection
(LRFS) using probability densities of extracted features. Jenke et al. [20] performed a
comparison between different feature and EEG electrode selection techniques on a self-
recorded dataset. In each of these works, however, they either extracted very few features
or used relatively small datasets. Furthermore, these approaches were all applied to short
stimuli, under the assumption that they emotion was static.

When evaluating these systems, many of the existing works have adopted k-fold or
leave-one-sample-out (LOO) techniques [11]. In these approaches, parts of the same data
sequence, sometimes even consecutive frames, may be selected for both training and testing,
resulting in an emotion recognition performance that is dependent on having previously
seen a specific stimulus. Consequently, two other approaches are also commonly adopted.
The first method, the participant agnostic (independent) approach, is used in the largest
proportion of the literature [32,50]. Because it is designed to extend to previously unseen
participants (LOPO), the generalizability of this approach could make it more tangible for
real-world adoption. Such participant-independent systems, however, have often obtained
F1-scores (harmonic mean of precision and recall) between 0.5 and 0.6 [50–52], leaving
considerable room for improvement. Furthermore, although the testing subject may be
previously unknown in this evaluation framework, the data for all subjects are commonly
collected using the same stimuli. Consequently, this effectively limits the generalizability
of the results to new people only while they are experiencing a known stimuli that is
consistent with that used to train the model.

The second method focuses on developing a model that is tailored for a given par-
ticipant (participant-dependent or within-subject). The participant-dependent approach
has yielded substantially better performance [11,53], typical F1-scores fall between 0.6 and
0.8 [54,55], likely due to the avoidance of inter-subject variability. Although within-subject
models produce better results, their real-world applicability may be limited because they
require a model to be trained specifically for each user. Although this could be viable for
select high-impact applications, the necessity to collect person-specific labeled training data
precludes most commercial applications. Consequently, although both of these common
validation frameworks provide some insights about emotion recognition, further consid-
eration of the problem is needed to increase the generalizability of the results and their
application.

3. Methods
3.1. Dataset & Preprocessing

In this work, a publicly available dataset AMIGOS [29] was used to evaluate EEG-
based emotion recognition performance across a range of validation frameworks. The AMI-
GOS dataset was recorded using the Emotiv EPOC headset, comprised of 14 channels
according to the international 10–20 system at positions AF3, F7, F3, FC5, T7, P7, O1, O2, P8,
T8, FC6, F4, F8, AF4. The dataset was collected from 40 participants, recorded while they
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watched 16 different short films (<150 s each) and excerpts from 4 longer films (>14 min
each). The short videos were watched individually in isolation, whereas some participants
watched the long films together in groups. In this work, we focused only on the EEG data
corresponding to long movies as it contained time-varying labels and is arguably more
representative of a real-world scenario. The details of the long movies used to record EEG
data is presented in Table 1 along with their duration. The division of high/low valence and
arousal categories was achieved using the zero affect threshold as proposed in the original
AMIGOS work [29] (Figure 1a shows the percentage of samples annotated as high/low
valence and arousal). It may be noted that Mr. Bean had the most high affect samples, with
around 79% high valence samples and around 57% high arousal samples. The Dark Knight
had the most low affect samples, with 97% low valence samples and 98% low arousal
samples. The participant-specific breakdown of these results is shown in Figure 1b. It can
be seen that eight participants had less than 10% high arousal, and one participant (#23)
was assigned less than 1%. Valence was found to be slightly more balanced than arousal
but still tended toward low valence samples.

Table 1. Details of the movies used to record time-varying emotions EEG data.

Dataset Movie Details Duration

AMIGOS [29],
EEG-14 Channels, 128 Hz

The Descent. Dir. Neil Marshall.
Lionsgate. 2005 23:35

Back to School Mr. Bean.
Dir. John Birkin.

Tiger Aspect Productions. 1994.
18:43

The Dark Knight. Dir. Christopher Nolan.
Warner Bross. 2008. 23:30

Up. Dirs. Pete Docter and Bob Peterson.
Walt Disney Pictures and

Pixar Animation Studios. 2009
14:06

(a) Average Breakdown of Valence and Arousal Samples by Movie

(b) Breakdown of Valence and Arousal Samples by Participant

Figure 1. Class Breakdown on a Per Movie and Per Participant Basis.
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The AMIGOS signals were previously preprocessed using average-referencing and
high-pass filtering with a 2 Hz cut-off frequency. Motion artifacts from eye movements
were also previously removed using a blind source separation technique [56].

The ground truth labels were generated by three external annotators by examining the
facial expressions of the participants as they watch the movies. These external labels were
created by each annotator for every non-overlapping twenty-second period. The facial
expressions were rated by the annotators using the continuous valence and arousal scales,
according to Russell’s Circumplex Model of Affect [57]. When considering the assigned
binary class labels, the annotators were found to agree 75% of the time for valence and
61% of the time for arousal. Furthermore, the majority of samples that were agreed upon
fell into the low affect classes, leaving heavy disagreement in the high affect cases. Briefly,
valence quantifies the range of positive and negative emotion, which ranges from pleasant
to unpleasant, whereas arousal quantifies the level of engagement from passive to active,
indicating the intensity of affect. Participants 8, 24, and 28 were missing the external
annotations for all movies and were, therefore, not used in this work. The first and last
labels for each movie were discarded to ensure non-overlapping labels leaving a set of
14 different time-series of twenty-second windows of EEG (one for each channel) from
which features were extracted.

