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Abstract: The study of muscle contractions generated by the muscle-tendon unit (MTU) plays a
critical role in medical diagnoses, monitoring, rehabilitation, and functional assessments, including
the potential for movement prediction modeling used for prosthetic control. Over the last decade,
the use of combined traditional techniques to quantify information about the muscle condition
that is correlated to neuromuscular electrical activation and the generation of muscle force and
vibration has grown. The purpose of this review is to guide the reader to relevant works in different
applications of ultrasound imaging in combination with other techniques for the characterization
of biological signals. Several research groups have been using multi-sensing systems to carry out
specific studies in the health area. We can divide these studies into two categories: human–machine
interface (HMI), in which sensors are used to capture critical information to control computerized
prostheses and/or robotic actuators, and physiological study, where sensors are used to investigate a
hypothesis and/or a clinical diagnosis. In addition, the relevance, challenges, and expectations for
future work are discussed.

Keywords: biosensing; ultrasound (US); electromyography (EMG); muscle-tendon unit (MTU); motor
unit (MU); monitoring techniques; biomedical engineering

1. Introduction

The musculoskeletal system is a complex structure made up of bones, muscles, and
associated connective tissues that provides stability, movement, and support to the human
body, allowing the performance of daily physical activities. It plays a fundamental role in
respiratory mechanisms and helps maintain posture, body balance, and equilibrium [1].
However, several medical conditions can occur due to abnormalities in musculoskeletal
function. In this framework, diseases such as myopathies, paralysis, and tremors, among
others, are included. Even high-performance athletes or recreational sportsmen are suscep-
tible to tendon and ligament problems, such as ruptures [2]. Therefore, understanding the
physiologic aspects of the musculoskeletal system allows the assessment of the conditions
that limit human functional performance and well-being [3]. This highlights the emphasis
on body movement studies focusing on optimizing clinical diagnoses, such as identifying
different states of relaxation, activity, and fatigue [4]. These studies also extend the evalua-
tion of the dynamics, referring to the muscular vibrations of the motor stimulation units, to
estimate the forces involved during the muscular contractions.

Since muscle strength in vivo cannot be measured directly, biomechanical computa-
tional modeling, based on the intrinsic mechanical and morphological properties of the
muscle-tendon unit (MTU), represents an important tool for understanding the muscu-
loskeletal system during locomotion [5–7]. This approach has been successfully applied
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and can describe the kinetic response of activated muscles, muscle force-producing charac-
teristics, and individual muscle momentum at different angular contractions during motor
tasks [8–10]. Hence, analysis of muscle contractions in the MTU plays a critical role in
medical diagnoses and evaluations, monitoring, and rehabilitation in addition to assisting
in movement prediction models used in prosthetic control [4,7,11].

Some researchers report the use of specific software to model, animate, and mea-
sure three-dimensional (3D) musculoskeletal figures, such as the Software for Interactive
Musculoskeletal Modeling (SIMM) (MusculoGraphics Inc., Rohnert Park, CA, USA) [6].
However, one of the biggest challenges in simulating a musculoskeletal model is estimating
the accuracy of MTU parameters on an individual-specific basis. According to Lemay and
Crago [5], sensitivity analyses showed that the behavior of the musculoskeletal model tends
to be more sensitive to values of MTU parameters. Thus, new approaches are expected
to provide a better understanding and elucidation of muscle issues involved in lateral
movement (expansion/retraction) of muscle fibers during locomotion [10,12].

In this sense, the inclusion of additional techniques, such as ultrasonography, have
been widely applied to investigate changes in the morphological structure of the tis-
sue [13]. These modalities are based on ultrasound (US), in which acoustic waves are
emitted, typically in the order of MHz, which propagate and interact with the investigated
medium [14–16]. Currently, US systems are used to assist clinical investigations and di-
agnoses, patient monitoring, and rehabilitation, contributing to the generation of images
of internal anatomical structures and blood flow in different modes, namely as A-mode
(amplitude), B-mode (brightness), M-mode (motion), continuous-wave (CW) Doppler,
pulsed-wave (PW) Doppler, and most recently, elastography mode [17].

It is worth mentioning that most commercial ultrasound systems have a typically
“closed” architecture, making flexibility for testing and research difficult. On the other
hand, there are few open research systems such as the OPEN System Phased array device
(Lecoeur Electronique, Chuelles, France) [18], the Ultrasonix 500RP (Ultrasonix Medical
Corp., Richmond, BC, Canada) [19], and the Vantage Research System (Verasonics Inc.,
Kirkland, WA, USA) [20]. Additionally, some research groups developed their own plat-
forms, such as the Ultrasound Advanced Open Platform (ULA-OP) 256 [21], the Remotely
Accessible Software Configurable Multichannel Ultrasound Sampling (RASMUS) [22], and
the Synthetic Aperture Real-Time Ultrasound System (SARUS) [16], as shown in Figure 1.

