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Abstract: The treatment and diagnosis of colon cancer are considered to be social and economic
challenges due to the high mortality rates. Every year, around the world, almost half a million people
contract cancer, including colon cancer. Determining the grade of colon cancer mainly depends on
analyzing the gland’s structure by tissue region, which has led to the existence of various tests for
screening that can be utilized to investigate polyp images and colorectal cancer. This article presents
a comprehensive survey on the diagnosis of colon cancer. This covers many aspects related to colon
cancer, such as its symptoms and grades as well as the available imaging modalities (particularly,
histopathology images used for analysis) in addition to common diagnosis systems. Furthermore,
the most widely used datasets and performance evaluation metrics are discussed. We provide a
comprehensive review of the current studies on colon cancer, classified into deep-learning (DL) and
machine-learning (ML) techniques, and we identify their main strengths and limitations. These
techniques provide extensive support for identifying the early stages of cancer that lead to early
treatment of the disease and produce a lower mortality rate compared with the rate produced after
symptoms develop. In addition, these methods can help to prevent colorectal cancer from progressing
through the removal of pre-malignant polyps, which can be achieved using screening tests to make
the disease easier to diagnose. Finally, the existing challenges and future research directions that
open the way for future work in this field are presented.

Keywords: colon cancer diagnosis; imaging modalities; deep-learning techniques; histopathology
image analysis; medical image analysis

1. Introduction

Colon cancer is a specific kind of tumor that originates in the colon or the rectum,
existing in the digestive system at the lower portion of [1]. The colon forms the main
part of the large intestine, and the rectum exists at the end of the colon [2]. Colon cancer
is considered to be one of the leading causes of death in the industrialized and Western
world, and its incidence grown [3]. In 2012, about 1.4 million people were diagnosed with
this disease. In 2017, there were almost 50,260 deaths reported [4]. The main reasons for
incidence stem from unhealthy habits, including chain-smoking and eating high amounts
of red meat and little fruit in addition to a family history of disease and increasing age [5].

There are four main grades of colon cancer as shown in Figure 1 [6]. The first stage is
defined as the mucosa or lining of the colon or rectum, while the organ wall has not yet
developed tumors. In the second stage, the walls of the rectum or colon begin to develop
tumors; however, nearby tissues or lymph nodes are not yet affected [7].
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Figure 1. The different stages of colon cancer.

The third stage is reached when the tumor has spread only to the lymph tissues but has
not yet spread to any other body part. In the fourth stage, the tumor spreads to other organs,
such as the lungs [8]. The prevalence in stage four has different symptoms, depending on
the organ to which the tumor has spread as shown in Table 1 [9].

Table 1. Comparison between symptoms of tumor spread across various organs at the fourth stage.

No. Spread to Various Organs Symptoms

1 Liver • Pain on the right side of the abdomen.
• Constant feeling of illness and fatigue.
• Loss of weight and appetite.
• Abdominal bulge due to fluid assembly.
• Itching disorders of the skin.

2 Lung • Constant cough.
• Shortness of breath.
• Duplicate infections in the lungs.
• Bloody cough.
• Fluid assembly around the lung.

3 Bone • Pain in injured bones.
• Bone weakness and increased risk of fracture.

4 Lymph nodes • Swollen lymph node.

Although colorectal cancer does not have apparent symptoms, particularly in its early
stages [10], there are unusual symptoms, such as abdominal pain, constipation, excess gas,
diarrhea, and changes in the color and shape of stool (e.g., narrow stool, abdominal cramps,
and blood in the stool) [11]. According to ACS, the most common reason for colon cancer
stems from adenocarcinoma disorders, accounting for almost 96% of all stages of this type
of cancer [12].

Colorectal cancers can also arise from other tissues that have tumors, such as carcino-
mas that first arise in the hormone-producing polyps of the intestines [13] and lymphomas
that may first form in the colon; however, this is less common. These sarcomas start in
small tissues, such as gastrointestinal stromal tumors that start as normal tumors and later
become cancerous (these at a few times begin in the colon but almost start in the digestive
tract) [14].

Not all types of tumors are malignant. There is a non-spreadable or benign type that
is not fatal or destructive as the spreadable type is. The difference of biological tumor
structures presents great challenges for automatic and manual analysis of histopatholog-
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ical images (HIs) [15]. A manual examination of the cancer level/grade relies on the
pathologist’s visual assessment, which is subjective, time-consuming, and potentially error-
prone [16]. An incorrect or late diagnosis can cause anxiety for many patients. Therefore,
Medical Image Analysis (MIA) is required to process and analyze HIs automatically. Such
an MIA system can be used to classify colon cancer and present an objective, and accurate
assessment of various grades of this cancer [17].

A diagnosis of colon cancer can be implemented automatically with the power of
AI, leading to more types of diagnosis with less cost and in less time. AI-based diagnosis
methods can be categorized into ML techniques and DL techniques. Recent advances in
digital image processing (DIP) techniques and DL play an essential role in the diagnostic
process [18]. In this paper, we show a comprehensive survey on different ML and DL
techniques proposed for identifying the different stages of colon cancer. This can be
accomplished using different imaging modalities. However, we focus on histopathological
imaging, which is considered the best modality used to examine, classify, locate and provide
a comprehensive view of the different cancer stages.

Due to the high mortality rates caused by colon cancer and the power of AI-based
techniques for early diagnosis, many studies have been proposed on colon cancer diagnosis.
However, the number of surveys presented in this research topic is limited. Starting from
2009, C. Demir and B. Yener [19] reported a brief review on detection of colon cancer on
the basis of histopathological images. Then, in 2013, Rathore et al. [6] introduced a review
on techniques of detection of colon cancer that were classified according to the employed
dataset and methodology into biopsy-based analysis methods and physical sample analysis
methods.

In this study, the authors claimed that much more work is required in their experiments
regarding the performance measures and parameter tuning. In 2020, Pacal et al. [20]
presented a comprehensive survey on the application of DL to colon cancer diagnosis. This
work gives a detailed discussion on DL identifying its basic architectures and emerging
topics and then summarizes the recent DL-related studies. Finally, in 2022, Davri et al. [21]
published a systematic review on colon cancer diagnosis using histopathological images.
They investigated the application of DL techniques for cancer diagnosis from both the
medical and technical viewpoints.

In this review, the authors presented a summary of recent DL-based methods. There-
fore, a detailed analysis and comparison of these techniques illustrating their working
methodology, strengths, and limitations is still required. As noticed, recent reviews focused
only on the application of DL for colon cancer diagnosis. Moreover, a detailed analysis of
these studies is required, identifying their limitations to fulfill the main need of reviewers
who are in this field by improving the open research directions.

The main purpose of this survey is to discuss and summarize the recent research
attempts proposed for colon cancer identification and diagnosis, classified into ML-based
and DL-based models. First, we discus many aspects related to colon cancer diagnosis, such
as the existing imaging modalities used for analysis with special attention on histopathology
images, in addition to the common cancer diagnosis systems. We review and compare the
available datasets for colon cancer apart from the common performance evaluation metrics.
Then, we review the existing work, identifying its working methodology in addition to the
strengths and limitations. Finally, we discuss the most obvious challenges related to the
automatic diagnosis of colon cancer to open the mind for future research directions.

The rest of this survey is categorized into eight parts as follows. Section 2 shows the
methodology followed to present this survey, such as the keywords used for the search, the
data sources, the criteria used for the inclusion and exclusion of articles, and the selection of
articles. Section 3 discusses different aspects related to colon cancer diagnosis, such as the
different screening tests used to analyze this type of cancer, the common diagnosis systems
that are based on the analysis of HIs, the available datasets, and common performance
evaluation metrics.
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Section 4 presents a literature review of the conventional ML and DL techniques
proposed for colon cancer diagnosis using different modalities. Section 5 presents the
existing challenges discovered thus far, and Section 6 presents the future research directions
to obtain better techniques. Finally, Section 7 concludes this study. Figure 2 shows the
structure of this survey. Table 2 presents a list of abbreviations with the corresponding
definitions used in this survey.

Figure 2. The structure of the survey.

Table 2. A list of abbreviations with the corresponding definitions used in this survey.

Abbreviation Definition Abbreviation Definition

ML Machine Learning DL Deep Learning
ACS American Cancer Society MIA Medical Image Analysis
AI Artificial Intelligence DIP Digital Image Processing
HC Hand Crafted CT Computed Tomography
ERUS Endorectal Ultrasound CTC Computed Tomography Colonoscopy
PET Positron Emission Tomography CRC Colorectal Cancer
CAD Computer-Aided Diagnosis CBIR Content Based Image Retrieval
PACs Polycyclic Aromatic Compounds WSIs Whole-Slide Images
CNN Convolutional Neural Network MMR Mismatch Repair
PCNSL Primary Central Nervous System Lymphomas FDG Fluoro-2-Deoxy-d-Glucose
GlaS Gland Segmentation KID Kent Integrated Dataset
NBI Narrow-Band Imaging TP True Positive
FP False Positive TN True Negative
FN False Negative FPR False positive rate
PPV Positive Predictive Value ROC Receiver Operating Characteristic
H&E Hematoxylin Eosin LBP Local Binary Patterns
SIFT Scale Invariant Feature Transform HOG Histogram Of Gradient
GBM Glioblastoma SVM Support Vector Machine
OMIS Opto-magnetic Imaging Spectro-scop WCE Wireless Capsule Endo-scop
ROI Region of Interest SGLDM Spatial Gray Level Dependence Matrices
2DReCA Two-dimensional entropy with a Cultural

Algorithm
KNN K-Nearest Neighbor

HSI Hyper-Spectral Imaging LDA Linear Discriminant Analysis
MLP Multi-Layer Perceptron RF Random Forest
GLCM Gray Level Co-occurrence Matrix ANN Artificial Neural Network
QDA Quadratic Discriminant Analysis CDT Decision Tree
NLP Natural Language Processing TCGA The Cancer Genome Atlas
R-CNN Region-based Convolutional Neural Net-

work
SSD Single Shot Multi-Box Detector

RNN Recurrent Neural Network PCA Principal Component Analysis

2. Research Methodology

In this part, we present the approach used to survey the modalities and techniques
applied to diagnose colon cancer from the year 2019 to 2022. We discuss the keywords
used for the search, the sources of data, the exclusion/inclusion criteria of articles, and
the principles of article selection. Figure 3 shows the analysis frequency of DL and ML
techniques. Figure 4 represents sub-techniques used in detection of colon cancer, classified
into deep-learning (DL) and hand-crafted (HC) Techniques.
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Figure 3. Frequency-based analysis of technique types in percentages.