3.2. Feature Extraction & Selection

In addition to the power spectral density (PSD) and differential spectral power asym-
metries features (105) extracted by Miranda et al. as part of their original work [29], another
112 features were identified from the literature and compiled from various sources. Briefly,
these included the fractal dimension (2 methods), entropy (2 methods), Hjorth parameters
(2 methods), detrended fluctuation analysis, and Fisher information. Thus, a total of 217 fea-
tures (combinations of feature methods and channels) were analysed in this work. Next,
feature selection techniques were applied to remove the redundant informative, increase
information density, and thus, reduce the risk of overfitting. The details of the feature
extraction selection are described as follows.

3.2.1. Feature Extraction

• PSD: The power spectral density, reflective of the distribution of signal power across
frequencies [58], is one of the most common EEG features. The PSD was calculated for
different EEG frequency bands, as different bands have been associated with different
processes [12]. Theta waves are associated with affective processing [59], whereas the
slower alpha band reflects attentional demands such as alertness and expectancy [60].
The entire alpha band reflects task-related processes [60]. Alpha waves tend to occur
when someone is in a relaxed state of mind, while beta waves tend to occur when
an individual is in more of an active state [61]. The gamma band reflects a reflective
aspect when processing emotional material [62].
Following AMIGOS [29], the Welch method with windows of 128 samples (1 s) were
used to calculate the PSDs. These PSDs, X, were then averaged over each frequency
band, and the logarithms were obtained as features. The terms ‘low’ and ‘high’ refer
to the minimum and maximum frequency range within a band.

PSD flow, fhigh
= log

 1
fhigh − flow

fhigh

∑
f= flow

X[ f ]

, (1)

• Spectral Asymmetry (Asymm): Spectral asymmetry leverages both frequency-domain
and spatial information about emotional changes in the brain [41]. The asymmetry
in the different bands across channels has been shown to be indicative of different
emotions. For example, the alpha asymmetry between frontal lobe channels F3 and F4
can relate to valence [63] and the beta asymmetry between parietal lobe channels P3
and P4 can correlate with angry facial expressions [64].
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The differential spectral asymmetry was calculated by taking the difference of the PSD
features from symmetric channels from the left and right hemispheres

Asymmetrya,b
flow, fhigh

= PSDa
flow, fhigh

− PSDb
flow, fhigh

, (2)

where a and b represent different EEG channels. For example, a slow alpha asymmetry
for parietal lobe channel P3 and P4 is AsymmetryP3,P4

8,10 .
• Hjorth: The Hjorth Mobility (HM) is an estimation of the signal’s mean frequency, and

the Hjorth Complexity (HC) reflects the bandwidth and the change in frequency [65].
It is defined as the square root of the variance of the signal derivative, normalized by
the variance of the signal, while not yet widely adopted, Hjorth features have been
shown to be relevant for emotion recognition [43]. Equations are as given in [66].

• Detrended Fluctuation Analysis (DFA): DFA quantifies the statistical persistence,
or auto-correlation, property of non-stationary physiological signals [67]. Briefly,
DFA evaluates the detrended and integrated signal as a function of window size.
Commonly used in many fields, including for ECG analysis, DFA has also been found
to be beneficial for EEG emotion recognition [68]. Equations are as given in [66].

• Fractal Dimension (FD): Fractal dimension approaches, such as the Petrosian fractal
dimension (PFD) and Higuchi fractal dimension (HFD), are a measure of signal
complexity [69] and are commonly used for non-stationary and transient signals.
The Higuchi fractal dimension has been used more frequently in emotion recognition
works [12], but in neurophysiology, both Higuchi and Petrosian fractal dimensions
are commonly cited [70]. Equations are as given in [66].

• Entropy (Ent): Entropy is a measure of chaos, or disorder, in a system or signal, and is,
therefore, used to understand signal complexity [71]. Here, the spectral entropy (Spe-
cEnt), the entropy of the PSD [72], and the SVD entropy (svdEnt), an indicator of how
many vectors are needed to reconstruct an adequate explanation of a signal [72], were
used. Hatamikia et al. [44] found that spectral entropy outperformed the Petrosian and
Katz fractal dimensions for emotion recognition. Gupta et al. [35] used SVD entropy
as part of a set of features to classify discrete emotion for short movies. Equations are
as given in [72].

• Fisher Information (FI): The Fisher Information is a measure of how much informa-
tion a random variable carries about the data that it models. It is also known as the
expected value of the observed information [73]. Although less commonly used, FI of
EEG has been shown to contain affect information [35]. Equations are as given in [66].