However, regarding ultrasound (US), there is a lack of investigation towards US data
fusion for assessing musculoskeletal system. To illustrate, here are only few examples: in
the review paper from Grushko et al. [23], there was an extensive review for biosensing ap-
proaches focused on prosthetic control in trans-radial prostheses electromyography (EMG),
electrical impedance tomography (EIT), near infrared spectroscopy (NIRS), sonomyog-
raphy (SMG), force myography (FMG), and phonomyography (PMG). Another similar
review presented by Zheng [24] covered FMG, EMG, and EIT as applied to human–machine
interface (HMI), i.e., for medical applications, but did not include US data. Therefore, to
cover this gap in the literature, including different and complementary modalities, this
paper presents some multi-sensing and hybrid techniques, which covers most of the appli-
cations, and it has been a vital piece for biomedical engineering. Then, this review paper
provides a guide to recent works, studies, and experiments within biomedical signals also
combined with US. Additionally, to elucidate, this paper compiles feasibility, performances,
and results regarding different applications such as musculoskeletal assessment in HMI
devices, prosthetic control, the healthcare field, and physiological studies.

This paper is divided into the following sections: Section 2 presents the background
about the techniques to be explored in this review; Section 3 covers the researchers ana-
lyzed here; Section 4 presents some suggestions and comments by the authors about new
perspectives in the area; and Section 5 summarizes this review.
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Figure 1. Adapted photographs of Open Architecture Ultrasound Systems: (a) SARUS [16], (b) ULA-
OP [21], (c) Verasonics, and (d) SonixTouch [21].

2. Biosensing Techniques

In the last decade, the use of combined traditional techniques has grown to assist in
the monitoring and quantification of lateral oscillations of muscle activity present in the
isometric contraction movement performed by the skeletal muscles [7,8,10]. Typically, these
methods quantify information about muscle condition that is correlated with neuromuscu-
lar electrical activation and the generation of muscle force and vibration [25]. Consequently,
its temporal and spectral analysis can help in the determination of muscle fatigue [26].
This section presents some biosensing techniques that guided this work, which are also
illustrated in Figure 2.
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2.1. Sonomyography (SMG)

The US imaging modality includes sonomyography (SMG), which uses transducers
with piezoelectric properties that make it possible to associate the “sound” of muscle vibrat-
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ing waves with muscle contraction, being more sensitive to pressure and low-frequency
vibration [27]. Ultrasonic waves can penetrate a few centimeters below the skin and are
reflected in a way that returns both superficial and deep information [28,29]. This reveals its
application in the observation of changes in muscle thickness, cross-sectional area, fascicle
length, and pennation angle (PA) during a muscle contraction [30–32]. These characteristics
may provide enough information for prosthetic control [13]. The device used to capture
this signal is a probe, which needs to be fixed in a position to perform the scan to acquire
the image [33]. On the other hand, this limitation makes its application difficult in terms of
dynamic conditions.

2.2. Elastography

In addition to B-mode US imaging, there is a relatively recent modality to assess tissue
stiffness, classified as elastography [34]. Shear wave elastography (SWE) allows the quan-
titative characterization of mechanical properties of tissues and has shown great potential
in numerous applications [35]. In the last decade, the 2D-SWE has been used for clinical
evaluation of the breast [36–38], liver [39–41], thyroid [42,43], and prostate [44,45]. Recently,
SWE has also been investigated for application in musculoskeletal tissues, focusing on
detecting elasticity during contraction and relaxation in vitro and in vivo [46–50]. Tech-
niques focused on present elastography possibilities such as 3D tracking using matrix
transducers with high accuracy rates, allowing the analysis of parameters such as response
time, shear wave velocity, and analysis of regions of interest in real time in different tissue
layers [51,52].

2.3. Mecanomyography (MMG)

The mechanomyography (MMG) technique has been used to evaluate the mechanical
response at low frequency (2–200 Hz) [53], that is, a vibration that propagates through the
skin surface [54], and the lateral oscillation is caused by the contraction of muscle fibers.
However, the fact that there are no well-established sensors on the market and problems
due to acoustic interference makes the technique more restricted [25].

2.4. Electromyography (EMG)

A well-explored technique to monitor muscle activity is surface electromyography
(sEMG), which consists of identifying the electrical contribution made by an active motor
unit (MU) during the contraction of muscle fibers [27]. Even though it is a popular and
widely used technique [4], it presents some difficulties when measuring deeper muscle
activities due to skin impedance, high sensitivity regarding sensor positioning, signal
attenuation, low signal-to-noise ratio (SNR), and crosstalk [8,55,56].

2.5. Additional Techniques

There are some more modern non-invasive techniques for assessing muscle activity,
such as electrical impedance tomography (EIT), which uses several surface electrodes tied
around the user’s body to measure tissue impedance in the section plane [23,57], and
near infrared spectroscopy (NIRS), which allows monitoring of muscle perfusion and
oxygenation during contractions from light emitting diodes (LED) that emit NIR light
into the tissues, while photodetectors measure the amount of light scattered close to the
tissue [23,58].

Some additional information about the muscle can be acquired through goniometer
to measure the angle of the joint [59] and plates attached to the floor to measure the
reaction force with the ground [60]. Pressure sensors and dynamometers can be used to
identify the movement and strength of the muscle joint [32,61] in conjunction with infrared
thermography and motion capture with cameras and reflective markers to measure kinetics
and kinematics [60].

