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Abstract: Fatigue crack in rails and cyclic-loaded train parts is a contributory factor in multiple
railroad accidents. We address the problem of crack detection and measurement at early stages, when
total failure has not yet occurred. We propose to combine acoustic emission (AE) testing for prediction
of crack growth with digital image correlation (DIC) for its accurate quantitative characterization. In
this study, we imitated fatigue crack appearance and growth in samples of railway rail and two train
parts by cyclic loading, and applied these two techniques for inspection. Experimental results clearly
indicate the efficiency of AE in the early detection of fatigue cracks, and excellent DIC capabilities in
terms of geometrical measurements. Combination of these techniques reveals a promising basis for
real-time and non-destructive monitoring of rails and train parts.

Keywords: acoustic emission; digital image correlation; fatigue cracks; crack detection; dynamic
loading; non-destructive testing

1. Introduction

Fatigue fractures of rails, wheelsets, solid-rolled wheels, side frames of wagon bogies,
and other parts of the rolling stock frequently trigger railway accidents and incidents [1–3].
Despite the wide range of non-destructive testing (NDT) techniques applied in regular
inspection of these parts, early detection and quantitative characterization of fatigue cracks
is still an important task. Complex geometric shapes, thermal loading, subjectivity of
decision-making, and other factors significantly complicate the analysis and prediction of
fatigue crack growth in the parts of the rolling stock [4–6]. Conventional NDT methods
include ultrasonic, eddy current, magnetic, and X-ray, utilize the signals reflected from the
local inhomogeneities, and, thus, have relatively low sensitivity in terms of complex-shaped
crack-like defects [7–9].

Unlike these methods, acoustic emission (AE) testing is a technique based on the
analysis of elastic waves generated by the defects initiation and growth. In comparison
with conventional NDT methods, AE testing has a number of advantages. It is insensitive
to the shape and orientation of the defects, does not require spatial scanning, and thus
is well suited for in situ structural health monitoring [10,11]. AE sources include plastic
deformation, initiation and growth of cracks, fracture, corrosion, leakages, fiber debonding,
etc. [10]. AE technique is widely used and well-proven in detecting the processes of fatigue
cracks initiation and growth both in metallic and composite materials [12–16].

AE testing has been successfully applied to fatigue crack detection in rails under
operational loads [17,18]. The development of advanced AE data processing algorithms
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significantly expands the scope of its applications for testing and detection of fatigue cracks
in rails. Furthermore, in [19,20] authors used wavelet analysis to extract the signals from
even small fatigue cracks hidden below the background noise. Deep learning and neural
network processing enabled detection and localization of the defects in the head, web,
and foot of the rail [21]. Regarding the parts of the rolling stock, AE testing exhibits high
efficiency in detection and monitoring fatigue cracks in full-scale railway axles [22–24]. AE
technique, combined with an automated loading system, has also been successfully applied
to fatigue crack detection in molded pieces of rolling stock, such as the side frame and
bolster of railway bogies [25,26].

In addition to identification of the defects and their growth prediction, it is important to
measure their size and location. For this purpose, AE testing has to be coupled with a well-
established method for geometrical measurements. One of the most promising techniques
for quantifying defects in combination with AE testing is digital image correlation (DIC).

DIC is a non-contact full-field optical technique for deformation diagnostics and quan-
titative assessment of surface defects with high spatial resolution and accuracy [27]. It is
widely in use to verify various NDT methods: ultrasound, eddy current, etc. [28–30]. DIC
is also an effective complement to AE testing of concrete [31], reinforced concrete [32,33],
metals [34,35], welded joints [36], etc. DIC may be used to confirm the cracking point
determined by the AE testing [34,35], as well as identification of different damage mech-
anisms (plastic deformation, crack initiation, and propagation) based on comparison
AE and DIC data [36–39]. DIC is also suitable for full-scale testing, including railway
equipment [40], but this application is still limited due to limited field of view, specific
calibration, etc.

In this study, we propose to implement DIC after primary information on the presence
and location of defects is collected by AE testing, either in lab or out-of-lab environment.
Further characterization and quantification of defects must be carried out by DIC under
conditions close to operation. The proposed approach is thus a compromise between
possible qualitative determination of defects in the field conditions and high-precision
defect measurement under laboratory conditions.

A combined AE–DIC approach might be especially effective for monitoring the rolling
stock parts due to their large dimensions, shape complexity, and operation under cyclic
loading. In this study, we attempt to validate it by detection and quantitative characteriza-
tion of fatigue cracks in samples of rails, wheelsets, and traction clamps.