3.2.2. Feature Selection

To identify which features were most relevant and informative for emotion recognition,
two common greedy-search feature selection techniques, namely Sequential Forward
Selection (SFS) [74] and Sequential Backward Selection (SBS) [75], were implemented.
The SFS method starts with an empty set of features and incrementally adds a feature to
the set. The feature that is added at each step is the one that gives the largest performance
improvement when added to the existing set. Conversely, SBS begins with the group
of all features and iteratively removes one feature at a time. The feature removed at
each step is the one that leaves the highest performance for the remaining set. It should
be noted that, although faster than an exhaustive brute-force search, both SFS and SBS
(due to their wrapper-style objective functions) may miss elements of information in the
relationships between groups of features. Nevertheless, they are both commonly used and,
when interpreted carefully, can lead to important understanding and performance benefits.
In this work, feature selection was conducted using SFS and SBS, beginning from the set
of 217 features, and the best set for each case was determined as the set that achieved the
maximum classification performance.
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3.3. Emotion Classification & Evaluation Metrics

Virtually all classifiers have been used in some form in emotion recognition [11,12].
The most common classifier, however, is the Support Vector Machine (SVM), reported
to have been used in 59% of cases by a recent review [12]. Because of its familiarity in
the field and its inherent trade-off between accuracy and generalization [40], SVM was
adopted in this work using a linear kernel. Although less frequently used (6.3% of emotion
research [12]), Linear Discriminant Analysis (LDA) is also robust and less computationally
intensive. LDA models the distributions of the class data, whereas the SVM classifier
focuses explicitly on the data at the boundaries between classes.

For comparison, a deep learning-based scheme was also evaluated. Because EEG data
is spatio-temporal in nature, a convolutional long short term memory (CLSTM) architecture
was employed using 1D CNNs and LSTMs [76]. 1D CNN layers were used to encode spatial
representations of the EEG signal, which were then subsequently processed temporally
using LSTM layers. The designed network consisted of two CNN layers with 64 and
128 filters of sizes 10 and 5, followed by 2 max-pooling layers with size 3. The learned
feature embeddings were then passed to the stacked LSTM layer, comprised of 256 units
followed by three dense layers with 256, 128, and 1 neurons. The final emotion classification
was completed using a final dense layer governed by a Sigmoid activation. The network was
trained with a binary cross-entropy loss function with an initial learning rate of 1 × 10−3.

Using the LDA, SVM, and CLSTM classifiers, emotion recognition was accomplished
as a set of two 2-class problems; high vs. low valence and high vs. low arousal. That is,
valence and arousal models were trained independently of each other using binarized
versions of the continuous valence and arousal labels provided with AMIGOS. Negative
values of valence and arousal were assigned to corresponding the “low” class, whereas
positive values were assigned to the corresponding “high” class.

The conventional classification accuracy performance metric is prone to bias when
class distributions are unbalanced (as is the case with the AMIGOS dataset). Consequently,
in this work, F1-score was used to describe the classification performance of the various
models. The F1-score is described as the harmonic mean of precision and recall as defined
in Equation (3). Precision, as shown in Equation (4), determines how many instances of
the positive predictions came from the positive class, making it a measure of exactness.
Recall, as shown in Equation (5), determines how many instances of the positive class are
successfully predicted as positive, making it a measure of completeness.

F1-score = 2
Precision · Recall

Precision + Recall
(3)

Precision =
TP

TP + FP
(4)

Recall (Sensitivity) =
TP

TP + FN
(5)

TP: True Positive, TN: True Negative, FP: False Positive, FN: False Negative.

3.4. Evaluation Frameworks

While k-fold and LOO approaches are popular in the literature, it has been sug-
gested that for participant-independent results, frameworks such as Leave-One-Person-Out
(LOPO) may be more appropriate [77]. In this framework, the system is trained with all
subjects but one and tested with the previously unseen subject. This process is repeated
until all subjects have been tested, and the results are averaged across all cases.

Within the participant-dependent approach, the k-fold approach has been more preva-
lent [11] although some works have also used LOO [55,78]. Depending on their application,
however, these approaches may also provide the classifiers with training information about
a known stimulus, as previously described. Consequently, in this work, any discussion of
participant-dependent results are based on a stimulus-independent Leave-One-Movie-Out
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(LOMO) framework, meaning that all movies but one are used for training, and testing
is performed on the remaining, previously unseen, movie. This process is repeated until
all movies have been tested, and the results are averaged across all cases, while not as
popular as LOPO, the LOMO framework has recently been explored in the literature. Ma-
landrakis et al. [26] and Baveye et al. [27] used LOMO with audio and video features to
classify affective states. Similarly, Tian et al. [79] used the LOMO scheme to investigate
how well audio, video, and GSR features can determine the level of induced valence and
arousal in an audience.

One important consideration with the LOPO approach is that it is most often applied
for a given stimulus. For example, although the testing subject may be previously unknown,
the data for all subjects are collected while they watch the same movie. Again, this
conceptually limits the generalizability of the results to new people, but only during known
stimuli. A truly subject and stimulus-independent Leave-One-Person-And-Movie-Out
(LOPMO) scheme has not yet been widely adopted in the literature, presumably because it
severely reduces the observed performance of emotion recognition systems. Nevertheless,
LOPMO best reflects the goal of a real-world implementation, as it would represent a
truly generalizable subject- and stimulus-independent affective computing system. Indeed,
even in 2011, Kolodyazhniy et al. [19] suggested the need for a subject and stimulus-
independent classification. In their work, they used ten-minute movies that elicited fear,
sadness, and neutral emotional states, and a total of 14 features derived from ECG, GSR,
respiration, temperature, and EMG. Their work, however, did not employ EEG or use
continuous labels.