To provide a better understanding of the muscle issues involved in a muscle contrac-
tion in the musculoskeletal unit, there is a demand for further investigations using the joint
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approach of EMG, MMG, force sensors, goniometer, and SMG with B-mode and elastogra-
phy images. Even wearable and compact systems for investigating the forces involved in
the dynamics of muscle vibrations are of great interest even for future developments for
dynamic applications [10,12].

3. Research and Application

Several research groups have been using multi-sensing systems to carry out specific
studies in the healthcare field to investigate deeper aspects of the musculoskeletal system.
Even though there are vast applications for US in this topic, we divided the modalities of
each study to standardize the whole work and ease the task for the reader. First, we bring
the applications of US into HMI, in which sensors are used to capture critical information
for controlling robotic prostheses and/or actuators. Later, it comes the physiological
studies, where sensors are used to investigate a hypothesis, clinical diagnosis, and/or
mathematical models.

3.1. Human–Machine Interface

The extraction of features regarding the morphological changes of the muscle can
be done through US scanning in A-mode, B-mode, or even M-mode. Figure 3 presents
wearables embedded with US transducers and sEMG sensors for prosthetic applications.
Table 1 shows the specific characteristics and equipment used in each work reported in this
investigation.
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Figure 3. Adapted photographs of wearable systems using ultrasound and sEMG: (a) hybrid armband
supporting sEMG electrodes and US transducer, developed by authors [62]; (b) sensory module
integrating US transducer in the black area and sEMG electrodes within gray area, where the reference
electrode is on the top, designed by [63]; and (c) four-channel A-Mode ultrasound armband, adapted
by the group [56].

3.1.1. A-Mode Ultrasound

In this modality, the signal provides information about echo amplitude, implying
in 1D display, pointing only in the direction where the probe is facing and resulting in
waveforms with spikes and peaks at the interface of two different tissues [64].

In the work of Guo et al. [13], the performance of the surface EMG and 1D SMG
signal was investigated from three different wrist extension movements, and changes in
tissue thickness were analyzed in real time. This same group also published a work in
2011 [8] that presented a study comparing the strength and angle control performance of
1D SMG signals and sEMG during an isometric contraction and wrist extension. The results
indicate that the SMG signal can generate a more consistent prosthetic control performance
compared to the EMG signal in isometric contraction and pulse extension activities.

A portable sEMG and A-mode US hybrid sensing system for human–machine interface
(HMI) was developed in Xia et al. [62], which includes a solution with an armband design,
a printed circuit board hardware, and a multi-source procurement strategy. They also
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presented the feasibility of implementing a hybrid sEMG and A-mode US proposal. It also
points out that this combination adds up when investigating muscle contraction at a greater
depth in the muscle (US > sEMG) and, at the same time, brings a more concise reading
when the hand is in a resting state (sEMG > US). However, there is still room for wireless
communication to improve the system compactness.

HMI was also implemented in a US imaging study conducted by Yang et al. [56].
For this experiment, the muscle thickness was extracted from a US image to perform a
non-linear mapping between the muscle thickness and the degree of fatigue, concluding
that there was a linear relationship between muscle strain and normalized biceps brachial
torque. In this context, a major issue to address is the transducer shift, which occurs more
often during wrist pronation and supination.

Recently, a group developed [65] a wearable system with 8 A-Mode US channels and
miniaturized with US transducers for sensing muscle morphological deformation during
limb movement via multiple perspectives of muscle contraction monitoring. In addition,
it can be applied for prosthesis control, virtual reality interaction, and human movement
analysis, among other applications. Yet, there is a need for deep investigation about the
number of transducers to achieve optimal results for prosthesis control. In the same topic,
the group from Lu et al. [66] proposed a scheme based on wearable A-Mode Ultrasound for
gesture recognition. In addition, they contributed to real-time experiments by evaluating
four online performance metrics, which achieved high performance. Furthermore, they also
compared different features in 3D map and introduced relative offset rate of quantitative
analysis. Furthermore, it was shown that A-Mode ultrasound has some limitations, capable
of detecting depth in only 1D, which means that offset of the transducers and different arm
posture can decrease its recognition accuracy.

3.1.2. B-Mode Ultrasound

This type of scan can produce 2D images of the underlying tissues [64], also called the
brightness mode (B-Mode). In this modality, measuring the distance between two fascias
becomes easier, as it presents visualization of a cross-section of anatomical structures [67].

The group [68] proposed a new prosthetic control model by classifying the movement
intention and making it more intuitive based on the control’s proportional position without
multiple degrees of freedom (DOF). They also employed a portable US system in which
the participants performed predefined hand movements while data from the forearm were
captured. For classification, the k-nearest-neighbor (kNN) method was used. It has been
shown that both healthy subjects and amputees can use the SMG signal to control the
1-DOF virtual cursor position simply by flexing the forearm muscles appropriately. The
SMG offers position control capability in a single DOF. They also used a sonomyography
(SMG) application although this approach is still too robust for commercial prosthesis.

Wang et al. [63] performed another experiment where B-mode US signals were tried
and compared with sEMG signals to recognize movement intention in people with trans-
radial amputation. The results show that US signals can achieve better accuracy than
surface electromyography signals in specific and controlled test environments; however, it
ends up being more sensitive to artifacts.

