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Abstract: The management and allocation of electromagnetic spectrum resources is the inner driving
force of the construction of the space–air–ground integrated network. Existing spectrum alloca-
tion methods are difficult to adapt to the scenario where the working bandwidth of multi-service
frequency-using devices is irregular and the working priorities are different. In this paper, an orthog-
onal genetic algorithm based on the idea of mixed niches is proposed to transform the problem of
frequency allocation into the optimization problem of minimizing the electromagnetic interference
between frequency-using devices in the integrated network. At the same time, a system model is
constructed that takes the minimum interference effect of low-priority-to-high-priority devices as
the objective function and takes the protection frequency and natural frequency as the constraint
conditions. In this paper, we not only introduce the thought of niches to improve the diversity of the
population but also use an orthogonal uniform crossover operator to improve the search efficiency.
At the same time, we use a standard genetic algorithm and a micro genetic algorithm to optimize the
model. The global searchability and local search precision of the proposed algorithm are all improved.
Simulation results show that compared with the existing methods, the proposed algorithm has the
advantages of fast convergence, strong stability and good optimization effect.

Keywords: space–air–ground integrated network; spectrum allocation; priority; orthogonal
experiment; niche method; micro genetic algorithm

1. Introduction

The deployment and application of 5th-generation mobile communication (5G) has
opened the era of the Internet of everything and promoted the integration of the information
industry and other traditional industries [1]. With the commercialization of 5G technology,
many countries and organizations have made forward-looking layouts for 6th-generation
communication (6G) [2,3]. In order to support full coverage of the network and the high-
speed mobility of users, the breadth and depth of the existing communication range of
the ground network are extended. The 6G technology will cover network infrastructure
such as airspace and space and integrate ground and non-ground networks to provide full
coverage of space, sky and land [4,5].

The space–air–ground integrated network integrates space-based networks of orbit-
ing satellites, high-attitude platforms (HAPs) and HAPs consisting of unmanned aerial
vehicles (UAVs) [6,7]. The ground-based network, composed of traditional wireless com-
munication systems, can achieve seamless coverage of the whole domain and provide users
with ubiquitous communication services, which is the core development direction of 6G
technology in the future [8]. At present, the research on the space–air–ground integrated
network mainly includes joint beamforming, power allocation and integration with the
Internet of Things (IoT). In [9], the authors proposed a joint optimization design for a
non-orthogonal multiple access (NOMA)-based satellite–terrestrial integrated network
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(STIN), where a satellite multicast communication network shares the millimeter wave
spectrum with a cellular network employing NOMA technology. In [10], the authors inves-
tigated the multicast communication of a satellite and aerial integrated network (SAIN)
with rate-splitting multiple access (RSMA) to satisfy the explosive access demand of IoT
devices. However, due to the differences of services among space-based networks and
ground-based networks, the heterogeneity of frequency-using devices and the diversity of
management, the space–air–ground integrated network is facing great challenges in the
management and allocation of electromagnetic spectrum resources [11,12].

Spectrum allocation technology has been of great interest to researchers at home and
abroad. In general, spectrum allocation technologies can be divided into the following three
categories: Firstly, there are spectrum allocation technologies with regions as allocation
objects [13,14]. This technology takes “cell” as the frequency object and the interference
between cells as the constraint condition. Genetic algorithms, particle swarm optimization
algorithms and other heuristic algorithms are used to achieve the frequency demand of
each cell. Such methods solve the spectrum allocation problem to a certain extent but do
not specifically consider the resource requirements of specific devices. Thus, they cannot
be extended to the actual problem of different types of devices having different resource
requirements and different frequency priorities. Secondly, there is spectrum allocation
technology based on the frequency-using device as the allocation object [15,16]. This
technology takes specific frequency-using device as the spectrum allocation objects, takes
protection frequencies and prohibition frequencies as constraints, and takes same frequency
interference and adjacent frequency interference between devices as optimization objectives
to model. At the same time, an improved heuristic algorithm is used to solve the problem.
Such algorithms achieve fine spectrum allocation at the device level, but the modeling of the
spectrum allocation problem does not meet the actual business needs and does not take into
account the difference in frequency priority. Thirdly, there is spectrum allocation or access
technology based on cognitive radio or dynamic spectrum access [17,18]. This technology
divides frequency-using device into two categories—primary users and secondary users—
and allocates resources to secondary users on the premise of ensuring the performance
requirements of primary users. The constraints are the maximum interference threshold
in the same channel and the maximum transmission power of each secondary user. The
optimization goal is to maximize the spectral efficiency of each user or the number of
users successfully allocated. Reinforcement learning or heuristic algorithms are usually
used to solve the problem. These algorithms can adapt to the dynamic electromagnetic
environment and distributed decision-making scenarios and have good flexibility and
robustness. However, the problem of differentiation of frequency demands of users at all
levels has not been solved, and the method of dividing users at all levels cannot adapt to
scenarios with different priorities.