In summary, these evaluation frameworks can be categorized as shown in Table 2.
Note that the real-world applicability of these frameworks increases from a minimum in
the top left (known subject and stimulus), to a maximum in the bottom right (LOPMO). It is
important to note the differences in the amount of training and testing data available for
the different validation schemes, as presented in Table 3. In this paper, results are presented
for the LOPO, LOMO, and LOPMO cross-validation evaluation frameworks.

Table 2. Cross-validation Evaluation Frameworks.

Known Subject Unknown Subject

Known Stimulus
Subject- and stimulus-dependent

(k-fold, LOO)
Subject-independent

(LOPO)

Unknown Stimulus
Stimulus-independent

(LOMO)
Subject- and Stimulus-independent

(LOPMO)

Table 3. Cross-validation Train/Test size details. Note: each experiment was repeated several times
based on the cross validation scheme.

Validation Scheme #Users #Train
(Users ∗ Movies)

#Test
(Users ∗ Movies)

LOPO 37, 4 movies 36 ∗ 4 1 ∗ 4

LOMO
Inter 37, 4 movies 37 ∗ 3 37 ∗ 1

Within
Valence-26
Arousal-19 1 ∗ 3 1 ∗ 1

LOPMO 34, 4 movies 33 ∗ 3 1 ∗ 1

3.5. Statistical Testing

For each cross-validation framework, results were tested for normality using the
Kolmogorov–Smirnov test [80]. Because each framework was found to be non-normal,
significance of results was subsequently evaluated using the non-parametric Kruskal–Wallis
H-test [81].
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4. Results

As outlined above, the performance of the combinations of feature selection techniques
(all features, SFS, or SBS) and classifier (LDA or SVM) were evaluated for each of the
different cross-validation frameworks (LOPO, LOMO, or LOPMO). The results of these
analyses are then compared with CLSTM-based classification as described as follows.

4.1. LOPO Cross-Validation

To evaluate the LOPO scheme, a new model was trained for each fold using all
participants but one, and tested using that remaining participant. This process was repeated
until each participant had been tested and the average result across all folds was recorded.
Table 4 shows the results of these analyses when using SFS, SBS, or the full feature set. Note
that the corresponding number of features chosen during feature selection is also shown
for each configuration (with 217 being all features).

Table 4. LOPO (Participant-Independent) Results for Each Classifier (CLF) and Feature Selection
(FS) Technique. [*, †] denotes a significant difference from the respective [LDA, SVM] ALL results
(p < 0.05).

CLF, FS
Valence Arousal

F1 #Features F1 #Features

LDA, SFS 0.687 24 0.683 168
LDA, SBS 0.695 77 0.699 63
LDA, ALL 0.648 217 0.664 217

SVM, SFS 0.680 72 0.676 75
SVM, SBS 0.706 † 45 0.694 49
SVM, ALL 0.648 217 0.643 217

CLSTM 0.741 *,† - 0.677 -

Using the Kruskal–Wallis H-test, no significant difference was found between the
results of SFS and SBS when using an LDA or SVM classifier with the chosen number
of features ([LDA, SVM]: arousal p = [0.585, 0.570], valence p = [0.931, 0.277]), however,
Figure 2 shows the different selection profiles of the approaches. Because SFS cannot
predict correlations between features, it can be seen to be less ‘smooth’ in its performance
improvements. Conversely, SBS starts with all features and removes the worst-performing
feature, helping it to better understand feature relationships. These results suggest that
there is meaningful information in the correlation between channels and features that
plays an important role in EEG-based emotion recognition. The CLSTM network achieved
comparable performance, yielding a valence F1-score of 0.035 more than the SVM using
SBS classification result, and 0.022 less in arousal F1-score than the LDA using SBS. Using
the Kruskal–Wallis H-test, the CLSTM results were compared against the CLF, ALL results.
A significant difference was found for valence, but not for arousal ([LDA, SVM]: arousal
p = [0.717, 0.245], valence p = [0.002, 0.000]).

The top five features selected for LOPO cross-validation via SFS and SBS are presented
in Table 5. Features are named according to the following naming convention: [Electrode,
Feature, Band]. For asymmetry features, the lobe is specified as opposed to the electrode.
Only PSD and Asymm features have specified bands. Interestingly, although some of the
features originally proposed by [29] were selected, the majority (and first) of those chosen
were previously unused with the AMIGOS dataset. The bottom row of each column shows
the F1-score when using these five features, and the percentage of the maximum score these
five features achieved. In each case, using only five features achieved over 89% of the best
F1-score for each model. For many of the models, HFD, the Higuchi Fractal Dimension, was
found to be the most important feature. This corroborates the findings of previous works,
supporting that HFD is an important feature for EEG-based emotion recognition [45,82].
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(a) Arousal Performance for Best Feature Combinations

(b) Valence Performance for Best Feature Combinations

Figure 2. Comparison of SFS and SBS Approaches for Classification of Valence and Arousal Using
LOPO LDA.

Table 5. Top Five Features Selected by SFS and SBS for the LOPO Validation Framework. Note: bold
features were not used in the original AMIGOS set.