Jahanandish et al. [11] tried to assess the feasibility of a reliable prediction of kinematics
arising from joint movements by using as a basis the characteristics extracted from US in
lower-limb muscles. Additionally, the amount of time that US precedes joint action during
experimental weightless knee flexion/extension was characterized.

The same group also evaluated the wearable US imaging (WUSI) as a new modality for
continuous classification of five discrete modes of ambulation [69]: level, incline, decline,
ascending and descending ambulation ladder, and performance of reference concerning the
EMG. They concluded that the wearable US sensing significantly improves the classification
accuracy of multiple ambulation modes compared to sEMG. It was also found that US
sensing can be performed with fewer sensors spread over the limbs compared to other
sensing modalities.
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The neuromuscular signal can be used to predict moments such as dorsiflexion, which
is generated by the tibialis anterior (TA) muscle. Therefore, the group [70] tried to com-
pare some approaches to this signal by analyzing their prediction performance. Surface
electromyography signals and three signals derived from US imaging were used: fiber
length, pennation angle, and echogenicity. As a conclusion, they observed an increase in
the dorsiflexion moment prediction performance when using the pennation angle, fascicle
length, and sEMG variables compared to the echogenicity variable.

3.1.3. M-Mode Ultrasound

This modality is called motion mode (M-Mode), which reflects motion aspects of
connective tissues within muscles by using a narrow beam to produce a 1D view of
anatomical structures over time [67,71,72].

This mode was tried in the work of [73], in which they tested its feasibility for finger
and wrist movement recognition by analyzing 13 different gestures. The separability index
(SI) and the semi-major axis mean (MSA) were used, which were calculated to quantify
the spatial characteristics of both modalities. They found that for the M-mode, there was
a higher value for the SI and a lower value for the MSA compared to B-mode. In the
classification for motion recognition, the M-mode presented a slightly lower result in
only two gestures, being slightly superior in the others. In general, the performance of
both modes was not significantly different even though in this experiment, the M-mode
presented less spatial information. They believed that this result was due to the high
sampling rate of M-mode when compared to B-mode, thus compensating for the smaller
amount of spatial information. This implies a potential in the study of M-mode to build an
HMI with less delay and better performance.

Still, in this modality, it would be interesting to investigate whether the M-mode has
the same sensitivity regarding the fixation of the US probe in relation to the B-mode since it
has a high sampling rate.

3.1.4. Multi-Sensor Studies without Ultrasound

In the study by Geng et al. [74], the classification of EMG and MMG signals through
the type of movement and position with multiple classes, performed in different limb
positions of subjects with trans-radial amputation, was analyzed and compared.

Table 1. Summary of HMI Research.

Authors Signals Region Specifications Data and Features Subjects

Guo et al., 2009 [13] US, EMG Forearm

10 MHz A-Mode
Transducer, with a
diameter of 6 mm
inserted into a
support made with
silicone gel of 20 mm
in diameter; A-mode
with 17 Hz frame rate

Muscle Deformation
Signal (SMG); RMS
EMG

16 (8 men and 8
women)

Guo et al., 2011 [8]
US, EMG, Force and
Direction Sensors,
Goniometer

Long Radial Extensor
of the Carpus

10 MHz A-Mode
Transducer, 7 mm
diameter

RMS EMG; 1D SMG;
Wrist Angle; Force

16 (8 men and 8
women)

Geng et al., 2012 [74] EMG, MMG Forearm Classifier: LDA

EMG: MAV, ZC, WL,
and SSC.
MMG: MAV,
Variation, and
Maximum Value

5 (4 men and 1
woman)



Sensors 2022, 22, 9232 8 of 18

Table 1. Cont.

Authors Signals Region Specifications Data and Features Subjects

Yang et al., 2018 [56] US Forearm

5 MHz A-Mode
Transducer, 14 mm
diameter and 18 mm
height;
Classifiers: LDA and
SVM

US A-Mode, Method
for Feature
Extraction:
Segmentation and
Linear Fitting

8 men

Xia et al., 2019 [62] US, sEMG Forearm

5 MHz Linear US
Transducer; Custom
EMG and US
Acquisition Module.

EMG: MAV, WL, ZC,
SSC, and AR6.
US: MSD

8 men

Dhawan et al.,
2019 [68] US Forearm

US images at 15
Frames per Second
(FPS).
Classifier: kNN

Position Error, Error
Stability, Task
Completion, and
Movement Time

5 (4 unilateral
amputations and 1
bilateral upper-limb
amputation) + 5
healthy (control
group)

Wang et al., 2020 [63] US, EMG Forearm
5 MHz US
Transducer with 10
FPS

EMG: RMS, MAV,
WL, and AR4

One subject with
trans-radial
amputation

Botros et al., 2020 [75] EMG Wrist, Forearm Classifier: LDA and
SVM

EMG: RMS, MAV,
WL, ZC, and SSC

21 subjects (14 men
and 7 women)

Jahanandish et al.,
2020 [11] US Rectus Femoris (RF)

US Transducer with
50 dB Dynamic
Range

Muscle Thickness;
Angle between
Aponeuroses;
Pennation Angle;
Fasciculus Length;
echogenicity

9 (5 men and 4
women)

Zhang et al., 2021 [70] US, EMG Ankle, Tibialis
Anterior (TA)