Figure 4. Frequency-based analysis of sub-technique types in percentages.

2.1. Keywords

Initially, we used specific keywords close to colon cancer in the search process, such
as ’colon cancer diagnosis’ and ’colorectal cancer’. After the search, new words were
collected from the resulting articles to obtain numerous keywords. Furthermore, new
keywords, such as ’Imaging Modalities’, ’Deep Learning Techniques’, ’Histopathology
Image Analysis’, and ’Medical Image Analysis’ were used based on our understanding of
the research topic.
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2.2. Data Sources

Various academic databases were used for obtaining relevant articles for the survey as
shown in Table 3.

Table 3. Academic databases.

No. Academic Journals Link (Accessed on 1 November 2022)

1 MDPI https://www.mdpi.com/
2 IEEE Explore https://ieeexplore.ieee.org/Xplore/home.jsp
3 HINDAWI https://www.hindawi.com/
4 ELSEVIER https://www.elsevier.com/en-xm
5 SPRINGER https://jast-journal.springeropen.com/
6 NATURE https://www.nature.com/
7 THE SCIENCE AND INFORMATION https://thesai.org/
8 FRONTIERS https://www.frontiersin.org/

2.3. Inclusion and Exclusion of Article Criteria

In order to identify the most relevant publications for further review in our study,
exclusion/inclusion measures were utilized that depended on our study objective. The
studies that matched with the inclusion criteria were considered related to the study, while
those that did not match the criteria were eliminated. Figure 5 shows the inclusion and
exclusion criteria used in our research.

Figure 5. Inclusion and exclusion criteria.

2.4. Selection of The Articles

To select the most significant articles, three stages were followed. First, the article
title, abstract, and keywords were checked for relevant articles. The second stage refined
the results obtained in the previous stage by analyzing the abstract, introduction, and
conclusion of the obtained articles. Finally, the last stage was to read and analyze the main
body of the articles more deeply and to determine their relevance to our research.

3. Colon Cancer Diagnosis

Before going in depth and reviewing the current work on colon cancer diagnosis,
many aspects related to the diagnosis process should be taken into consideration, such as
the image modality used, type of diagnosis system, the dataset used, and the metrics used
for evaluation. Therefore, in the following subsections, we discuss these aspects.

3.1. Imaging Modalities

As mentioned before, our main goal is the automatic diagnosis of colon cancer with
high detection accuracy and without manual intervention. In this section, we take an
in-depth look at the different imaging modalities recently applied for MIA, including Com-
puted Tomography (CT), Endorectal Ultrasound (ERUS), virtual Computed Tomography

https://www.mdpi.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://www.hindawi.com/
https://www.elsevier.com/en-xm
https://jast-journal.springeropen.com/
https://www.nature.com/
https://thesai.org/
https://www.frontiersin.org/
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Colonoscopy (CTC), and Magnetic Resonance Imaging (MRI) [22] in addition to other
modalities, such as Histopathological Imaging (HI) and Positron Emission Tomography
(PET) [23]. A brief comparison between the different imaging modalities from different
aspects is presented in Table 4.

3.1.1. Virtual Computed Tomography Colonoscopy (CTC)

CTC imaging is the first modality to rely on low-density attenuation X-rays. For
accurate examination, the colon/rectum must be adequately inflated using a thin carbon
dioxide rectal catheter or by air pushed into the patient’s colon [24]. Air distention of the
colon is preferred because of its ease of administration and lower cost. Acquisition of CT
can be performed twice for two reasons. The first reason is to better reach the different parts
of the colon through gravitational compression, which is based on its abdominal structures.

The second reason is that the polyps can exist in the intestine walls from fecal or liquid
residues in the prone and passive position (or vice versa). Appropriate software can be
used to remove residual fluid from CTC images. Different images of the CTC colonoscopy
are shown in Figure 6. Horton et al. [25] showed that the CT modality is valuable for the
planning of colon cancer surgery since it can capture the regional extension of the tumor
in addition to distant metastases and adenopathies. With CT imaging, colorectal cancer
usually appears as a soft-tissue mass, a discrete mass, or in a thickened cushion-walled
form with intestinal discomfort.

Ding et al. [26] presented a comparison between CTC and colonoscopy for the ability
to detect a larger colorectal polyp. Two meta-analysis studies showed the high accuracy of
colon cancer CTC detection—a high sensitivity equal to 100%. CTC is an approach to screen
patients without actual symptoms as suggested by the ACS as a method for validation of
diagnosis since 2008 and is considered the primary method used in screening for CRC [27].

However, Kekelidze et al. [28] used a multi-center randomized trial that included a
large sample of patients, almost 1610 patients, and the results showed that this suggestion
was revalidated. CTC is a non-surgical replacement to MRI colonoscopy that is not related
to radiation exposure but has similar sensitivity [29]. However, CTC is not recommended
as a screening modality because the results of the available studies are insufficient.

Figure 6. Different images of CT colonoscopy: (a) Axial. (b) Sagittal images. (c) Image of virtual
colonoscopy. (d) Image colonoscopy showing the polyp with true-positive findings.

3.1.2. Magnetic Resonance Imaging (MRI) and Endorectal Ultrasound (ERUS)

The MRI modality is recommended for the early stages of tumors as it can define the
location and accurately identify the relationship between the tissues, the reflective Britton,
and the total extension [10]. The MRI modality is characterized by its high precision in
determining the length of the tumor by measuring the distance between the tumor distal
part and the junction of anorectal. On the other hand, the ERUS modality can be used
to assess the integrity of the rectal wall layers. Endorectal MRI has many disadvantages,
including limited availability, being less patient-friendly, and being costly. Therefore, this
method is not recommended by the European society for medical oncology guidelines [30].

Burdan et al. [10] presented an overview of the ERUS and MRI modalities. These
modalities have the ability to capture and explore the morphology of the colon in detail.
Therefore, they are considered an essential tool in locating the tumor at any stage. Each
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stage of cancer has its treatment plan. With the ERUS and MRI imaging modalities, it is
easy to determine the proper treatment plan for an early-stage tumor faster than other
modalities.

Table 4. Comparison between different imaging modalities.

No. Image Modality Characteristics Diagnosis Applications CONS. PROS.

1
Computed Tomography
Colonoscopy (CTC)
[31].

To obtain the images
uses magnets and radio
waves to create [32].

• Fractures.
• Bones.
• Tumors.
• Cancer diagnosis.
• Response and

development to
treatment.

• Less tolerated [10].

• More common.
• Less expensive.
• Accurate and needs less

time to study it.
• Prefect results in

diagnosing, particularly in
deceases of the heart lining
and the large vessels [10].

2 Magnetic Resonance
Imaging (MRI) [33].

Uses radio waves and
magnetic [34].

• Heart.
• Ankles.
• Brain.
• Wrists.
• Breasts.
• Joints.
• Vessels.
• Blood.

• Needs more time to
study it [35].

• The size is several
hundred megabytes.

• Confined
environment and
many noises.

• It cannot be used with
medical devices or
foreign devices [10].

• Produces more accurate,
detailed images.

• Without using harmful
radiation, images can be
captured from different
angles.

• Perfect results in
diagnosing, particularly in
deceases of the heart lining
and the large vessels.

• Used to differentiate
external tissue [10].

3 Histopathology Images
(HI) [36,37].

Using glass slides and
braces on surgical
specimens or
microscopy to examine
a biopsy [38].

• Breast.
• Meningioma.
• Colon.
• Prostate.

• Needs a different
analysis with different
tasks of the organs
that are visualized
using a microscope.

• Useful in medical decisions
and for studies of biology.

• Generally used to produce
"ground truths" of other
modalities of medical
images.

• The size of a histology
slide is a few megabytes.

4 Positron Emission
Tomography (PET) [39].

Showing activity using
a radioactive drug
(tracer) [40].

• Brain.
• Cervical.
• Colo-rectal.
• Thyroid.
• Head and neck.
• Esophageal.
• Lymphoma.
• Lung.
• Pancreatic.
• Prostate.
• Melanoma.

• Their use of elements
of radioactive produce
some damage,
particularly to
pregnant women.

• It is highly sensitive to
diagnostic tools.

• At early stages of
neurological deceases, it is
effective in diagnosis [41].