LDA SVM

Valence Arousal Valence Arousal

SF
S

1 T7 HFD T7 HFD T7 PSDγ T7 PSDγ
2 AF4 HFD AF4 HM AF4 PSDγ P8 HFD
3 T8 HFD T7 PSDα P7 HFD AF3 HFD
4 F8 PFD T7 PSDβ FC Asymmγ T7 PSDβ
5 FC6 HM T8 HFD F34 Asymmθ F4 SpecEnt

0.651 (95%) 0.643 (94%) 0.644 (95%) 0.632 (94%)

SB
S

1 T8 HFD T8 HFD T8 HFD T7 HFD
2 AF4 HFD AF4 HFD FC5 PSDθ F7 svdEnt
3 F7 PFD T7 PSDγ FC5 PSDγ FC5 PSDα
4 FC5 HM T7 PSDβ F7 PSDγ F7 HFD
5 O2 HC F8 HM O2 HC FC5 PSDβ

0.633 (91%) 0.620 (89%) 0.639 (91%) 0.629 (91%)

4.2. Lomo Cross-Validation

Within the LOMO framework, two different schemes were evaluated; LOMO-Inter
and LOMO-Within. The term LOMO-Inter is used to refer to the inter-participant LOMO
case, wherein a model is trained using multiple users, but evaluated on a previously
unseen stimulus (in this case, movie). The term LOMO-Within is used to refer to the
within-participant LOMO case, which is similar, but wherein a unique model is trained for
each participant.
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4.2.1. LOMO-Inter Cross-Validation

The LOMO-Inter cross-validation classification results, along with the number of
features selected using SFS and SBS, are shown in Table 6. These results reflect the average
of 4 folds, with each fold trained using three movies from all 37 people (8, 24, 28 excluded,
as in LOPO) and tested using the remaining movie.

Table 6. LOMO-Inter (Participant-Independent) Results for Each Classifier (CLF) and Feature Selec-
tion (FS) Technique. No statistically significant differences (p > 0.05) were found.

CLF, FS
Valence Arousal

F1 #Features F1 #Features

LDA, SFS 0.636 119 0.675 99
LDA, SBS 0.646 68 0.684 63
LDA, ALL 0.604 217 0.647 217

SVM, SFS 0.632 115 0.650 131
SVM, SBS 0.648 73 0.657 67
SVM, ALL 0.610 217 0.626 217

CLSTM 0.612 - 0.603 -

For both LDA and SVM, SBS trended towards outperforming SFS, but not significantly
([LDA, SVM]: arousal p = [0.564, 0.564], valence p = [0.773, 0.773]). Similarly, no significant
differences were found between LDA and SVM ([SFS, SBS, ALL]: arousal p = [0.564, 0.564,
0.564], valence p = [0.773, 1.000, 0.773]). Table 7 shows the top five features selected
by SFS and SBS for the LOMO-Inter framework. From these tables, it is again evident
that the new features extracted in this work play a significant role in the classification
performance. Using five features, over 87% of the maximum F1-score was achieved in all
cases. As was observed for LOPO, the fractal dimension features were again highlighted as
important for the emotion recognition problem. For CLSTM, F1-scores of 0.612 and 0.603
were recorded for valence and arousal classification, respectively. Table 6 shows that the
SVM and LDA classifiers outperform CLSTM in both cases. The limited training data in
the cross-validation scheme may have affected the CLSTM as data for only three movies
were available to train the classifier. Using the Kruskal–Wallis H-test, the CLSTM results
were compared against the CLF, ALL results. No significant differences were found ([LDA,
SVM]: arousal p = [0.564, 0.564], valence p = [0.564, 0.564]).

Table 7. Top Five Features Selected by SFS and SBS for the LOMO-Inter Validation Framework. Note:
bold features were not used in the original AMIGOS set.

LDA SVM

Valence Arousal Valence Arousal

SF
S

1 T7 PSDγ T8 PSDγ T7 PSDγ T8 PSDγ
2 AF3 PSDβ T7 HFD AF4 PSDβ T7 HFD
3 F8 HFD F7 HM T8 HFD AF4 HC
4 AF4 HC T7 svdEnt AF4 HFD T7 svdEnt
5 T8 HFD FC5 PSDβ F8 HFD P Asymmγ

0.571 (90%) 0.608 (90%) 0.604 (96%) 0.616 (95%)

SB
S

1 T7 HFD T8 HFD T7 HFD T7 HFD
2 AF4 HFD T8 PSDθ AF4 HFD F7 svdEnt
3 T8 HFD T7 PSDβ F8 PSDγ F7 HFD
4 F7 PSDγ T7 PSDγ T8 HFD FC5 PSDα
5 FC5 PSDβ P8 PSDβ F8 PSDβ FC5 PSDβ

0.578 (90%) 0.598 (87%) 0.607 (94%) 0.603 (92%)
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4.2.2. Lomo-Within Cross-Validation

The LOMO-Within cross-validation results, wherein each model was built using a
single participant, are shown in Table 8 along with the number of features selected using
SFS and SBS. Again participants 8, 24, and 28 were excluded as they did not participate
in the long movie experiments. The use of a single participant also caused additional
problems. Participants 17, 18, and 22 were missing annotations for some long movies,
and were consequently excluded. Similarly, due to extreme imbalances in the ratio of
the high and low classes (less than 10 high affect samples, representing approximately
5.5 to 6.5% of decisions), participants [20, 21, 23, 26, 31, and 38–40] were also excluded for
valence and [11–13, 15, 20, 21, 23, 25–27, 29, 30, 35, 37, and 40] were excluded for arousal.
LOMO-Within models were trained for each participant using data from three movies and
tested on the same participant’s data for the fourth movie in a leave-one-out framework.
Results represent the average across all four movies and across 26 participants for valence
and 19 participants for arousal.