Linear US Transducer
with 6.4 MHz Center
Frequency.
Models: LR, FFNN,
and HNM

Pennation Angle,
Fasciculus Length,
Echogenicity, sEMG
Mean RMS,
Maximum Force, and
Moment

3 men

Souza et al., 2021 [76] EMG, ACC, Sliding
and Force Sensors Forearm

12 EMG and 36 ACC.
Classifier: PCA, LDA,
RFT, and MLP

EMG: MAV, RMS,
WL, logRMS,
Variance, Kurtosis,
and Skewness

Dataset NinaPro DB2:
34 (12 women and 28
men); DB3: 11
trans-radial amputee
(11 men)

Rabe et al., 2021 [69] US, EMG

Rectus Femoris (RF),
Vastus Medialis
(VM), Vasto
Intermediate (VI)

128-element Linear
US Transducer with a
Transmission
Frequency of 7.5
MHz and a Dynamic
Range of 50 dB.
Custom
Synchronization
Software Displays US
Images and EMG
Signals with 1 ms
Temporal Resolution.

5-EMG, 8-EMG: MAV,
SSC, ZC, WL, and 2
coefs.
AR4 US: Aponeurosis
Angle, Muscle
Thickness, Fascicle
Length, and
Echogenicity

10

X. Yang et al.,
2021 [65] US Wrist

A-Mode Transducer
with a Diameter of 9
mm and Height of 11
mm

Wrist Rotation Angle
(Mean, Standard
Deviation, Maximum,
Minimum, Sum,
Skewness, Kurtosis)

8 men
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Table 1. Cont.

Authors Signals Region Specifications Data and Features Subjects

J. Li et al., 2022 [73] US Forearm

US 5–12 MHz Linear
Transducer with 50 ×
4 mm Contact
Surface; Videos
Stored at 30 Hz.
Classifier: SVM and
BP

Separability Index
(SI) and Mean
Semi-Principal Axis
(MSA)

8 (7 men and one
woman)

LU et al., 2022 [66] US Forearm

4-channel A-Mode
Ultrasound at 10 FPS.
Classifier: LDA,
SVM, and Naive
Bayes (NB)

Mean, Variance, and
Energy

10 (8 men and 2
women)

AR, Autoregressive Model; BP, Back Propagation; FFNN, Feed-Forward Neural Network; HNM, Hill-type
Neuromuscular Model; kNN, k-Nearest Neighbor; LDA, Linear Discriminant Analysis; LR, Linear Regression;
MAV, Mean Absolute Value; MLP, Multilayer Perceptron; NB, Naive Bayes; PCA, Principal Component Analysis;
RFT, Random Forest; RMS, Root Mean Square; SSC, Slop Sign Change; SVM, Support Vector Machine; WL,
Waveform Length; ZC, Zero Crossing.

In Botros et al. [75], a systematic review was performed on the applicability of hand
gesture recognition from EMG signals acquired at the wrist. As a result, it was found
that the acquisition of signals from the wrist suffers fewer losses from noisy artifacts than
signals obtained from the forearm.

In the research of Souza et al. [76], a real-time hardware and software control of an open
system hand prosthesis was performed using EMG signal, slip sensors, and force sensors
in instrumentation. In this case, machine learning was applied for gesture recognition. The
experimental result shows that combining EMG and accelerometry (ACC) data improves
recognition accuracy. It was also found that the body mass index (BMI) of each volunteer
affects the classification accuracy, so the lower the BMI, the better the accuracy.

3.2. Physiological Studies

As shown before, US data can provide useful knowledge at the muscle tissue level,
such as thickness change (TC), cross-section area (CSA), echogenicity, joint angle, pennation
angle, and fascicle length [67]. These data also have good correlation with other techniques,
such as EMG, MMG, muscle force, deformation, joint velocity [27]. For EMG and MMG
signals, RMS and MPF features are useful to analyze muscle activation and movement
tracking during an exercise or a physical activity. Even though EMG is an electrical
muscle activity, it also shows information at neuromuscular junction level [54], as for the
mechanical signal, MMG can illustrate sound waves at the muscle level [53].

In addition, US modalities are vastly deployed with other biomedical signals to
support clinical evidence [10,27] to enhance accuracy in detecting irregularities, muscle
dystrophy and myositis [77], and neuromuscular disorders using electromechanical (EMD)
indicator to predict, e.g., spastic cerebral palsy and ligament laxity [54]. It is applied with
the golden-standard EMG/neuro conduction study (NCS) to improve false-negative results
(10–25%) in carpal tunnel syndrome (CTS) and nerve damage assessment [78,79], enabling
real-time dynamic visualization of moving tissue, blood flow with Doppler imaging, and
serving as guidance throughout the procedure, protecting the target and surrounding
soft tissue structures in diagnosis and therapeutic needle EMG [78]. Quantitative muscle
ultrasound (QMUS), which uses the mean echogenicity or calibrated backscatter technique,
is currently one of the most reliable techniques to assess classic neuromuscular disorders,
e.g., Duchenne muscular dystrophy (DMD), Pompe disease, or spinal muscular atrophy [77].
Figure 4 shows the experimental sensors placements and setups for specific movement
studies, where (a) and (b) work with dynamic muscle behavior and (c) with reflective
markers to track the joint angle. This approach helps in building a more robust and precise
analysis and correlations. Furthermore, it could also be helpful in mathematical models.
Table 2 contains information about setups and the systems used for each experiment.
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Figure 4. Adapted photographs of multi-sensor setups for physiology research: (a) experimental
setup done by [80] with EMG, goniometer and US; (b) wearable mobile sensing system with real-time
US imaging, EMG electrode, mechanomyography electrode, force sensors and goniometers placed in
the shank and foot, developed by [10]; and (c) experimental setup with reflective markers placed in
the back side of the hand, with US probe supported by an armband along the forearm and sEMG
electrodes, presented by [81].