• No risk of infection.
• The patient is exposed to

less radiation.
• Precise.
• Reduces non-significant

surgeries.

3.1.3. Histopathology Images (HIs)

HIs have different biological structures and are based on pathologists’ knowledge
in defining morphological and architectural features. Through the tissue area, HIs show
an appearance with visual variability at a high rate in the linked patterns of certain small
structures. In biological and anatomy systems, most of the visual variability is inherited [42].
For biological research, this useful modality, which makes it our main objective in this
survey. The use of the HI modality affects the method of obtaining the design and data of
algorithms concerning storage and processor limitations.

3.1.4. Positron Emission Tomography (PET)

Mukai et al. [43] used 18F-fluoro-2-deoxy-d-glucose (FDG) to screen PET images for
malignant tumors. They also evaluated preoperative PET images in cancer patients. The
following sections present a detailed discussion of common imaging modalities.

3.2. Common Diagnosis Systems Based on HI Analysis

In this paper, our main focus is on colon cancer diagnosis based on HI analysis.
In general, most of the stages of HI analysis depend mainly on the basic concepts of
mathematics. Figure 7 presents the main stages of a typical HI Analysis pipeline [44].

In the first stage, 2D/3D arrays of HIs are obtained and passed to a gray-scale or color
imaging system. They are then fed to the preprocessing phase, where some operations
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in linear algebra are applied to array of the image for better image resolution to be able
to distinguish structures from others. Then, the segmentation phase separates the back-
ground of the objects from the cells by applying mathematical algorithms, such as texture
homogeneity, intensity, watershed transformation, and level set transformations.

The next stage is the extraction of features process. Instead of processing each pixel,
this stage explores the most significant features from the sliced images for further processing.
Therefore, it minimizes the computational complexity of the system. Finally, the diagnostic
stage applies clustering or classification algorithms on the features extracted from the input
images [45]. To achieve an intensive analysis of HIs, mathematical functions and operations
must be applied to all analysis phases, beginning with the prepossession phase and ending
with the diagnostic phase [46].

This section discusses common diagnosis systems applied for colon cancer detection
based on HI analysis. These systems include Computer-Aided Diagnosis (CAD), Content-
Based Image Retrieval (CBIR), and other findings in clinicopathology association systems.

Figure 7. HI analysis pipeline.

3.2.1. Computer-Aided Diagnosis (CAD) Systems

During the process of analysis of electronic HIs, CAD systems cover many of the tasks,
and thus their functionality corresponds to the pathologists who are involved. The errors
that result from applying the ML process differ from those that result from an individual
pathologist. Therefore, the application of the CAD method improves the classification
results and increases the system’s reliability. Furthermore, you can minimize the instability
of analyzing and understanding each pixel in WSI. Various diagnostic functions involve
the region of interest segmentation or recognition as an index of immunization.

Doi et al. [47] presented the motivation and strategy for the CAD scheme’s early devel-
opment, together with the future potential and current status of CAD in an environment of
PACs, using the output of the computer as a “second opinion” by radiologists with CAD to
make the final decisions. The results were that the sensitivity was 75% at 1.03 false-positive
fractures per image.

Hamilton et al. [48] presented, within large histological scenes, a means of locating
abnormality focal areas through image texture scanning on low-power mode. In this study,
images classified as dysplastic and normal on the basis of their texture were not perfect.

3.2.2. Content-Based Image Retrieval (CBIR) Systems

Images used by CBIR are related to query images. CBIR approaches are supported by
different histories, such as the study, training, examination, and pathology. For example,
CBIR methods can be used by novice pathologists and academic applications to recover
HIs from tissues appropriately. Furthermore, they are useful for competent pathologists,
particularly when detecting unusual situations.

We can use unsupervised learning since CBIR does not require tagged data. There
is a need for high-speed investigation from multiple images that depends on related
images—not only accuracy—in CBIR. Therefore, the dimensional features of the image can
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be minimized by many approaches, such as nearest-neighbor searches, which are rapidly
estimated [49].

Hou et al. [50] proposed supervised methods based on labeled histopathology data
with large volumes that are expensive to generate. The proposed method learns in an unsu-
pervised manner from heterogeneous pathology patches. The used model is synthesized
with importance weights as trained patches, to train the task-specific (e.g., segmentation)
CNN to minimize the ideal (unbiased) generalization error over real data.

In supervised methods, the results are significantly better than across-cancer gener-
alization results when no supervised data is available for a cancer case. The proposed
method does as well as supervised methods, even existing supervised data, due to the
synthetic data being on a much larger scale. The results are segmented on over 5000 whole-
slide images (WSIs), which is a larger dataset than the human annotated datasets that are
currently available.

3.2.3. Finding New Clinicopathological Association Systems

Analysts and pathologists produce many discoveries related to important diseases,
such as contagious diseases and tumors. For example, pathologists processed the gastric
mucosa of individuals that are diagnosed with gastritis. The morphological options of
cancers must be linked. Tumor classification is important for various cancer cases, such as
breast and prostate cancer, specifically in the treatment preparation and the patient process
of diagnosis.

There is a significant growth in the digitization of clinical data, where it has boosted
techniques to assess the genome. Therefore, today, we can achieve large amounts of
electronic data, such as genome data, CT scans, and MRI. New relations of hospital pathol-
ogy, such as somatic cancer mutations, including morphological quality, are available
by examining the relationships between different imaging screening methods. Existing
CAD approaches can be classified into DL and conventional ML methods, which will be
discussed in the following section.

Cheng et al. [51] assessed mismatch repair protein deficiency in the largest series for
the breast cancer as survival outcomes were linked and the immunohistochemistry was
determined. They determined 31 MMR-deficient states out of 1635 that had data for all
four MMR biomarkers (MSH2, MSH6, MLH1, and PMS2).

Kim et al. [52] proposed patients with PCNSL having the characteristics of low FDG
uptake over a 10-year period. The data recommended that PCNSL was closely matched by
the tumor to negative results, specifically with a low uptake for MUM1 expression. MUM1
plays an essential role in the differentiation, survival, and proliferation of cells.

Janowczyk et al. [53] showed a unified tool for the DP domain and the importance of
DL according to its innate ability for learning useful features from data directly via seven
use cases: the (a) segmentation of nuclei, (b) segmentation of epithelium, (c) detection of
lymphocyte, (d) detection of mitosis, and (e) classification of lymphoma. They outlined a
guide with insights for bridging the current knowledge gap between the DP domain and
DL methods.

3.3. Datasets

Dramatically increasing the dataset size needed for testing training is a critical chal-
lenge [54,55]. There are public datasets in the electronic pathology course, including manual
observations for HIs. These are helpful in the review process. Image artifacts (e.g., the
zoom level and image resolution) and slide problems (e.g., smudges) have similarity ratios.
However, all of these datasets are expected only in specific states of tumors, and there are
several tasks that the existing databases do not handle. The publicly available datasets for
colorectal cancer are summarized in Table 5 and are discussed below.

1. CRC Grading Dataset
The CRC [56] Grading Dataset contains 38 H&E stained histological WSIs with a
resolution 4548 × 7548.
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2. PanNuke Dataset
PanNuke [57] includes 200,000 nuclei divided into five main classes to challenge
the approaches of classifying and segmenting nuclei in WSIs with a resolution of
224 × 224.

3. The Warwick-QU Dataset
In this dataset [58] are 16 slides of H&E stained histological WSIs of colon histology;
this dataset is being created as category of the GlaS challenge with resolutions of 430
× 575 (14 images) and 520 × 775 (151 images).

4. CoNSeP Dataset
CoNSeP [59] contains 41 H&E stained image slides with a resolution of 1000 × 1000
pixels at 40× magnification of objective: generally 24,319 annotated nuclei with labeled
classes.

5. ETIS-LARIB
The ETIS-LARIB [60] database contains frames taken from colonoscopy videos, includ-
ing several examples of polyps. It produces the baseline reality for each frame while
displaying a mask due to the polyp region in the image. A sample of this dataset is
shown in Figure 8.

6. CRCHistoPhenotypes–Labeled Cell Nuclei Dataset
This dataset [61] has 100 H&E CRC. For the process of detection, there are 29,756
nuclei; for classification, 22,444 nuclei (miscellaneous, fibroblast, and epithelial); and
7312 unlabeled with a resolution of 500 × 500.

7. Kent Integrated Dataset (KID)
The KID [62] is responsible for the health and welfare system for the entire population
of Medway and Kent. This dataset is rich and unique for researchers seeking health
and care on a large scale. This also provides an overview of the patient journey, care,
and needs.

8. CVC-ColonDB and CVC-ClinicDB
Since 2012 [60], this dataset has been the top research leader as it includes many
databases that are public and available, and CVC-ColonDB is included, which special-
izes in colon cancer imaging containing the original images and the ground truth as
shown in Figure 9.

9. Colonoscopy Dataset
The dataset [63] contains 76 videos, containing both WL and NBI. The database
contains 40 adenomas with SD resolution of 768 × 576, 21 hyperplastic lesions, and 15
serrated adenomas.

10. Extended CRC Grading Dataset (KID) In this dataset [64] are 300 images that are
non-overlapping. These were labeled by expert pathologists as high grade (Grade 3)
tumors, low grade (Grade 2) tumors, or normal tissue (Grade 1) with a resolution of
4548 × 7548.