For both the SVM and LDA models, the feature selection techniques significantly
improved the classification performance over the all features case (p < 0.01). This reinforces
the importance of feature selection to overcome the curse of dimensionality, particularly in
cases where there is with comparably little data. The top five features selected by SFS and
SBS for the LOMO-Within validation scheme are presented in Table 9. The limited training
data is also reflected in the performance of CLSTM classifier, where F1-scores of 0.543 and
0.579 are recorded for valence and arousal classification, respectively. However, CLSTM
still outperformed the baseline cases, when all features were employed without feature
selection. Using the Kruskal–Wallis H-test, the CLSTM results were compared against the
CLF, ALL results. Significant differences were found for both valence and arousal ([LDA,
SVM]: arousal p = [0.000, 0.037], valence p = [0.000, 0.010]).

Table 8. LOMO-Within (Participant-Dependent) Results for Each Classifier (CLF) and Feature
Selection (FS) Technique. [*, †] denotes a significant difference from the corresponding [LDA, SVM]
ALL results (p < 0.05); ‡ denotes a significant difference between the LDA and SVM results (p < 0.05).

CLF, FS
Valence Arousal

F1 #Features F1 #Features

LDA, SFS 0.596 * 20 0.657 * 20
LDA, SBS 0.592 * 13 0.642 * 20
LDA, ALL 0.445 217 0.470 217

SVM, SFS 0.593 † 53 0.616 † 35
SVM, SBS 0.578 † 30 0.612 † 26
SVM, ALL 0.481 217 0.528 ‡ 217

CLSTM 0.543 *† - 0.579 *† -

4.3. Lopmo Cross-Validation

The LOPMO cross-validation framework evaluates how well a model may generalize
to both a new person and a new stimulus. This makes it the most challenging, but also the
most representative of potential real-world performance. The results using the LOPMO
strategy are, therefore, reported in Table 10. The LOPMO model was created using the
data for 34 participants (again participants 8, 24, and 28 were excluded, along with partici-
pants 17, 18, and 22 as with LOMO-Within). For each testing fold, the data from a single
participant and movie, both unseen during training, were used to test the model. All data
related to this movie (irrespective of participant) and participant (irrespective of movie)
were excluded from training. Therefore, the training set consisted of the data for all other
movies and participants.
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Table 9. Top Five Features Selected by SFS and SBS for the LOMO-Within Validation Framework.
Note: bold features were not used in the original AMIGOS set.

LDA SVM

Valence Arousal Valence Arousal

SF
S

1 T7 HFD T7 HFD T7 HFD T7 PFD
2 AF4 PSDγ FC6 PSDθ T8 PSDγ P8 PFD
3 T8 PSDβ AF3 PSD slowα O2 DFA P7 PFD
4 FC6 HFD AF3 PSDγ AF4 FI F7 PFD
5 P Asymmγ T7 FI AF4 PFD O1 PFD

0.569 (95%) 0.606 (92%) 0.574 (97%) 0.549 (89%)

SB
S

1 T7 HFD T7 HFD T8 PSDγ T8 PSDγ
2 AF3 PSDγ AF3 HFD O2 HC T Asymmγ
3 T8 HFD AF3 PSD slowα AF3 PSDγ AF3 PSDθ
4 T8 PSDθ F4 PSDβ T Asymmγ P7 PSDγ
5 AF4 FI F7 HFD F8 PSDγ P7 HC

0.560 (95%) 0.616 (96%) 0.539 (93%) 0.562 (92%)

Table 10. LOPMO (Participant- and Movie-Independent) Results for Each Classifier (CLF) and
Feature Selection (FS) Technique. [*, †] denotes a significant difference from the respective [LDA,
SVM] ALL results (p < 0.05); ‡ denotes a significant difference between the LDA and SVM results
(p < 0.05).

CLF, FS
Valence Arousal

F1 #Features F1 #Features

LDA, SFS 0.575 61 0.670 *‡ 102
LDA, SBS 0.594 * 28 0.686 *‡ 72
LDA, ALL 0.521 217 0.605 217

SVM, SFS 0.586 † 32 0.593 123
SVM, SBS 0.578 † 49 0.624 † 27
SVM, ALL 0.511 217 0.574 217

CLSTM 0.639 *† - 0.682 *† -

Again, the benefit of feature selection was supported by the statistically significant
differences were found between using all 217 features and the selected subsets for both
valence and arousal with LDA, SBS (p < 0.005 and p < 0.004, respectively), and for arousal
with LDA, SFS (p < 0.019). Although trending, no statistical significance was found for
the SFS features using LDA for valence (p = 0.094). For SVM, the features selected from
SFS and SBS resulted in significantly different performances than ALL features, except for
arousal, SFS ([SFS, SBS]: arousal p = [0.387, 0.023], valence p = [0.013, 0.010]). CLSTM
outperformed other classifiers in valence with an F1-score of 0.639. The arousal results
for CLSTM (F1-score: 0.682) were similar to the best performance recorded using LDA.
Using the Kruskal–Wallis H-test, the CLSTM results were compared against the CLF, ALL
results. Significant differences were found ([LDA, SVM]: arousal p = [0.000, 0.000], valence
p = [0.000, 0.000]).