3.2.1. Signal Correlations

A system was used for simultaneous EMG, MMG, and SMG collections in [27] to
study the rectus femoris (RF) muscle during an isometric contraction ramp for different
contraction speeds. Then, an algorithm for monitoring the US image was developed to
extract the cross-sectional area automatically. This study demonstrated that the SMG–
torque relationship is less affected by contraction speeds, which differs from the EMG and
MMG signals during an isometric ramp contraction, pointing out that the SMG can provide
important morphological parameters of a continuous contraction.

In study of [82], EMG and SMG were captured separately in several series of plantar-
flexion movements to assess the TA muscle of subjects with hemiplegia. They traced the
relationship between TA muscle thickness changes and the patients’ muscle strength, which
showed that SMG may be a promising option for quantitative estimation of muscle strength
level (MSL) for patients with hemiplegia during rehabilitation. Yet, there is a need for
further investigations with a larger number of subjects clustered according to age, gender,
or pathological approaches.

Through analytical cross-correlation, the group [83] compared the thickness of the
gluteus muscle of female subjects derived from the US imaging in relation to kinematics,
kinetics, and sEMG. They observed that hip muscle thickness, sEMG signal, kinematics, and
kinetics are related in a time spectrum. The authors also showed that the electromechanical
delay that occurs is approximately 99 ms in the morphological responses of the US imaging.
As these findings were achieved with a small female group, it could not be generalizable
for a broader population or for males.

Without the ultrasound signal, to present a low-cost sensing system, the group [4] a
developed a system capable of monitoring muscle activity in the face of physical activity.
The objective of the study was to segment the phases of muscular activity and compare
the results obtained from RF muscle with MMG, EMG, and inertial measurement unit
(IMU) during the exercise. The result demonstrated how the combination of information
from a muscle contraction, provided by the EMG and MMG signal, and from a dynamic
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movement acquired from the IMU can improve the understanding of human muscle and
activity movement in a specific period of contraction.

3.2.2. Gait Analysis

The dynamic behavior of the muscle during a gait of a patient after hemiparetic stroke
was investigated by Chen et al. [80]. They aimed to examine the contraction patterns of
muscle activity in the lower extremity and compare the affected side with the unaffected
one. An image-tracking algorithm was developed to automatically extract continuous
changes from the gastrocnemius muscle, making it possible to identify muscle morphology
at high temporal resolution.

Another group [10] developed a mobile sensing system with real-time US imaging
to capture and analyze human movement by applying a gait analysis. Their approach
was rated with moderate-good reliability across the various channels. Some changes were
identified in the lateral head of the gastrocnemius (GM) muscle during a gait through the
comprehensive assessment of muscle activity by multiple modalities integrated into the
system. One limitation of this type of study is the small size population. As the developed
system is a prototype, its frame rate reaches only up to 10 Hz, and there is still room for
improvements, especially regarding the wired connections.

B-mode US imaging was also used to measure the in vivo contractile dynamics of the
soleus (SO) muscle fascicle during an exoskeleton-assisted walk [12]. Rotational stiffness of
the exoskeleton has been shown to alter the tuned catapult behavior of the ankle plantar
flexor. As stiffness increased, fascicle length and velocity increased, and they became more
likely to be affected by the force-producing capacity of the muscle as an effect of muscle
strength changes by activation calculation.

3.2.3. Ultrasound in Motor Unit Analysis

Structural parameters of the muscle were studied through US images on the effect of
neuromuscular electrical stimulation (NMES) by Qiu et al. [84]. The authors found that the
SMG can be an effective alternative for detecting and pacing current response in an NMES
application.

A new framework was developed by Zheng et al. [81] to estimate muscle movement
in a transverse plane and to detect the activated muscle in a transverse US image. An
algorithm was used to trace the displacement of the muscles and generate a strain field
in a transverse plane. The first experiment found that the developed method can identify
muscle contractions in both superficial and internal layers from intramuscular acquisitions.
In the second experiment, the technique was insensitive only for passive shortening of the
muscle since the speed joint movement was small. There was also no activity in the stretch
reflex, causing the muscle strain to be minor in this condition.

Table 2. Summary of Physiological Study.

Authors Signals Region Specifications Data & Features Subjects

Chen et al., 2012 [27] US, EMG, MMG Rectus Femoris (RF)

NI PCI with 25 FPS and
0.15 mm resolution;

Image Processing Method
via “Deformation

Tracking” for Continuous
CSA Extraction

RMS EMG, RMS
MMG, Cross-Section

Area (CSA), and
Torque

9 (6 men and 3
women)

H. Li et al., 2014 [82] US, EMG Tibialis Anterior (TA)

US Transducer with 7.5
MHz at a Detection

Depth of 70 mm; 128
frames in 10 s

SMG: TC (Thickness
Change).