11. ASU-Mayo Clinic
Currently, there are numerous research programs based on co-funded acceleration,
seed research, and team science grants [65]. This means that more than 20–30 cohorts
of senior nursing students in their clinical training by Mayo Clinic nursing faculty on
the Mayo campus are expected to be completed. Due to this effort and cooperation,
the seed grant program has added joint, cutting-edge research collaborations, a host
of dual degree opportunities, and others. In 2016 and in the summer of 2010, the
relationships of the Mayo Clinic became enterprise-wide, and the ASU Alliance for
Health Care was formed.
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Table 5. Datasets for colorectal cancer with different imaging modalities.

Author Dataset Name No. of Images Resolution Task Modality

Awan et al. [56] CRC Grading Dataset 139 4548 × 7548 Classification,
Cancer grading, Histology

Gamper et al. [57] PanNuke Dataset 20K WSI 224 × 224 Classification,
Segmentation Histology

Sirinukunwattana
et al. [58]

The Warwick-QU
Dataset 165

430 × 575 (14 im-
ages), 520 × 775
(151 images),

Gland segmen-
tation Histology

Leenhardt et al. [66] CAD-CAP 25,000 Various resolu-
tions

Detection, classi-
fication

Capsule
endoscopy (CE)

Graham et al. [59] CoNSeP dataset 41 1000 × 1000

Classification,
Nuclear in-
stance segmen-
tation

Histology

Bernal et al. [67] ETIS-Laribv 196 HD,1225 × 966 Polyp detection,
localization Colonoscopy

Vázquez et al. [68] CVC-ColonDB 300 SD, 574 × 500
Polyp segmen-
tation, localiza-
tion

Colonoscopy

Sirinukunwattana
et al. [61]

CRCHistoPhenotypes–
Labeled Cell Nuclei
Dataset

100 500 × 500
Nucleus detec-
tion, classifica-
tion

Histology

Bernal et al. [69] CVC-ClinicDB 612 SD, 384 ×b288
Polyp detection,
localization, seg-
mentation

Colonoscopy

Jha et al. [60] Kvasir-SEG 1000 Various resolu-
tions

Polyp segmenta-
tion Colonoscopy

Mesejo et al. [63] Colonoscopy Dataset 76 SD, 768 × 576 Classification Colonoscopy

Javed et al. [70]
CRC Tissue Pheno-
typing (CRC-TP)
Dataset

256 500 × 500
Nucleus detec-
tion, classifica-
tion

Histology

Kather et al. [71] CRC-VAL-HE-7K
CRC-VAL-HE-7K

7180 image
patches 224 × 224

Predicting sur-
vival, classifica-
tion, detection

Histology

Shaban et al. [64] Extended CRC Grad-
ing Dataset 300 4548 × 7548 Cancer Grading Histology

Figure 8. Original data and associated manual annotation from ETIS-Larib polyp DB. (a) the original
image and (b) the annotation.
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Figure 9. (a–c) The original images. (d–f) The corresponding ground truth.

3.4. Performance Evaluation Metrics

Metrics of evaluation are utilized to measure the quality of models of machine learning.
One can evaluate whether the DL algorithm of training is effective on new data by using
these metrics of evaluation. Many different evaluation metrics can be used for testing a
model. More accurate results can be found using multiple metrics for evaluating the quality
of a trained model because each model performing using a metric of evaluation differs
from the same model using another evaluation metric.

The factors of correctly used evaluation metrics are critical as these describe whether
the trained model is performing well or not. In the following section, we show some
formulas and an explanation of the evaluation metrics utilized by academic papers.

True Positive (TP) is when a method classifies the correct category correctly, while
False Positive (FP) is when a method classifies the correct category incorrectly. On the
other hand, True Negative (TN) is when a method classifies the negative category correctly,
while False Negative (FN) is when a method classifies the negative category incorrectly.
We can customize these values in the medical field of cancer detection. An example is that,
if the image includes cancerous cells, then the trained model predicts the malignant cells
successfully, and thus this case is called TP, while if the trained model predicts that it is not
a malignant cell, then this case is called FP.

On the other hand, if the image includes no malignant cells, and the model predicts
that the image does not contain cancerous cells, then this case is called TN. If the image
includes no malignant cells, and the trained model predicts it as a malignant cell, then
this case is called FN. In the next section, we present an explanation and description for
formulas that are related to the common evaluation metrics.

• The Accuracy measures the proportion of true observations to the number of samples
measured, which can be calculated as:

Accuracy =
TP + TN

TP + TN + FN + FP
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• The Rate of Error shows the proportion of inaccurate observations to the number of
measured samples, which can be calculated as:

Error Rate =
FP + FN

TP + TN + FN + FP

• The Precision measures the true classified positive estimates of the total classified
estimates in a correct category, which can be calculated as:

Precision =
TP

TP + FP

• The Recall is employed for measuring the ratio of correct estimates that are correctly
predicted. This can be calculated as:

Recall =
TP

TP + FN

• The Specificity is presented for measuring the positive observations rate of false
samples and can be calculated as:

Specificity =
TN

TN + FN

• The Sensitivity measures the number of correct samples that are classified as true and
can be calculated as:

Sensitivity =
TN

TN + FN

• The ROC curve presents the ratio of false positives to the ratio of TPs by showing the
performances of the possible threshold values used and can be calculated as:

TPR =
TP

TP + FN

FPR =
FP

FP + TN

4. Literature Review

CAD systems are an active topic to research using HIs and play an important role
in diagnosis. Various imaging techniques are used to diagnose the disease and examine
these HIs. In addition, various MIA techniques have been performed for classification to
measure disease characteristics from HIs. Additionally, nuclei and glands can be segmented
to recognize cell types and to automatically determine the existence of a disease within
samples. Depending on the sample, the evaluation of the intensity of the disease can also
be obtained [72].

Existing CAD systems can be categorized into systems based on ML techniques and
systems based on DL techniques. In the following subsections, we introduce the most
prominent research proposed toward the diagnosis of colon cancer on the basis of ML and
DL techniques.

4.1. Conventional Machine-Learning Methods

The machine-learning process for HI analysis involves five main phases as shown in
Figure 10, and these are discussed in the following text.
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Figure 10. The main stages of conventional ML methods for HI analysis.

4.1.1. Preprocessing

The images obtained contain variations (e.g., staining, color, and noise) and must be
uniform. These variations generally result from the scanning procedures. The components
and architecture of the tissue are analyzed using wax under the microscope to produce the
macroscopic sections. Pathologists use one or more colored stains to diagnose and analyze
the architecture and tissue components to isolate the cellular components [73].

Jang et al. [74] used hematoxylin-eosin (H&E) to separate the nuclei, cytoplasm, and
connective polyps. Hematoxylin colors the nucleus blue and eosin colors the cytoplasm
and connective tissue pink. The classification performance is determined based on the
consistency of the extracted features. Therefore, the step of image processing is essential for
determining the image state. On this basis, the approaches utilized to enhance the image
and to overcome different illumination fluctuations are determined. In this way, the quality
is also improved.

Various preprocessing approaches can be applied to images. The preprocessing tech-
niques are well adapted to the state of the image. They control the differences of contrast in
images, noise removal, and brightness. Therefore, this phase is critical as the input tissue
images must be similar to those stored in the database. In addition, a number of effects,
such as image size variations, orientation, posture, lighting, and background, should be
reduced.

4.1.2. Segmentation

The process of segmentation in images plays an essential role in the analysis of
histopathology images, which plays a significant role in solving different problems. The
tasks required are different from each other for each stage, and even each image is differ-
ent from another. Image segmentation is similar to clustering. This defines meaningful
segments that can differ from model to model or even cell to cell [28,75].

4.1.3. Feature Extraction

This stage is utilized for extracting features from the colonoscopy images that describe
the characteristics of the colon. This is performed using computer-diagnosed colonoscopy
images to discover the patient’s current condition. At this stage, tissues are removed from
the region to facilitate the diagnostic process [76]. This step helps to improve the accuracy
of the classification performance. There are many feature extraction techniques, such as
LBP [77], SIFT [78], and HOG [79].

There are many available approaches for examining the colon, such as barium ra-
diography and sigmoidoscopy; however, colonoscopy is currently the best modality for
diagnosing any colonic tissue. The early detection of any tissue increases the chances of a
cure for patients.

Image textures in CTCs have a high capability to differ between various tissue cases
and thus improve the CTC model toward optimal tissue management for preventing fatal
colorectal cancer [80]. However, textures of images are frequently compromised according
to the operations of error correction and noise smoothing in most CT image reconstructions.

4.1.4. Image Classification

Accurate and efficient histological cell classification is paramount for image analysis
in the medical field. Thus, the classification process is a challenging task according to the
variation of the cells. For doctors, this phase makes it easier to understand the different
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treatment approaches for colon cancer. Below, we review recent ML-based studies for colon
cancer diagnosis, and these are summarized in Table 6. After a comprehensive analysis of
these studies, we summarize their main strengths and limitations in Table 7.

Niazi et al. [81] showed the use of unsupervised learning for colon cancer detection
and the process of cancer case analysis using gene expression data. This method differs
from any other approach used for diagnosing colon cancer, as it allows the use of various
kinds of data and is not only for colon cancer. Gene expression data are used to classify
and detect different types of cancer.

Rasti et al. [82] proposed three approaches of classification to three states of cancer
on mice colon walls as well as inflammation and health with the use of endomicroscopy
images. Fully automated methods of machine learning (ML) were presented with the SVM
methodology, including classical texture-based classification, transfer learning, and deep
learning. They compared various strategies of training. The experimental results had an
accuracy of 99.93% on the ImageNet/ILSVRC dataset.