2. Experimental Protocol

Acronyms and symbols introduced in the manuscript and their definitions are pre-
sented in Table 1.

Table 1. List of acronyms and symbols used in the study.

Acronym Description Symbol Description

NDT non-destructive testing σy yield strength
AE acoustic emission σ cycle amplitude
DIC digital image correlation l position of the AE source

EDM electrical discharge machining dlAE
inaccuracy of the AE

source position
ε maximum normal strain N number of AE events

Vx and Vy displacements detected by DIC ηTAE
ratio of Nmax and Nmean,

when the crack is detected
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Table 1. Cont.

Acronym Description Symbol Description

εTDIC

threshold value defined by
transition from elastic

deformation to plastic in the
notch area

Nmax
location maximum

of histogram

sDIC

crack’s dimension as a length of
skeletonized line obtained after

processing the field of maximum
normal strain

Nmean
mean value over all intervals,

except for the maximum

f focal length of the lens TAE moment of crack appearance
L distance to the inspected sample TDIC moment of crack initiation
∆ pixel pitch of the camera εx deformation in x directions
n measured crack’s length in pixels εy deformation in y directions

2.1. Samples Preparation

For our experiments, we prepared samples from three railway parts: rail, wheelset,
and traction clamp. The rail was made of E76F high-carbon steel and experiences mainly
compressive stresses from the train. The wheelset, together with two steel wheels, forms
part of the wagon cart. The wheelset material experiences cyclic bending stresses. The
wheelset was made of OsV carbon steel. A traction clamp is necessary to connect wagons
to each other. During operation, this element experiences mainly cyclic tensile and bending
loads when the train starts moving. The traction clamp was made of low-alloy structural
steel 20GL. The chemical composition of these materials presented in Table 2.

Table 2. Chemical composition of the test samples’ materials.

Part Steel
Composition, wt. %

C Si Mn V S P

Rail E76F 0.71–0.82 0.25–0.60 0.75–1.15 0.03–0.15 ≤0.025 ≤0.025

Wheelset OsV 0.40–0.48 0.15–0.35 0.55–0.85 - ≤0.045 ≤0.04

Traction clamp 20GL 0.15–0.25 0.20–0.40 1.20–1.60 - ≤0.04 ≤0.04

Samples from the rail (3 pcs) were sections 10 mm thick (Figure 1a). U-notches of
0.25 mm width and 2 mm depth were produced in its web part by wire electrical discharge
machining (EDM), since this does not require additional hardening of the metal surface. To
make a notch of the required depth with a radius at the top of 0.25–0.3 mm, we applied a
wire of 0.25 mm diameter. Samples cut from the wheelset (3 pcs) were 20 × 25 × 350 mm
bars with notches of 3–5 mm depth and 0.25–0.3 mm radius, produced by EDM (Figure 1b).
Samples made from the traction clamp (3 pcs) were 3 mm thick plates with lateral notches,
obtained with EDM by wire cutting along a defined contour (Figure 1c). As polished metal
does not have the high-contrast surface texture necessary for digital image correlation (DIC)
method application, we created a random pattern on one of the samples’ surfaces using
white and black spray paint.
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Figure 1. Schemes and photos of the samples made from rail (a), wheelset (b), and traction clamp (c).

2.2. Experimental Setup

The experimental setup was based on the servo-hydraulic fatigue testing system
Instron 8801, which was necessary to imitate cyclic loading caused by the train movement.
The loading scheme was designed in order to imitate the loads that studied parts experience
during operation, i.e., the rails were subjected to compressive load, the samples from the
wheelset to three-point bending, and the samples from the traction clamp to tensile loading.
We fixed the rail samples using grips (Figure 2a). Wheelset samples were placed on a
three-point static bending fixture (Figure 2b), including two lower supports separated by
250 mm distance, and an upper cylindrical punch with a diameter of 10 mm. Samples from
the traction clamp were installed with grips through damping pads (Figure 2c).

Figure 3 shows fatigue stress cycles applied to the samples. Sinusoidal loading was
necessary to ensure the smooth running of the punch in the testing machine when reaching
the minimum and maximum values of the cycle. This reduced the level of acoustic noise
that occurred in the testing machine when passing through the extreme points of the cycle,
thus minimizing the amplitude threshold for the recorded AE signals. Maximal stress
was limited by the yield strength of the material σy at the level (0.48 . . . 0.72)σy. This
is close to the values of maximum allowable stresses that may occur during operation
of the inspected elements. Under such stress, in the absence of notches and cracks, the
structural elements stay in the elastic region during operation. In the presence of cracks,
or severe stress concentrators, plastic deformation and subsequent destruction occur with
high probability. The loading frequency 5 Hz was a good compromise between the duration
of the experiment, the acoustic noise level, which increases in the testing machine with the
raise of the loading frequency, and the duration of the tests. Loading conditions applied to
the samples are specified in Table 3. Loading was accompanied with continuous recording
of DIC and AE data.
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Table 3. Loading conditions applied to the samples.