Generally speaking, the basic thought behind existing technology is similar: abstract-
ing spectrum resources into several resource blocks with different properties while taking
the electromagnetic interference between devices, device transmission power or various
frequency restrictions as constraints. The purpose is to minimize the interference to the
devices and meet the frequency requirements of each device. At the same time, various
algorithms are used to solve the electromagnetic spectral distribution problem to a cer-
tain extent. However, the space–air–ground integrated network is a huge and complex
system; it is a highly integrated system of multi-dimensional networks. The frequency
requirements of different business types of devices vary greatly, and the existing technology
cannot meet the irregular frequency requirements of various business types of devices
in complex networks. In addition, in the actual business scenario, each frequency-using
device performs different types of business, and different business types have different
contributions and impacts to the network. Therefore, frequency requirements for devices
providing high-priority services should be preferred. Existing techniques do not consider
the practical problem of different frequency-using priorities for each device. For the above
problems, this paper firstly conducts mathematical modeling on the spectrum allocation
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problem of frequency-using devices in the multi-service irregular scenario and proposes a
multi-service irregular frequency allocation method based on mixed niche orthogonal ge-
netic algorithms. The proposed algorithm introduces niche thoughts based on the clearing
mechanism to improve the diversity of the population and proposes orthogonal uniform
crossing operators to improve search efficiency. Moreover, the proposed algorithm uses a
standard genetic algorithm (SGA) and a micro genetic algorithm (MGA) to improve the
global search capability and local search accuracy.

2. System Model

We show the spectrum allocation system model of frequency-using devices with
different operating frequencies and priorities in the space–air–ground integrated network
in Figure 1. The system model consists of a scene description, constraint conditions and
objective functions. When a large number of frequency-using devices apply for working
frequency bands from the spectrum management system, the spectrum management
system will allocate spectrum according to the natural frequency band of each device, its
priority, the system’s rejection frequency band, and the interference between devices.
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Figure 1. Spectrum allocation system model in space–air–ground integrated network.

Assuming that there are N devices in the system, the differences between devices of
different business types are mainly reflected in the parameter numerical level, and device
of different business types can be described in k unified ways. This paper specifically
describes a device k using the parameters shown in Table 1, where pk is the value of device
priority. The higher the priority, the smaller the value of pk. The variables xk, yk and zk,
respectively, represent the longitude, latitude and height of the device deployment point;
fkgs and fkge represent the start and end frequencies of the device’s natural frequency band,
respectively; fks and fke represent the start and end frequencies of the device’s working
frequency band, respectively; the device’s working frequency band must be within the
range of the natural frequency band.
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Table 1. Device parameters.

Priority Business
Type

Receiving
Sensitivity

Geographical
Position

Inherent
Frequency

Working
Frequency

Working
Bandwidth

Transmission
Power

pk Tyk Sk (xk, yk, zk)
(

fkgs, fkge

) (
fks, fkg

)
Bk Pk

2.1. Constraint Conditions

According to the scenario description, the spectrum allocation scheme must meet the
following three constraints:

• The operating frequency band of each device shall be within its inherent frequency
band range, as shown in Equation (1) :∣∣∣∣ fks + fke

2
−

fkgs + fkge

2

∣∣∣∣+ Bk
2
≤

fkge − fkgs

2
(1)

• The operating frequency band of each device should not overlap with the protection
frequency band of its protection area, as shown in Equation (2) :

∣∣∣∣ fks + fke
2

−
fkps + fkpe

2

∣∣∣∣ ≥ +
Bk +

(
fkge − fkgs

)
2

(2)

• The operating frequency band of each device shall not overlap with any rejection
frequency band, as shown in Equation (3) :∣∣∣∣ fks + fke

2
− fnas + fnae

2

∣∣∣∣ ≥ +
Bk + ( fnae − fnas)

2
(3)

2.2. Objective Function

The objective of the model is to avoid interference with or reduce interference to
high-priority devices. Interference can be considered from two aspects:

Firstly, frequency domain interference: if the working frequency bands do not overlap,
then there is no frequency domain interference between the two devices. If there is overlap,
the severity of interference is described by the frequency spectrum overlap degree. Based
on this, the frequency domain interference coefficient is defined as shown in Equation (4):

Qij( fic, f jc) =


(Bi+Bj)/2−abs( fic− f jc)

Bj
abs( fic − f jc) <

(Bi+Bj)
2

0 abs( fic − f jc) ≥
(Bi+Bj)

2

(4)

where fic = 0.5 · ( fis + fie) is the center frequency of the operating frequency band of the
i-th device, and i, j ∈ [1, N].