Na et al. [83–85] presented a fully automated method of classification with a GBM
method that depends on supervised learning, which was then tested on many images. The
experimental results showed that the rate of correct recognition was 99.93%, which was
the best performance proved for the second approach. For the more difficult first case, the
results were 98.49%. They utilized the CRCHistoPhenotypes dataset, which includes a
large number of microscopy images.

Rathore et al. [86] presented a complete approach for gland segmentation and for
cancer classification and detection into three different colon cancer grades. For the seg-
mentation of colon glands, they modeled the tissue parts as ellipsoids. For the process
of detection and classification, they extracted multiscale features that encode the texture
and the spatial architectural patterns of a gland apart from its cellular morphology. They
evaluated their study using two different datasets for the classification into three cancer
grades.

Dragicevic et al. [87] presented a colon detection model on the basis of a new imag-
ing method called Optomagnetic Imaging Spectroscopy (OMIS). In comparison with a
histopathological imaging model, the OMIS showed results with an accuracy of 92.59%
using MPNN as a classifier and 89.87% using Naïve Bayes.

Shanmuga et al. [88] showed a CAD system that utilizes the WCE method for screening
to determine tumors of colon cancer. In the proposed method, the images are entered to the
preprocessing stage using filtering and ROI-based histograms. Then, the tumor region is
detected using an algorithm of K-means clustering. From the segmented regions, features
are extracted using spatial gray level dependence matrices (SGLDM). Finally, a support
vector machine is applied for tumor multilevel classification into benign, malignant, or
normal. This detection method achieved an accuracy of 95%.

Babu et al. [89] proposed a multi-level threshold image segmentation approach based
on 2DReCA. In addition, they extracted two sets of textures from the preprocessed grayscale
colon images. They evaluated the quality of the presented model using a random forest
classifier on different images data of colon cell sets with different magnification factors
containing malignant and normal labels.

Fahami et al. [90] employed methods of machine learning, such as KNNs and DT, to
determine the properties of tumors of this cancer. The main task in the process of colon
cancer diagnosis using HIs is the prediction of cancerous genes. To this end, various
algorithms of ML have been utilized on the data of colon cancer. This research utilized
supervised and unsupervised ML methods to predict the top active genes in patients of
colon cancer. They categorized the patients into two main sections and explored the most
effective 20 genes of the vital status in each section. The experimental results had an
accuracy of 97.49 ± 2.92 on the HTSeq-FPKM-U dataset.
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Table 6. Summary of ML-based studies for colorectal cancer diagnosis.

Author (Year) Imaging Modality Pre-Processing Feature Extraction Classification Dataset Results

Niazi et al. [81] (2019) Microscopy Images

Stain Normalization,
Contrast enhancement
using Limited Adaptive
Histogram Equalization

K-means,
clustering

MLP, SVM, KNNs, Kernel
Discriminant model CRCHisto-Phenotypes Accuracy: 99.8%

Rasti et al. [82] (2019) Endomicroscopy
Images

mean,
standard deviation,
variance,
and the skewness of the
raw pixel values

clustering SVM ImageNet/ ILSVRC Accuracy: 99.93%

Na et al. [83–85] (2019) Neuro-imaging SMOTE technique GBM Decision tree classifier KLoSA
Sensitivity: 96.7%
Specificity: 0.825
AUC: 92.1%

Rathore et al. [86] (2019) Colon tissue
histology images Segmentation using

Qualification of tissue
morphology on the basis of
image, local, and gland
features

Detection: RBF kernel of
SVM
Classification: using
majority voting based on
the predictions of linear,
RBF, and sigmoid kernel of
SVM.

-GlaS,
-RMC

For Detection (Train GlaS − Test RMC = 93.7%, Train RMC
− Test GlaS = 94.5%),
For Classification: (Train GlaS −Test RMC = 95%, Train
RMC − Test GlaS = 95%)

Dragicevic et al. [87] (2019)

Opto-magnetic
Imaging
Spectroscopy
(OMIS)

Spectral image processing N/A
Detection: Multilayer
Perceptron Neural
Network and Naïve Bayes

The First Surgical Clinic,
Clinical Centre of Belgrade,
Serbia.

Accuracy of 92.59% using Multilayer Perceptron Neural
Network Accuracy of 89.87% using Naïve Bayes

Sundaram et al. [88] (2019) Wireless Capsule
Endoscopy (WCE)

Weiner filtering,
ROI-based color histogram

Segmentation: K-means
clustering
Feature Extraction: Spatial
gray level dependence
matrices (SGLDM)

Detection: SVM
Classification: SVM N/A

Sensitivity 96%
Specificity 95.4%
Accuracy 95.7%

Babu et al. [89] (2020) Colon biopsy
images

Stain Normalization.
Contrast enhancement
using Limited Adaptive
Histogram Equalization.

Segmentation: 2DReCA
entropy-based
thresholding
Feature Extraction: Shape
and texture descriptors.

A random forest classifier GlaS. Accuracy of: dataset A 98.50% dataset B 96.48% dataset C
95% dataset D 96%

Fahami et al. [90] (2021) HIs Normalization,
Dimension reduction Clustering KNNs, Decision Tree HTSeq-FPKM-UQ

Accuracy: 97.49 ± 2.92%
Percision: 100.0 ± 90.00%
Recall: 95.00 ± 5.83%

Jansen-Winkeln et al. [91] (2021) Hyper-spectral
imaging (HSI)

Image smoothing using
Savitzky–Golay filter
normalization, balancing
using down-sampling

N/A
Detection: Multilayer
Perceptron Neural
Network, SVM, and RF.

Paper-specific dataset
Sensitivity of 86%
Specificity of 95% With Multilayer Perceptron Neural
Network

Talukder et al. [92] (2022) HIs. Image Resizing
Feature scaling

Feature Extraction:
Transfer learning, such as
VGG16, VGG19,
DenseNet169,
DenseNet201

RF, SVM, LR, MLP, XGB,
and LGB LC25000

Accuracy of colon: 99.05%,
lung: 100%,
colon and lung: 99.30%
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Table 6. Cont.

Author (Year) Imaging Modality Pre-processing Feature Extraction Classification Dataset Results

Chehade et al. [93] (2022) HIs. Unsharp masking,
Stain normalization

Feature Extraction:
First order statistics
GLCM,
Hu invariant moments
Feature Selection:
Recursive feature
elimination (RFE)

SVM
RF,
XGBoost
LightGBM,
LDA,
MLP

LC25000 F1-score of 98.8%,
Accuracy of 99%

Alqudah et al. [94] (2022) HIs.

Represent input images in
three different color spaces:
RGB, HSV, and L*A*B*
color spaces

Feature Extraction: 3D
GLCM of RGB, HSV, and
L*A*B

SVM,
ANN,
KNN,
QDA, and
CDT.

Multi-class colorectal
histology images

Accuracy and sensitivity using RGB color space:
QDA: 97.32, 97.30
KNN: 92.10, 91.71
SVM: 94.68, 94.62
ANN: 92.58, 92.40
CDT: 91.92, 91.75
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Table 7. General strengths and limitations of ML studies.

Author (Year) Strengths Limitations

Rasti et al. [82] (2019)

• The proposed approach produced re-
sults of 98.49%, which were applied
for the more difficult first case, in
addition to the results of a 99.93%
positive rate acquired for the second
scheme.

• The database size is not compatible
with other domains in machine learn-
ing.

• They should address the computa-
tional complexity required for differ-
ent stages of segmentation, detection,
and classification.

Rathore et al. [86] (2019)

• They evaluated their model with two
datasets for colon cancer by achieving
the performance of each one in addi-
tion to ensemble classifiers.

• This methodology is reliable for
broader applicability across diverse
clinical settings.

• A suitable feature-selection technique
should be employed for reducing re-
dundant features.

• They should address the computa-
tional complexity required for differ-
ent stages of segmentation, detection,
and classification.

Sundaram et al. [88] (2019)

• This model for enhancing the ap-
proach OF CAD with low complexity
time.

• Can be used to detect early stages of
colon cancer for patients.

• This approach needs to be validated
on different benchmark datasets.

• The performance of the WCE screen-
ing method should be compared with
different screening methods.

Babu et al. [89] (2020)

• Their model supplies superior results
for the segmentation for different im-
age modalities, irrespective of differ-
ent magnification levels.

• The showed approach with 2DReCA
segmentation and a hybrid features
set proved to have acceptable accu-
racy for classification.

• Does not address overlapping cell seg-
mentation and the region of colon
gland segmentation for improving
precision.

Fahami et al. [90] (2021)

• Utilized a method for normalization
that was efficient more than the oth-
ers, which enhanced the overall qual-
ity of the research.

• A few approaches of DL were utilized
on data of colon cancer.

• A few methods of normalization and
method of fuzzy clustering.

Jansen-Winkeln et al. [91]
(2021)

• Hyperspectral imaging combined
with automatic classification can be
used to distinguish between healthy
mucosa and CRC.

• Too many false positive areas were de-
tected. The changes of biological sup-
port due to chemotherapy to the cell
that can be detected with HSI.

• Developing HSI-based systems to per-
form non-invasive and contactless op-
tical biopsies of in vivo tissue.