Part Type of Stress Cycle Frequency, Hz Cycle Amplitude
σ, MPa

Material Yield
Stress σy, MPa σ/σy

Rail Compressive

Sinusoidal 5

250 520 0.48

Wheelset 3-point bending 230 320 0.72

Traction clamp Tensile 200 360 0.55

We installed two AE sensors GT200 (GlobalTest) with a resonant frequency of 180 kHz
on each sample, symmetrically, with respect to the stress concentrator, and connected them
to the preamplifier with 26 dB gain. To achieve acoustic contact between the AE sensors
and the sample, we used Lithol-24 as an intermediate layer. The AE system A-Line 32D
PCI (INTERUNIS-IT) acquired the acoustic signals with a frequency range of 100–400 kHz.

For DIC measurements, we used the machine vision system StrainMaster (LaVision).
It consists of PC with DaVis 8.4 software (LaVision GmbH, Göttingen, Germany), a synchro-
nization unit, and two monochrome cameras Imager SX (2/3”, 2456 × 2058, 12 bit) equipped
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with lenses Sigma (f = 18–200 mm, 1:3.5–6.3). Each experiment included 2400 × 1300 image
acquisition of a 50 × 40 mm sample’s notched area at 20 fps, their joint processing by DIC
algorithms, and calculating the strain maps ε (x,y).

2.3. Data Processing

To determine the AE signals caused by fatigue crack’s initiation and growth, we
used linear location of AE sources and placed AE sensors at the edges of the samples to
be able to locate AE sources within the maximal area. The distance between them was
50 mm for the rail, 160 mm for the wheelset, and 60 mm for the clamp. The linear location
algorithm provided the position l of the AE source located on the line between AE sensors.
Dependence of the number of AE events N on l vividly illustrates such an approach. Due
to typical sound velocity, 3000 m/s, in the inspected steels and sampling step 1 µs, the
inaccuracy dlAE of measured l was about 3 mm. Therefore, the distance between AE sensors
for linear location algorithm was divided into 3 mm intervals. This was rather coarse for
accurate measurements, but was enough for navigating a fine tool with higher accuracy
to the area of the crack for detailed metrological inspection. To identify the moment TAE
of crack appearance, the threshold criterion [41] was applied. For each new AE event, we
evaluated its position and updated the location histogram. Then, the ratio of the location
maximum Nmax of histogram to the mean value Nmean over all intervals, except for the
maximum, was calculated. A crack was considered to be detected when the maximum
Nmax in the histogram was ηTAE times greater than the mean value Nmean, i.e.,

Nmax/Nmean ≥ ηTAE, (1)

The upper row of Figure 4 shows the histograms N(l) for all three types of the inspected
samples at the moment TAE when ηTAE = 3. At this empirical threshold, it was possible
to distinguish a clear maximum. Its location corresponds to the crack position in the
experiments. We can see that this threshold corresponds well to the signal level well above
the emissivity of the inspected materials.
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The DIC method was necessary to obtain information about the deformation of the
samples during their mechanical tests. It was based on the comparison of the images of
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the sample surface. The first (reference) image was taken before the test. In this image, the
surface is considered to be deformation-free. The second image was captured during the
test, when the sample was loaded. Quantifying its difference, with respect to the reference,
provided an estimate of the deformation that the sample experienced under loading.

In this study, we used the least squares matching algorithm, together with the region
grow algorithm. First, initial (seeding) points on the surface of the sample were set. For
them, an affine transformation of a small area (interrogation window) around the point
in the original image was searched. After matching was achieved, similar search was
performed for neighboring areas, remote from the original one by a given step. The starting
approximation obtained for the initial point was necessary to find their affine transforma-
tion. Thus, the calculation area increased iteratively with respect to each initial point. The
affine transformation allows estimating the sample surface deformation in pixel units and
recalculating them into real dimensions (mm/µm) using the camera calibration data.