Table 11 shows the top five features selected for SFS and SBS. When classifying valence
using SFS, the top five features obtained 84% of the maximum F1-score for that condition.
This is in contrast to the SFS arousal and SBS results, as well as those from the other
evaluation frameworks, which all described over 87% of the maximum F1-scores.

Figure 3 demonstrates a comparison of the feature selection results between SFS and
SBS for the LOPMO case. Of note is the stark contrast for lower numbers of features until
SFS happens to find features whose combinations drastically increase its performance,
suggesting the importance of groupings of features in the classification of LOPMO emotion.
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Table 11. Top Five Features Selected by SFS and SBS for the LOPMO Validation Framework. Note:
bold features were not used in the original AMIGOS set.

LDA SVM

Valence Arousal Valence Arousal

SF
S

1 FC6 HM T8 HFD P8 PSDγ T7 HFD
2 F8 PSDα T8 PSD slowα T7 HFD F7 PSDθ
3 O1 DFA AF3 svdEnt AF3 HFD AF3 svdEnt
4 AF Asymmθ T7 HFD T8 HFD O2 PSDθ
5 P Asymmθ F4 HFD T8 PSDθ F8 PSDα

0.484 (84%) 0.630 (94%) 0.571 (97%) 0.576 (97%)

SB
S

1 AF4 HFD T8 HFD T7 HFD T8 HFD
2 T7 HFD T8 PSD slowα AF3 HFD T8 PSDθ
3 T8 HFD T7 PSDβ T8 HFD T7 HFD
4 AF3 PSDγ T7 PSDγ T7 svdEnt F4 HFD
5 P8 PSDγ AF3 PSDα T8 PSDα FC5 PSDβ

0.544 (92%) 0.626 (91%) 0.561 (97%) 0.587 (94%)

Figure 3. Comparison of SFS and SBS for Valence, LOPMO Validation Using LDA Classification.

4.4. Comparative Performance Analysis

In this section, a comparative performance analysis is given between the results
obtained in this work and those previously reported in the literature. Most relevant is the
original AMIGOS work by [29], in which a set of 105 EEG features were extracted and
reduced using a Fisher’s linear discriminant (FLD) approach. Naive Bayes classifiers were
used to create the emotion recognition models for valence and arousal and obtained LOPO
cross-validation F1-scores for the long movies of 0.557 and 0.571, respectively. These results,
along with the best results from the various cross-validation techniques evaluated in this
work, are summarized in Table 12. This table shows that, despite testing more challenging
cross-validation frameworks, the obtained feature-based results outperform those reported
by the original AMIGOS LOPO work.

For comparison, we also include the results from a variety of other works using the
unimodal EEG data from AMIGOS in Table 13. Only works that presented results using
F1-score are included in this table. Again, all of these results reflect the performance within
the LOPO cross-validation scheme. It should be noted, however, that these works are not
directly comparable because they either used short movies [24,83,84] or a combination of
both short & long [18] for training their system. Moreover, Siddarth et al. [24] used the
subject’s self-reported labels in their study thus assuming labels to be static throughout
the full movie. In [83,84], emotion levels were split into 2 classes based on the mean of
the assessed values. Furthermore, they dropped 7 subjects from their analysis without
disclosing the participant-IDs. In [18], Miranda et al. used the median affect value as a
threshold to divide the samples into high and low classes. Here, we followed the original
AMIGOS [29] approach to divide the high-low valence and arousal classes and used the
same number of participants, making the results more comparable. Despite this, the results
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presented here for the long movies still outperform most previous short movie results (as
well as both previous long-movie results).

Table 12. Best Feature-Based and Corresponding CLSTM Results for each Cross-validation Techniques.

Valence Arousal

Precision Recall F1 CLF FS Precision Recall F1 CLF FS

AMIGOS [29] 0.557 NB FLD 0.571 NB FLD

LOPO
0.729 0.722 0.706 SVM SBS 0.794 0.691 0.699 LDA SBS
0.779 0.738 0.741 CLSTM - 0.743 0.695 0.677 CLSTM -

LOMO-
Inter

0.643 0.731 0.648 SVM SBS 0.716 0.682 0.684 LDA SBS
0.649 0.649 0.612 CLSTM - 0.635 0.63 0.603 CLSTM -

LOMO-
Within

0.635 0.638 0.596 LDA SFS 0.700 0.692 0.657 LDA SFS
0.612 0.611 0.543 CLSTM - 0.636 0.666 0.579 CLSTM -

LOPMO
0.666 0.655 0.594 LDA SBS 0.738 0.716 0.686 LDA SBS
0.711 0.710 0.639 CLSTM - 0.747 0.735 0.682 CLSTM -

Table 13. Previous F1-score LOPO Results Using the Unimodal EEG Data From AMIGOS.