Talukder et al. [92] (2022)

• This model outperformed other tech-
niques and effectively identified dif-
ferent classes of colon and lung can-
cers.

• Further work on image pre-
processing is required as noise-free
and sharp images will yield discrim-
inative features, which will, in turn,
enhance the performance.

Chehade et al. [93] (2022)

• The authors achieved acceptable
performance using machine-learning
techniques, from the application of
deep-learning methods.

• The model performance should be im-
proved by applying different feature
extraction techniques

Alqudah et al. [94] (2022)

• An acceptable performance for clas-
sifying colorectal cancer utilized HIs
not with gray level texture features
but with colored features.

• Image preprocessing and segmenta-
tion should be addressed before fur-
ther processing in order to increase
the performance.

Jansen-Winkeln et al. [91] proposed an approach of colon cancer detection using HSI
optical imaging technology. They utilized a four-layer perceptron neural network to classify
the image into three classes: adenomatous margin close to the central tumor, cancer, and
healthy mucosa. They evaluated their work using images collected from patients between
July 2019 and May 2020 using a hyperspectral camera. Their results reached a sensitivity
of 86%.

Talukder et al. [92] showed a combination of deep-leaning and machine-learning
techniques for the detection of colon and lung cancers. They combined the deep features
extracted using deep-learning techniques with ensemble learning machine-learning classi-
fiers. They evaluated their model using the LC25000 dataset for lung and colon cancers.
Experiments were performed for colon and lung cancer with accuracy ratios of 100% and
99.30%, respectively.

Chehade et al. [93] presented a CAD system that classifies HIs of colon and lung cancer
into five different classes. In this model, HIs were preprocessed using image preprocessing
techniques, and then the discriminative features were extracted. Finally, they fed the
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extracted features into six machine-leaning models: MLP, SVM, LDA, XGBoost, RF, and
LightGBM.

Alqudah et al. [94] presented an ML-based model for the detection of colon cancer.
They utilized 3D GLCM matrices of three different color spaces to extract texture features
from the input HIs. Then, the extracted features were fed into five different ML algorithms:
SVM, ANN, KNN, QDA, and CDT. This model was evaluated on a private dataset con-
taining eight different classes of HIs: tumors, debris, lymphoma, adipose, complex, empty,
mucosa, and stroma.

4.2. Deep-Learning Methods

DL methods have successfully produced many models for processing images, [95]
and for processing voice/sound [96]. Recently, researchers presented that the DL can also
be utilized in the processing of medical images, such as MRI [97], CT [98], biopsy [99], and
endoscopy [100] images. Generally, datasets of digital pathology have become increasingly
available and public. It has became possible and feasible to evaluate DL techniques to
enhance the quality and efficiency of histological diagnosis.

Recently, DL techniques have been used in various fields and have achieved superior
results compared to traditional ML methods (for example, automated analysis for HIs, nat-
ural language processing (NLP), and biomedical fields). With DL, abstract representations
are presented in a meaningful way and can be quickly understood. CNN is considered a
typical instance of applied structure. When using techniques of DL, several measures can
be utilized to manage histopathology depending on the task settings.

HIs styles consider the primary features that the scaling stages can determine. There
are two primary factors: patch size, which is network related, and impure homogeneity
for whole-slide images (WSI) [48]. The network structure shows the main position. How-
ever, predefined system structures are maintained in many studies. Figure 11 presents
the main steps for the segmentation and classification of colon cancer using a DL-based
Convolutional Neural Network (CNN) architecture.

Figure 11. The segmentation and classification process using deep learning.

The following paragraphs will review the common DL-based research for colon cancer
diagnosis. A summary of these studies is presented in Table 8, and a comparison identifying
their main strengths and limitations is presented in Table 9.

Shapcott et al. [101] used a cell-identification DL algorithm in TCGA for colon cancer
imaging, which improved the performance without loss of accuracy when sampling the
image [102]. The extracted features were related to various variables, including: venous
invasion, lymphatic invasion, metastasis, and residual tumors. The local dataset was used
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to train the DL algorithm, and then TCGA images were used for testing. In each part, they
identified the tissues. The average number of slides in an image containing cells in this
application was 900.

De et al. [103] showed a method for automatic polyp insertion detection in colonoscopy
images. They utilized ETIS-LaribPolypDB as a testing set and the CVC-ClinicDB database
as a training set. The results of their method showed that the process of polyp insertion
is useful to reduce false positive (FP) and that the traditional augmentation of data can
be effective. The results showed a low false positive rate (FPR) while maintaining a
substantial sensitivity/recall. The final results showed that the F1-Score was 91.4% and the
FPR was 0.079 with their modified version of a training set over the ETIS-LaribPolypDB
testing dataset.

Kang et al. [104] presented an ensemble transfer-learning model based on the union
of two classified masks by bitwise operations for the segmentation of colorectal polyps.
They used the CVC-ClinicDB, CVC-ColonDB, and ETIS-Larib datasets. The results of
their experiments demonstrated the superiority of their approach against state-of-the-art
approaches to segmenting polyps.

Sornapudi et al. [105] presented a modified R-CNN by creating masks around the
detection of tissues from frames. This approach was developed on the basis of the R-CNN.
The generated feature maps utilized ResNet-101 and produced further details using FPN
for polyp images compared to ResNet-50. The proposed model can be segmented and
detected the polyps in images successfully. This approach can preform a segmentation
process accurately for each polyp. This produced better quality on the WCE video frames
compared with images of colonoscopy. The results showed better polyp localization
compared with recent DL and traditional methods.

Zhang et al. [106] presented SSD-GPNet, which is an improved SSD for gastric polyp
detection in real-time with 50 FPS using Titan, which is a CNN that is produced based on
SSD architecture. They utilized images of colonoscopy containing two independent datasets
and a special dataset consisting of 2484 images. The experimental results presented that the
improved SSD for the detection of gastric polyps can be applied for real-time polyp detection
with 50 FPS and can enhance the mAP from 88.5% to 90.4% with low performance times.

Zobel et al. [107] applied an R-CNN. They utilized three colonoscopy independent
datasets, including 2484 HD labeled tissue images from their clinic, as well as two public
datasets from the MICCAI 2015 detection challenge for polyps, containing 194 HD labeled
images and 612 SD with polyps. The experimental results showed that the three datasets were
investigated with precision = 0.86, recall = 0.92, F1 = 0.89 (dataset A), precision = 0.80, recall =
0.86, F1 = 0.82 (dataset B) and precision = 0.74, recall = 0.83, and F1 = 0.79 (dataset C).

Ma et al. [108] proposed a DL model using a CNN for efficiently classifying and
detecting colorectal polyps from images of colonoscopy. They trained their model using a
dataset that is a benchmark and showed results of 92% accuracy and efficient computational
speed for all sizes of polyps, which might be overlooked in colonoscopy. Blanes-Vidal
et al. [109] introduced an algorithm to objectively quantify the similarity between predicted
polyps and those classified by OC, CCE, and HP, depending on their morphology, location,
and size. They also proposed a CNN for the autonomous localization and detection of
colorectal polyps in WCE. They used WCE images from datasets, and the results produced
unexpectedly high sensitivity (97.1%), accuracy (96.4%), and specificity (93.3%).

Wang et al. [110] showed a CAD real-time system based on DL directed to maximize
the detection rates of adenoma in a low-prevalent ADR region in colorectal tissue. Given
fidelity, stability and high accuracy, their system can be applied in clinical practice for better
quality detection of colon polyps.

Yuan et al. [111] produced a model of DenseNet-UDCS to detect tissues from the
WCE images, considering small inter-class variances in the dataset, the image unbalanced
problem, and large intra-class differences. Their results found a tissue recognition accuracy
of 93.19%, presenting that the proposed DenseNet-UDCS could detect polyps from the
images and could classify the endoscopic images accurately.
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Jia et al. [112] proposed PLPNet, which is a two-stage framework for the detection
of pixel-accurate tissues in images of colonoscopy that achieved accuracy using a CNN.
They utilized the MICCAI 2015 dataset with results that improved on the generality and
effectiveness of the produced system. PLPNet is effective, simple, and fast at inference and
can be suggested for applications in clinical practice.

Tripathi et al. [113] presented a method using histopathological images that combined
deep and handcrafted features utilizing medical datasets (ImageNet). Two datasets of
colon cancer nuclei were used. They combined methods of DL in different ways, which
led to the best approach that used AlexNet, VGG16, VGG19, ResNet50, DenseNet121, and
InceptionV3 methods. Then, they combined handcrafted features that directly depended
on raw images instead of object-level features.

For better performance, they used weak descriptor features to remove the artifacts
present around the nuclei and background. To reduce space and computational complexity,
they combined techniques of handcrafted and deep networks. They utilized an experi-
mental dataset by randomly categorizing the dataset into testing, validation, and training
subsets of 15%, 70%, and 15% respectively, and the network was enhanced by 15% on the
validation sets and 70% on the training set.

Javed et al. [70] showed a detection algorithm for a cellular community with semi-
supervised phenotyping of tissue. This depended on polyp classification, clustering, and
the detection of image patches into communities with meaning. For cell classification
and detection, they first used deep neural networks and then utilized tissue–tissue links
between these tissues for computing feature vectors at the slide level. For constructing a
network at patch level, they used these feature vectors through the chi-square distance,
where the weights of each node and edge were inversely proportional to the distance
between the vectors of the feature.