EMG: RMS

12 (9 men and
3 women)
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Table 2. Cont.

Authors Signals Region Specifications Data & Features Subjects

Qiu et al., 2016 [84] US, NMES

Quadriceps Femoris
(Rectus Femoris (RF),
Vastus Intermediate
(VI), Vastus Medialis

(VM), and Vastus
Lateralis (VL))

US 3.5 MHz Transducer;
Capture Card for 25 FPS

B-Mode; Stimulation
Pulse of 300 US and
Frequency of 25 Hz,

Stimulation Current from
0 to 150 mA (470 Ohms)

Muscle Thickness
and Joint Angle (JA)

7 (5 men and
2 women)

Chen et al., 2017 [80] US, EMG,
Goniometer Gastrocnemius (GM) Video Capture Card with

25 FPS

RMS EMG,
Pennation Angle

(PA), and Joint Angle
(JA)

12 (9 men and
3 women)

patients with
chronic and

subacute stroke

Ma et al., 2019 [10]
US, EMG, MMG,

Force Sensor,
Goniometer

Lateral Head of
Gastrocnemius,

Tibialis Anterior (TA),
Ankle, Heel, Forefoot

US Probe with 7.5 MHz;
VICON with 250 Hz;

Power Plate with 1 kHz;
Ultrasound Images at

10 FPS

Normalized EMG
and MMG peak

value; CSA; Joint
Angle and Force

10 (7 men and
3 women)

Woodward et al.,
2019 [4] EMG, MMG, IMU Rectus Femoris (RF)

IMU with Triaxial 2000◦

per Second Gyroscope
(STMicroelectronics

L3G4200D), 16 g Triaxial
Accelerometer (Analog
Devices ADXL345), 8 G

Magnetometer
(Honeywell HMC5883L),
and a −500 to +9000 m

Barometer (Bosch
BMP085)

MPF and RMS EMG
and MMG signals

5 (4 men and
1 woman)

Ling et al., 2020 [54] US, EMG, MMG,
Force Sensor Tibialis Anterior (TA)

Ultrasound images at
20,000 FPS with an

imaging depth of 3.5 cm

Movement Onset
Time: EMG, MMG,
SMMG, and Force

P1: 7 (3 men and
4 women); P2: 8

(5 men and
3 women)

Nuckols et al.,
2020 [12]

US, EMG, Force
Sensor, Calorimetry

System, Motion
Capture System

Soleus (SO)

7.5 MHz 96-Element US
Transducer: Automatic

Software to Determine FL
and PA; Vicon with 44
Reflective Markers to
Capture 6 DOF of the
Foot, Shin, Thigh, and

Pelvis

Joint Velocity, Joint
Angle, RMS sEMG,

Muscle Force,
Fasciculus Length

(FL), CSA

11 (7 men and
4 women)

DeJong et al.,
2020 [83] US, EMG Gluteus

8 MHz US Wireless
Linear Transducer in

Mode-B; Vicon Sampled
at 250 Hz with

MotionMonitor software
(Innovative Sports

Training,
Chicago, IL, USA)

sEMG RMS, Muscle
Thickness

Change (TC)
14 women

Rohlén et al.,
2020 [85] US Forearm

9 MHz US Linear
Transducer; US Images
Sampled at 2000 FPS;

128-Channel
DAQ Module

Tissue Doppler,
Trigger Pattern,

Twitch Train, Twitch
Response, and

Territory

8 (5 men and
3 women)

Rohlén et al.,
2020 [86] US, iEMG Arm

9 MHz US Linear
Transducer; US Images
Sampled at 2000 FPS;

128-Channel DAQ
module; Concentric

Needle Electrode with
38 × 0.45 mm (AMBU

Neuroline, DEN)

Tissue Doppler, US
and EMG Trigger

Pattern, Twitch Train,
Twich Response, and

Territory

9 (4 men and
5 women)
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Table 2. Cont.

Authors Signals Region Specifications Data & Features Subjects

Fernandes et al.,
2021 [87] US (WUS) Forearm

40 mm Linear Probe with
6.6 MHz Center

Frequency, B-mode
Imaging at 30 FPS.

Classifier: LDA

US: DWT-MAV and
ENV-LR 5

Zheng et al., 2021 [81]

US, iEMG, sEMG,
Reflective Markers,

Multi-Electrode
Stimulation Matrix

Forearm

5-10 MHz US Transducer;
Images Acquired at 54
FPS; iEMG: 0.05 mm
Diameter; Reflective
Markers Acquired at

100 FPS;

RMS EMG; Flexion
Time; US Average
Deformation Field

and Resulting Field
Divergence

2 men

CSA, Cross-Section Area; DAQ, Digital Acquisition Module; DWT, Discrete Wavelet Transform; ENV, Envelope;
LR, Linear Regression; MAV, Mean Absolute Value; MPF, Mean Power Frequency; RMS, Root Mean Square;
SMMG, Sonomechanomyography; WUS, Wearable Ultrasound.