User-defined inputs for image processing with DIC were the size of the interrogation
window, the step for splitting into windows, and the coordinates of the initial points. There
were also additional settings for adjusting the speed-to-precision ratio, mainly affecting the
intermediate filtering of the affine transforms. The main parameter for processing was the
size of the interrogation window. Its assignment determines the ratio of spatial resolution
and measurement error. Smaller windows lead to a higher spatial resolution, but also to
a higher uncertainty. Processing used a window size of 29 to 35 pixels depending on the
sample, with a step size of 4 to 8 pixels. Typical error for a window size of 31 pixels is
0.005 pixels.

To determine appearance of the crack and evaluate its dimensions from DIC data,
we implemented the technique based on maximum normal strain measurement from
displacement vector fields [42]:

ε =
εx + εy

2
+

√(
εx − εy

2

)2
+ γ2

xy (2)

where εx = dVx/dx and εy = dVy/dy are deformations in x and y directions, Vx and Vy are
displacements detected by DIC, and γxy = (dVx/dy + dVy/dx)/2 is shear strain.

Processing the scalar normal strain fields includes binarization using Otsu thresholding
algorithm and skeletonization. This enables accurate segmentation of the crack area. To
determine the moment of crack initiation TDIC, we calculated the maximum normal strain ε
in this area and compared it with the threshold εTDIC defined by the transition from elastic
deformation to plastic in the notch area [43]. If we neglect the small value of material’s
plastic deformation at this level, then the threshold value εTDIC is close to the ratio σy/E.
From tensile tests of the studied materials, the values of the yield stress are σy ≈ 520 MPa
for the rail, σy ≈ 320 MPa for the wheelset, and σy ≈ 360 MPa for the clamp. The elastic
modulus for all materials is E ≈ 210,000 MPa. Thus, the resulting threshold values are
εTDIC = 0.0025 for the rail, εTDIC = 0.0015 for the wheelset, and εTDIC = 0.0017 for the traction
clamp. As soon as we have

ε > εTDIC, (3)

we assume the crack to be detected. The lower row of Figure 4 shows typical strain maps
ε(x,y) calculated at the moment TDIC for all three inspected samples. In these distributions,
maximum normal strain ε is equal to the threshold value εTDIC. We may see that this criteria
is quite reliable in terms of crack detection, but the DIC system needs accurate positioning,
and, thus, has to be navigated to the area of the crack by preliminary AE measurements.
This is the basis of the proposed two-stage approach to the detection and quantitative
evaluation of fatigue cracks.

3. Results

To validate this approach, we applied the described experimental and data processing
techniques to all nine samples. Each experiment included continuous acquisition of AE and
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DIC data, evaluation of AE events number N and maximum normal strain ε, verification
of criteria (1) and (3) fulfillment, and measurements of crack location and dimension.
Figure 5 shows the typical temporal dependences of N and ε for all three types of inspected
samples. Time interval of data acquisition covers the moments TAE and TDIC of fatigue
crack appearance according to (1) and (3), as well as its further growth.
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Temporal dependencies of AE events have different shapes that depend on the samples
and materials, and correspond to the accumulation of damage processes in the samples. At
the moment T < TAE preceding crack detection by AE testing, not all samples demonstrate
a sharp increase in AE events, which corresponds to the appearance of AE source by the
destruction process [34]. For a detailed analysis, more AE parameters (energy, counts, and
RMS) of recorded events were considered (Figure 6).
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It is well known that a sharp increase in these parameters indicates a crack initia-
tion [44–47]. In all cases, we see such increases. In the wheelset sample, a sharp increase in
AE parameters (Figure 6b) coincides with TAE moment (Figure 5b). In the rail and traction
clamp samples, the main peak of AE parameters is observed to have a slight delay with
respect to the moment TAE. This may be explained by a high sensitivity of AE testing to the
registration of the early crack initiation processes. Moreover, the fact that the location deter-
mined by AE data fits well to the notch position in the samples confirms the correctness of
the proposed criterion.

In contrast to N(T), temporal dependence of strain ε(T) increases monotonically. Its
shape does not show definitely the moment TDIC of crack appearance. This moment is, to a
large extent, defined by the threshold εTDIC. That is why we may see that the moment TAE
does not always precede TDIC, as we might expect (Figure 5b), but TDIC may be smaller
than TAE (Figure 5a,c). Thus, unlike the AE technique, DIC does not enable objective and
evident indication of the moment of fatigue crack appearance, but may provide an objective
measure of the crack’s geometrical parameters.

We should note that the moments of crack appearance vary depending on the material.
In the rail, for example, a crack appears quite early, though the loading is applied in the
compression mode with a relatively small cycle load 0.48·σy. According to AE data in
Figure 5a, a crack appears at TAE ≈ 7 s. For comparison, in the wheelset material (Figure 5b),
loaded more at 0.7·σy level, 3-point bending causes the appearance of tensile stress at the
notch tip, and the crack formation time from AE data is somewhat longer (TAE ≈ 10 s).
This may be caused by differences in the mechanical properties of these materials. Despite
higher strength characteristics, the rail material has low ductility, which makes the rail
material less resistant to crack initiation and development.