They proved that their algorithm is for both handcrafted and deep-learning features
that complement each other. The results were: specificity 0.920%, accuracy 0.898%, recall
0.898%, precision 0.936%, and F1 0.914% for the Etis-Larib dataset. The results for the
CVC-ClinicDB dataset were: specificity 0.994%, accuracy 0.985%, precision 0.985%, F1
0.985%, and recall 0.985%.

Shaban et al. [64] presented a context-aware CNN for cancer staging capable of a
context that was 64-times larger than normal CNN-based slide classifiers. The quantitative
and qualitative results showed that their method enhanced domain-oriented techniques,
methodologies of classification based on patches, and existing methods of context.

Nadimi et al. [114] presented a CNN for autonomous colorectal tissue detection
in images captured during WCE in the evolution of colorectal cancer with the risk of
malignancy. They utilized Kvasir datasets and WCE images from independent datasets,
and the results showed an unprecedented sensitivity of 98.1%, a high accuracy of 98.0%,
and a specificity of 96.3%.

Mostafiz et al. [115] presented a powerful detection system of gastrointestinal polyps
in endoscopic videos. The presented method explains an automatic system depending
on an extraction of new schemes of colored features as support for the gastrointestinal
detection of polyps. Their system showed higher accuracy from the analysis of ROC. The
experimental results on standard public databases produced that the presented system
outperformed the previous conventional approaches, obtaining a sensitivity of 99.91%,
accuracy of 99.53%, and specificity of 99.15%.

Ozawa et al. [116] used a Single-Shot Multi-Box Detector, which is a CNN. They
utilized 4013 images of normal colorectums and 16,418 images from 4752 CPs for training,
and then using 7077 colonoscopy images, considering 1172 CP images from 309 different
kinds of CP for validating. The speed of diagnostics for the classification and detection of
CP were measured as a factor of quality of the trained model. The trained network detected
1246 CP with a PPV of 86% and a sensitivity of 92%. The PPV and sensitivity were 83% and
90%, respectively, for the white light images, and 98% and 97% for the narrowband images.
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Table 8. Summary of DL-based studies for colorectal cancer diagnosis.

Author (Year) Topic Imaging Modality DL Architecture Datasets Availability Results

Hou et al. [50] (2019) Polyp segmentation HIs CNN Public Reduce the error of segmentation by 7.8%, 5.4%, and 3.2%.

Janowczyk et al. [53] (2016) Polyp Detection Digital-Pathology (DP) NIA Public TPR: 86%
PPV: 64%

Tripathi et al. [113] (2020) Polyp Detection HIs

AlexNet
VGG16
VGG19
ResNet50
DenseNet121
InceptionV3

Public
Precision: 0.62%
Recall: 0.63%
AUC: 0.03%
Loss: 0.0043

Shapcott et al. [101] (2019) Polyp detection HIs CNNs Private Accuracy: 65%

Ben Hamida et al. [117] (2021) Polyp detection Digital pathology (DP) ALEXNET Public CRC-5000-Accuracy: 98.66%
NCT-CRC-HE-Accuracy: 99.12%

Liewa et al. [118] (2021) Polyp Detection
CVC-ClinicDB Endoscopic Images ResNet-50 Public

Accuracy: 99.10%
Sensitivity: 98.82%
Precision: 99.37%
Specificity: 99.38%

Pacal et al. [20] (2020) Polyp Detection CT RNNs, Autoencoders
(AEs) Public sensitivity: 0.91

De et al. [103] (2019) Polyp Segmentation Colonoscopy Images CNNs Public F1-Score: 91.4%
FPR: 0.079

Javed et al. [70] (2020) Detection of Polyp Colonoscopy Images CNN Public

Specificity: 920%
Accuracy: 89.8%
F1: 91.4% Recall: 89.8%
Precision: 93.6%

Sikder et al. [119] (2021) Polyp Detection MRI CNN Private Accuracy: 93%

Kang et al. [104] (2019) Polyp Segmentation Colonoscopy CNN Public
Dataset results of Etis-Larib:
recall: 74.37%, precision: 73.84%,
IoU: 66.07%

Sornapudi et al. [105] (2019) Detection of Polyp WCE + Colonoscopy CNN Public

Dataset results of ResNet-101:
F2: 78.70%
recall: 80.29%,
F1: 76.43%,
precision: 72.93%.
Dataset results of ResNet-50:
recall: 67.79%,
F2: 66.57%,
precision: 62.11%,
F1: 64.83%

Jia et al. [112] (2020) Segmentation of Polyp Colonoscopy CNN Public
recall: 81.7%,
Precision: 63.9%,
F2: 77.4%,
F1: 71.7%
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Table 8. Cont.

Author (Year) Topic Imaging Modality DL Architecture Datasets Availability Results

Ozawa et al. [116] (2020) Polyp classification of colorectal and auto-
mated detection of endoscopic Colonoscopy CNN Private

Detection:
PPV: 86%,
sensitivity: 92%
Narrow-band images classification: 81%
Conventional white-light Classification images: 83%

Zhang et al. [106] (2019) Detection of Polyps Colonoscopy CNN Private
F1: 84.24%,
recall: 76.37%,
Precision: 93.92%

Zobel et al. [107] (2019) Polyp Detection Colonoscopy CNN Private
F1: 89%,
precision: 86%,
Recall: 93%

Ma et al. [108] (2019) Polyp Localization Colonoscopy CNN Private
sensitivity: 93.67%,
accuracy: 96%,
AP: 94.92%,
specificity: 98.36%

Shaban et al. [64] (2020) Polyp Detection and Classification Colonoscopy CNN Private F2: 66.07%,
F1: 68.72%

Blanes-Vidal et al. [109] (2019) Polyp detection WCE CNN Private
sensitivity: 97.1%,
Accuracy: 96.4%,
specificity: 93.3%

Wang et al. [110] (2019) Real-time automatic detection system Colonoscopy CNN Private ADR Increment 9.1% vs. 20.3%, p < 0.001)

Mostafiz et al. [115] (2020) Polyp Detection Colonoscopy CNN + CEMD Public
sensitivity: 99.91%,
Accuracy: 99.53%,
specificity: 99.15%

Yuan et al. [111] (2019) Polyp Recognition WCE CNN Private

Accuracy: 0.9319,
precision: 74.51%,
recall: 90.21%,
F1: 81.83%

Nadimi et al. [114] (2020) Colorectal polyps Localization and Au-
tonomous Detection WCE CNN Private

sensitivity: 98.1%,
Accuracy: 98%,
specificity: 96.3%

Javed et al. [70] (2020) Detection of Cellular Community for Issue
Phenotyping Histopathology Handcrafted, CNN Public

Patch level separation:
average F-score for CCT dataset: 94.5%,
average F-score for CRC-TP dataset: 91%
Patient level separation:
average F-score for CRC-TP dataset: 84%
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Table 9. General strengths and limitations of DL studies.

Author Strengths Limitations

Hou et al. [50] (2019) • Their approach generalizes significantly better to cancer cases without training data.
• Investigated the best quality without supervision cost. • Not generalized with mixed-quality image classification.

Shapcott et al. [101] (2019) • Reported cellularity, which has been linked to patient and prognostic indicators and other di-
agnostic.

• Not handling small clusters or tumor polyps of up to five polyps in the stroma, which is associ-
ated with aggressive cancer.

Ben Hamida et al. [117] (2021) • Their method improved the results when treating with a sparsely annotated dataset • Techniques for accuracy not compatible with computational cost balance.

Liewa et al. [118] (2021) Their approaches are robust enough to assist in CAD Their classification system can misclassify images taken by colonoscopy/endoscopy according to the
structure and image color characteristics, which are naturally irregular in the colon.

Pacal et al. [20] (2020) Presented a comprehensive survey with all overviews. Their model did not determine a common experimental setup and evaluation criteria.

Sikder et al. [119] (2021)
• The method is pointedly precise, supported, and practical.
• Can detect malignant cells automatically.
• Their collection gives high accuracy, particularly after performing the algorithm of ML.

• For large datasets, the used algorithm showed high complexity time.
• Low accuracy rate.

Kang et al. [104] (2019)
• Used a strong object for detection CNN called Mask R-CNN.
• Utilized a successful ensemble model for combining the two masked approaches of R-CNNs

with various backbone structures.

• Less backbone structures.
• Less efficient segmentation,
• However, the successful ensemble method should be used with backbone structures.

Sornapudi et al. [105] (2019)
• Successful detection and accurately used the segmentation method.
• The proposed approach showed better performance on the WCE video frames than images of

colonoscopy.

• Used the Etis-Larib dataset that does not produce efficient precision
• Training data is not sufficient for an accurate model.

Jia et al., [112] (2020) • Improved the residual learning and the feature pyramids.
• Developed the segmentation task of polyps. • Less stage integrations of PLPNet.

Zobel et al. [107] (2019) • Reduced the computation time.
• Detected too many FB areas. • The small training database for training a Mask R-CNN with a ResNet-101 backbone.

Ma et al. [108] (2019) • Overcome the problems of overfitting and gradient vanishing. • Not enough images for a training model.

Shaban et al. [64] (2020) • Well-suited for the CRC staging task. • Not efficient for digital images at the whole-patch level for the analysis of patient survival.

Blanes-Vidal et al. [109] (2019)
• The used algorithm was able to determine the polyps’ similarity and determine the degree that

is related to how true a match is.
• The used algorithm can be generalized.

• High cost of information required on the location assessment and the polyp morphology.
• The detection algorithm was not efficient with the number of used images.