Source CLF Feats Length F1-Score Valence Arousal

AMIGOS 2018 [29] NB PSD & Asymm
Long 0.557 0.571
Short 0.576 0.592

Siddharth et al., 2019 [24] ELM PSD, Deep & Entropy Short 0.800 0.740

Miranda-Correa and Patras 2018 [18]
CNN

PSD & EEG-sequence Short & Long
0.580 0.570

RNN 0.570 0.590
Fusion 0.590 0.610

Wang et al., 2018 [84]
XGB

PSD & Asymm Short
0.577 0.604

SVM 0.556 0.557

Tung et al., 2019 [83]
XGB (1) Enrtopy-domain

Short
0.575 0.568

XGB (2) 0.753 0.568

5. Discussion

Mental health challenges are a growing problem globally but have been shown to
respond well to early intervention. Detecting consistent or large swings in emotion could
be an important indicator as part of a prevention program. Affective computing provides
the means to understand and monitor emotion objectively using automated systems and
devices. Many emotion recognition techniques have been explored; however, interpretabil-
ity of results remains limited but crucial for clinical adoption. In this work, we presented
an analysis of EEG-based emotion recognition across a variety of conditions and use cases.
The results from the various cross-validation metrics showed the benefit of feature se-
lection and that SFS often does not perform as well as SBS. This is likely because there
are important relationships between EEG-based features that are only captured by SBS.
For both feature selection techniques, the first five features provided around 90% of the
maximum information to the classifier. Furthermore, the additional features extracted
in this work were frequently chosen by the various models, improving upon previously
reported results. Of the extracted features, HFD was chosen most frequently as the first
feature. Alarcao’s review of emotion recognition using EEG signals [12] found that the
most commonly used features in the literature include PSD (22.2%), and entropy (15.9%),
whereas fractal dimensions are only used in 7.9% of works. As documented in [70], al-
though the Fast Fourier transformation (FFT), used for PSD, is beneficial for the analysis
of stationary signals, neurophysiological processes are often non-stationary. This work
corroborates those of [45,82] that HFD is informative for EEG emotion recognition tasks.

The chosen features also align with reports from neuropsychology, with temporal
lobe channels frequently being chosen as a top feature, followed by frontal lobe channels.
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The temporal lobe is critical for this type of emotion recognition as it plays a role in audio,
visual and emotion processing. The frontal lobes play key roles in emotion retrieval, as well
as audio processing; therefore, it makes sense that the majority of the chosen channels come
from these lobes. However, in contrast, it should be noted that Rayatdoost et al. recently
suggested that the emotion information from the temporal and frontal EEG electrodes may
also be contaminated by muscle artefacts caused by facial expression [38,85].

The best performing results, shown in Table 12, come from SVM, LDA, and CLSTM
classifiers. Although the LOPMO case was the worst performing of all the cross-validation
techniques in this work, our results still outperformed the original AMIGOS results for
LOPO. The use of LOPMO arguably yields the best reflection of potential real-world
performance and these results suggest that there is benefit to be gained by designing
specifically for this case. Though both LDA and SVM were implemented for each feature
selection technique and affect type, there were no statistically different performances once
feature selection had been completed, while the participant-dependent analysis using
LOMO-Within did not outperform the independent model of LOMO-Inter, the reasons this
could have occurred include the chosen cross-validation technique, the relatively small
amount of data, or the imbalance in the labels. The deep-learning CLSTM model, whose
hyperparameters were optimized for the LOPO CV scheme, struggled (comparatively) to
generalize to the LOMO cross-validation models. This is likely due to the reduced training
data in these validation schemes, but may also benefit from additional tuning for these use
cases. Nevertheless, the amount of data needed to train any within-subject implementation
remains an in impediment to practical usability, further supporting the recommendation
to focus future works on the LOPMO CV scheme. Furthermore, the high inter-subject
variability, combined with a desire to reduce training burden, motivates the continued
exploration of transfer learning algorithms (e.g., domain adaptation) [86,87].

6. Conclusions

This work described the design and analysis of EEG-based emotion recognition sys-
tems for time-varying emotion. The original AMIGOS work was extended by extracting an
additional 112 features and exploring wrapper-style feature selection. Additionally, three
lesser-used cross-validation techniques were evaluated to understand the robustness of
the models under different combinations of un/known subjects and un/known stimuli.
Consensus was found between the four models, suggesting that HFD features and infor-
mation from the temporal lobe are important in the classification of emotion from EEG.
As the techniques became more generalizable, a performance drop was noted, yet this was
marginal for arousal. The exception to this trend was LOMO-Within, which likely suffered
as a result of the few movies per participant and severe class imbalance. In the future,
additional features that focus on the temporal information and other feature explainable
(e.g., SHAP values) and classification schemes (e.g., fuzzy classifier) could be explored to
improve the system performance. Additionally, other modalities could also be introduced
to create a multi-modal system, as multi-modal systems have been shown to improve the
emotion recognition performance. Perhaps most importantly, new AMIGOS-like datasets
are needed to advance the field, but with more subjects and with more data per subject.
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