To illustrate the metrological capabilities of DIC, we measured the crack’s dimension
sDIC as a length of skeletonized line obtained after processing the field of maximum normal
strain ε(x,y) (see upper row of Figure 7) and plotted its temporal sDIC(T) dependence from
the moment TAE (see lower row of Figure 7). Inaccuracy dsDIC of this measurement, as well
as the inaccuracy of crack’s position estimation by DIC, may be estimated as

dsDIC = dlDIC = (L·∆/f )dn, (4)

where β = f/L is the linear magnification of DIC optical system, L is the distance to the
inspected sample, f is the focal length of the lens, ∆ is the pixel pitch of the camera, and n is
the measured crack’s length in pixels.

If we measure the length with inaccuracy dn = 1 pixel, then equation (4) may be
simplified: dsDIC = dlDIC = ∆/β. With respect to our experiments (β = 0.17, f = 170 mm,
L = 1 m, ∆ = 3.45 µm), this value is about 0.02 mm, i.e., much smaller than the dlAE = 3 mm
measured by AE.
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4. Discussion

In this study, we propose a coarse-to-fine approach to fatigue crack detection and
measurement in the railway and train parts. It consists of two stages: AE and DIC testing
(Figure 8). For such a technique, accurate in-house calibration of both AE and DIC systems
is necessary (see Section 2). First of all, analysis of the sample’s material and shape must be
carried out to set the criteria (1) and (3) for AE and DIC, respectively. To set the criterion (1),
one needs to estimate acoustic emissivity of the inspected samples. Proper positioning of
AE sensors and minimizing the location error dlAE require measurements of sound velocity
and sensitivity of the AE sensors [48]. To set criterion (3), εTDIC value needs to be defined.
Based on dlAE and available DIC system, we may calculate the optimal parameters β and f
of the optical system. For proper strain measurements across the whole image, the DIC
system also needs advanced geometrical calibration [49].
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After the calibration stage, AE sensors must be installed on the inspected part for
monitoring a fatigue crack’s appearance and coarse evaluation of its location. If criterion
(1) is fulfilled, the DIC system may be guided to the calculated position of the AE source.
Immediate navigation of DIC system to this area allows fine measurement of the crack’s
location, real-time tracking of its geometrical features, and damage prevention.

The key advantage of the proposed AE–DIC approach is the early detection of defects
in railway infrastructure components. This enables studying the defect growth dynamics in
real time using the DIC technique. In this case, the investigated sample will be in its natural
environment. Thus, it is possible to obtain unique experimental data on the evolution of
defects specific to normal operation. This data can significantly improve the theoretical
models used in assessing the impact of loads on the studied components, and can be used
to develop new criteria for the early detection of defects in these components. The proposed
approach allows speeding up the monitoring of fatigue cracks due to the localization of
AE source and applying DIC specifically in this area. It is not necessary to stop loading for
verifying AE sources, due to non-contact and real-time DIC measurements.
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In the railway industry, this approach may be useful for fatigue testing of full-scale
railway and train parts as a part of automated loading systems for real-time fatigue crack
detection and quantification. It might be efficient and reliable for the samples of various
materials and shapes. Though we verified it for railway and train parts, we believe it will
have many more applications in multiple fields. For better performance, this technique may
be supplemented with mathematical modeling [50] or any other fatigue crack detection
methods [51].

5. Conclusions

We proposed a two-stage approach to NDT inspection of rails and two train parts
under cyclic loading. It is based on sequential application of AE and DIC techniques, and
is suitable for real-time evaluation.

We introduced AE criterion as the ratio of the location maximum Nmax in the histogram
N(l) to the mean value Nmean over all intervals, except for the maximum. This value
provides both fatigue crack detection and its coarse location. DIC enables verification of
the defect presence and refinement of its position. The DIC criterion for defect detection is
reaching the normal strain threshold value εTDIC.

Experimental results clearly indicate the efficiency of AE for early detection and
coarse location of fatigue cracks, and excellent DIC capabilities in terms of its geometrical
measurements. In practice, AE might be applied for timely notification of crack appearance
and guidance of the DIC system to the area of the crack for quantitative evaluation. The
combination of these techniques reveals a promising basis for real-time and non-destructive
monitoring rails and train parts.
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