Each active MU generates a mechanical response, in which the group [85] proposed
a method to identify it on a voluntary contraction. The experimental data showed that a
MU could be identified with characteristics similar to the MU discriminated by the EMG.
This implies that this method can complement the EMG method by adding a 2D spatial
resolution and a territorial unit of size to the units simultaneously active in every muscle.
The same group [86] also evaluated whether a single MU and its mechanical twitches can
be identified using ultrafast US voluntary contraction imaging. The proposal compares the
position and firing pattern of the decomposed components of the ultrafast US acquisition
with an EMG needle. It was shown for the first time that a single MU and its mechanical
twitch could be identified in voluntary contraction experiments. Sequence decomposition
of US images provides a non-invasive means to study the neural control of a MU and its
mechanical properties.

The effect of US lateral spatial resolution on finger flexion classification was evaluated
in [87]. After they analyzed finger flexion performance rating, it was concluded that a
US transducer with reduced lateral resolution could perform as accurately as clinical US
probes with high resolution under the conditions proposed in the paper.

4. Future Trends

The studies presented here in this review point out some approaches that have been
investigated in the last decade concerning musculoskeletal assessments with multisensory
setups involving ultrasound. Apart from the usual medical trials and diagnosis, most of
its applications can be impactful in other fields, such as HMI, wearables, and prosthetic
control, among others. Table 3 shows a tradeoff of each technique applied in the HMI field.

Table 3. Biosensing signals for HMI applications.

Signals Robustness Advantage Disadvantage Filters

A-Mode Can be Miniaturized, Accuracy Fixed Position DAS, Butterworth,
Band-Pass, Speckle

Reduction
B-Mode [X] Muscle Depth, Multiple Directions

and High Accuracy
Computational Cost,

Size

M-Mode [X] Temporal Resolution, Framed
Analysis, and High Accuracy

Extremely High
Computational Cost,

Size

sEMG Excellent Movement Predictor Noise
Amplifier, Butterworth,
Low/High/Band-Pass,
Notch, Moving Average

MMG Can Relate to Muscle Strength
Level Acoustic Interference

Amplifier, Butterworth,
High/Low/Band-Pass,

Moving Average
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Most of the challenges regarding prosthetic control with A-Mode ultrasound are
related to system compatibility, transducer shift, and the number of channels involved.
As for the B-Mode and M-Mode, there is the need to solve several issues, for example,
hardware robustness, high computational costs, and improvement of some digital signal
processing (DSP) and filtering techniques. More broadly, related to this matter, research
trends point to problems related to ultrasound sensors compatibility, such as wearable
ultrasound and miniaturized versions of A-Mode transducers. Nonetheless, B-Mode and
M-Mode ultrasound also bring a scope to more detailed applications, mainly when high
accuracy is required.

Many studies [12,27,80] have been applying image tracking software for automatic
evaluation of some parameters in ultrasound images to assess patterns in the musculoskele-
tal system. Furthermore, with the recent improvements in machine learning algorithms [70],
a wider and standardized dataset is required to feed and to enhance algorithms prediction
and classification patterns.

In the healthcare field, clinical diagnoses, and physiological studies, the impact of
hybrid systems is much more posed to discover specific problems and correlations of
techniques in performing specific tasks and activities. However, the more complex and
robust the system, the more difficult the setup for dynamic tests becomes, especially with US
signal, where the transducer fixation takes a critical role. When the configuration involves
multiple signal acquisitions, the entire process requires specific handling. Nevertheless,
there is still a necessity to investigate deeper data fusion involving ultrasound to assess
musculoskeletal system, as was recently done in NCS, because diagnoses may produce
false positive and false negatives, which can be treated with more careful analysis via signal
combination.

Therefore, within such limitations and applications in mind, a suggested platform is
presented in Figure 5, featuring a multi-sensing system in which the sensors are responsible
for capturing the biomedical signal. The acquisition module performs the pre-processing
and storage of the captured biosignal data using, for instance, complex field programmable
gate array (FPGA)-based systems and/or low-cost open platforms. In this case, an In-
tel/Altera DE4 Development Board [88] and a Bitalino Board [76] are illustrated. Finally,
the digital processing can be performed by high-end research platforms with a central pro-
cessing unit (CPU)/graphics processing unit (GPU) [21], such as Verasonics Vantage [20],
in a programmable environment (such as MATLAB or Python).
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5. Conclusions

Ultrasound has been a cheap and non-invasive solution for achieving a successful
deep analysis at the muscle tissue level, where most of the activity occurs. However, this
approach always had a drawback in its outdoor applications. To solve such liability, other
biomedical techniques and signals have been applied to evaluate parameters and data. This
approach provides an enhanced pattern recognition performance for prosthetic control
areas, robust mathematical models, compact integrated systems at the electronic level, and
an accurate source for physiological and clinical assessments. Most of the challenges at
the electronic level are related to a lack of structured protocols and stable setups to meet
signal noises, synchronization, and device compatibility. Furthermore, it can be addressed
as more sensors are being added to smartphones and wearable devices [89]. This whole
context emphasizes a critical role for hybrid studies and applications. Further, it helps
artificial intelligence (AI) technologies such as deep learning to incorporate more datasets
for broader research and setups.
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