Wang et al. [120] (2020) • Achieved the effect of an automatic detection system for polyps, which was dependent on the
DL for the detection rate for polyps and ADR.

• The proposed system may be difficult to evaluate.
• Lack of external validity.
• False-positives rates were low.
• Fatigue level of participating endoscopies were not controlled for in this system, which consid-

ered this as an independent factor on ADR.
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Table 9. Cont.

Author Strengths Limitations

Mostafiz et al. [115] (2020) • Produce computer-aided system with great accuracy. • Small amount of FP and FN values.

Yuan et al. [111] (2019) • Model of DenseNet-UDCS was superior in accuracy of detection. • In the dataset, there are variances of small inter-class and unbalanced images and large intra-
class differences.

Nadimi et al. [114] (2020)
• The general rules are task-independent with less ambiguity for optimal feature selection.
• Better results compared with other state-of-the-art detection of polyps by a wide margin.
• Network predictions are given more interpretability.

• Did not produce sufficient concrete interpretability.

Ozawa et al. [116] (2020) • Trained CNN presented a robust result for the detection and classification of CP. • This is retrospective research in a single association.



Sensors 2022, 22, 9250 27 of 35

Ben Hamida et al. [117] proposed and assessed state-of-the-art models of DL for the
pixel- and patch-level classification of a sparsely annotated dataset for colorectal histopathol-
ogy. They presented, from a dataset of generalized multimedia, the utilization of transfer
learning to a specific context of histopathological images. They used available datasets,
such as the AiCOLO, ImageNet, and the GlaS datasets, but still had certain limitations,
including gradient-vanishing problems, the main weakness that classical CNNs suffer from,
which can control their ability to provide representations of generic data. Consequently,
various improved techniques were produced, called RNN and inception models [28,37,38].

Liewa et al. [118] showed a new aggregation of a PCA with modified deep-residual
CNNs and an ensemble-learning model for a colonic classification system of polyp. They
evaluated their model by computing the MCC, sensitivity, accuracy, specificity, and preci-
sion. In the experiment of 1517 images from a collection of three free databases that are
public and accessible, they acquired beneficial results with 0.9819 MCC. The precision,
specificity, accuracy, and sensitivity of tissue classification were 99.37%, 99.38%, 99.10%,
and 98.82%, respectively. Therefore, these results produced approaches robust enough to
help in CAD. They used some available datasets, including Kvasir, CVC-ClinicDB, and
ETIS-LaribPolypDB.

5. Current Challenges

This survey provided an overview of colon cancer and its stages to be diagnosed to
determine the appropriate treatment. ML and DL techniques are used in image-processing
methods to accurately detect this type of cancer. These methods play an essential role in
many applications, such as construction, image recognition, health assessments, medical
diagnosis, and defect identification. However, there exist many challenges facing the colon
cancer diagnosis process. In this section, we discuss the challenges related to the process of
colon cancer diagnosis, which are classified into two main aspects as introduced below.

5.1. Challenges Related to Image Modalities

This survey discusses the different modalities used to image tumors. MIA is an active
topic to research in the ML area. Colorectal cancer screening uses a common method, which
is HIs, where images have been taken using microscopes to locate, examine, classify, and
provide a comprehensive view of the grades of cancer. Each modality has its strengths. By
merging images from multiple modalities, we combine their strengths; however, this also
has its flaws as discussed in this survey. Below, we list the most common challenges related
to different imaging modalities.

• CTC Images:
These have several challenges when isolating and enumerating. The first is that the
cells have various structures, which creates various results for each tool in the image’s
manual review. Thus, we demand a consistent and clear explanation of classification
of the CTC [121].

• MRI Images:
MRI has a challenge, which is the discomfort for patients while capturing these images,
particularly in the anal stenosis case as well as to the movement of the rectal wall,
which also has effects on these images. In routine cancer grading, the use of phased
array coils is recommended to handle these motifs because the pelvic coil has been
shown to produce high accuracy rates of 59–95% in rectal cancer [122,123].

• PET Images:
The challenge with PET is that it only works by absorbing glucose. Although glucose
is widespread in most body cells and can be absorbed and predicted, unlike malignant
cells, it is difficult to detect in certain other tissues using the PET modality [124].
The use of a combination of CT with PET produces better results, particularly in
oncology, to diagnose and detect the stage of cancer. However, this combination leads
to several errors, such as:
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– Misdiagnosis of cancer or even its stage results from an unknown spatial shift
between the PET and CT images. For example, it is difficult to identify whether a
tumor in the lung is pleural, close to the chest wall, or invasive.

– If any tissues absorb the radiation out of the PET, a second error occurs. This
error is due to the large difference in attenuation, which is diverted to correct the
attenuation, such as the skin’s surface or the upper part of the liver.

• HIs Images:
Handling gray-scale images is considered a challenging issue of HIs. This can be
handled with certain processes, such as the transformation between the color spaces,
the change in the image sizes to adapt to the GPU, and the change in the resolution of
the images [16]. There are other challenges in the analysis process of HIs, such as a few
images to train, the representation of feature complexity, and the size of the HI being
extremely large [125,126]. These challenges are briefly discussed in the following
points:

– The variance in histopathology from one cancer case to another points to a
tangible variance in distributions of color, texture, scale, and morphology [127].
This makes it challenging to find a clear and consistent structure for the diagnosis
of cancer and for all cases of cancer. Hence, one of the primary functions in high-
level MIA is the feature representation as well as classification and segmentation.

– The size of HIs is huge. This grows the database of this modality of image
and, therefore, the computation complexity, making it a challenge to analyze the
images. For a 100,000 × 100,000 pixel image, a full scan of the histopathology
part of the model can be performed. This modality also includes two million
objects. Generally, for every patient, 12 to 20 screen images are performed under
the pathological section process. Furthermore, because the database range is large
for HIs, a good model with high efficiency both in memory and time is required,
and the algorithm for learning should be able to obtain a large amount of data
from it [128,129].

5.2. Challenges Related to Datasets

Many publicly available datasets used to diagnose many diseases, particularly colon
cancer, are briefly discussed here. Finally, DL and ML techniques help identify cancer in
nearly stage, leading to early treatment and a lower mortality rate than after symptom
development. Additionally, you can prevent colorectal cancer before it progresses by
removing nonmalignant tissues, which can be achieved through screening tests to make it
easier to diagnose the disease. Many challenges have arisen and are summarized in the
following points:

• The image size is the first obstacle if it is little or not enough to train, specifically in the
medical field.

• The medical image database is often small, making the available applications that use
ML algorithms inefficient for handling new medical images.

• The process of collecting medical images is expensive due to the two following fac-
tors: [130]:

1. The first is that the injury rate has decreased recently, and the size of MIs is
associated with the number of injury cases directly; thus, it is also difficult to
obtain the images.

2. The other purpose is that MIs require manual feedback for clarity, which requires
a great deal of effort. Furthermore, manual comments can also be vague, even if
experts write them.

6. Future Research Directions

To detect and prevent colon cancer, the gold standard is colonoscopy. According to the
reviewed research, often half of the studies contained reviews of colonoscopy, including
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polyp classification, detection, and segmentation. There are few studies on WCE that are
based on endoscopy while there are many based on colonoscopy.

In the diagnosis process of colon cancer, colonoscopy is the main and common standard
method used to confirm these data. Recently, studies are moving towards technology, such
as DL, and studying or relying on the field of ML. DL can be utilized as a secondary
tool for screening but not as an alternative for a specialized endoscopist. DL can also be
used in the detection process of missed cells by maximizing the quality of endoscopists.
In future work, researchers should consider the following research directions:

• MIA is an active topic to research in the ML area. For colorectal cancer screening using
the common HI modality, it can be handled with certain processes, such as:

– The transformation between the color spaces and the change resolution of the
images to adapt them to the GPU.

– The change in the resolution of the images to decrease the computation complexity,
making it less complicated to analyze.

– We need a consistent and clear of features definition due to the histopathology
difference from one cancer stage to another. This results in a significant distribu-
tion difference of the color texture, morphology, and scale as well as segmentation
and classification.

• We need available applications and platforms that use ML and DL algorithms effi-
ciently for handling new medical images.

• A retroactive study in more than one institute.
• Applying the emerging DL techniques, such as transfer learning, autoencoders, and

generative adversarial networks.

7. Conclusions

Generally, after diagnosing the presence of cancer, the next most important step is
diagnosing the cancer stage, since an appropriate choice of treatment method and duration
depends on this information. Identifying the cancer stage or grade mainly depends on
analyzing the structure of the tissue region, which is performed using various tests for
screening that can be utilized to explore polyps or colorectal cancer in images. This paper
presented a comprehensive review regarding the diagnosis process for colon cancer. We
presented different image modalities used for the analysis process.

The most common method used for colon cancer is HIs, which are captured by a micro-
scope. The current state-of-the-art techniques (classified into ML and DL techniques) were
reviewed, as these help to determine early-stage cancer, thus, leading to early treatment
and lowering the mortality rate. These techniques can also aid in inhibiting the progress of
colorectal cancer through the removal of nonmalignant cells after using screening tests to
diagnosis the disease early.

Regarding the scientific efforts on this research topic, we also introduced many future
research techniques to be investigated. In the future, we intend to implement a comparative
study of the most prominent ML and DL techniques in a unified environment using a set
of benchmark datasets and predefined evaluation metrics.
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