Secondly, airspace conflict: assuming that the transmitter device sends signals with
power Pi and the receiver device sensitivity is Sj, in the process of signal propagation, path
loss Lij is generated, as shown in Equation (5) [19]:

Lij( fic) = 32.44 + 20log10 fic + 20log10Dij (5)

where Dij represents the straight-line distance between the i-th device and the j-th device,
and i, j ∈ [1, N], i 6= j. The spatial interference coefficient is defined to quantify spatial
interference, as shown in Equation (6):

Iij( fic) =

{
1 Pi − L( fic) ≥ Sj
0 Pi − L( fic) ≤ Sj

(6)
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When I( fic) = 1, there is spatial interference between the originating device and the
receiving device. Otherwise, there is no airspace interference.

The device interference coefficient ai(Fc) is defined to quantify the degree that each
device does not interfere with other devices, as shown in Equation (7):

ai(Fc) =
N

∑
j=1,j 6=i

[(1−Qij( fic, f jc))·(1− Iij( fic)) · (pmax − pj)], i ∈ [1, N] (7)

where Fc = { f1c, f2c, . . . , fNc},pmax is the priority value with the largest absolute value, that
is, the lowest priority value.

The fitness function S(Fc) is defined as the objective function of the spectrum allocation
model, as shown in Equation (8):

S(Fc) =
N

∑
i=1

ai(Fc) =
N

∑
i=0

N

∑
j=1,j 6=i

[(1−Qij( fic, f jc)) · (1− Iij( fic)) · (pmax − pj)] (8)

The optimization objective of the model is to find the appropriate working frequency
band for each device so that the interference of low-priority-to-high-priority devices is
minimized.

In conclusion, the spectrum allocation model as shown in Equation (9) is established:

max
{Fc}

S(Fc) ,

s.t. abs( fks+ fke
2 − fkgs+ fkge

2 ) + Bk
2 ≤

( fkge− fkgs)

2 ,

abs( fks+ fke
2 − fkps+ fkpe

2 ) ≥ Bk+( fkpe− fkps)

2 ,
abs( fks+ fke

2 − fnas+ fnae
2 ) ≥ Bk+( fnae− fnas)

2 ,
k ∈ [1, N], n ∈ [1, A].

(9)

3. Working Process of the Model
3.1. Description of the Algorithm

In this paper, a method is proposed to solve the multi-service irregular spectrum
allocation problem. Firstly, several spectrum allocation schemes that meet the constraints
are randomly generated. The content of the spectrum allocation scheme is the operating
frequency band information of each device. Then, each spectrum allocation scheme is
encoded with real numbers, and the scheme is mapped into a chromosome array. Each
chromosome array is an individual, and the fitness function to evaluate the performance
of each individual is the objective function of the spectrum allocation model. Randomly
generated individuals form the initial population, which is used as the starting point for
the genetic algorithm iteration. In terms of solving the algorithm, this paper proposes a
new Hybrid Niche Orthogonal Genetic Algorithm (HNOGA). The steps of the HNOGA
algorithm are shown in the pseudocode of Algorithm 1 .
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Algorithm 1 HNOGA pseudocode

1: Input: population size M, number of elite individuals q, subpopulation neighborhood
search probability Pm1, optimal individual neighborhood search probability Pm2, and
maximum iteration number T;

2: Output: the optimal individual Ib;
3: Start:
4: Step 1: The initial population with population size M was generated by random coding,

the fitness of each individual in the initial population was calculated, and the top q
individuals with the highest fitness were copied and saved (q < M). Studies show that
when q = 0.3M, the performance of the algorithm is optimal.

5: Step 2: Genetic algorithm optimization
6: for iteration t = 1 : T do
7: Main genetic algorithm operation: random league selection, orthogonal uniform

crossover, uniform mutation;
8: All the individuals whose fitness is not 0 in the population and whose subpopulation

contains greater than or equal to 2 individuals are optimized by the micro genetic
algorithm with probability Pm1, and then the niche operation is performed;

9: The individual with the highest fitness in the whole population was selected to
perform micro genetic algorithm optimization with probability Pm2;

10: Perform niche operations;
11: The top q individuals with the highest fitness in the population are copied and

retained, and the top M individuals with the highest fitness are used to form the
population of the next iteration.

12: Step 3: Output the optimal individual Ib of the last generation population;
13: End: Obtain the optimal individual Ib.

In each iteration, a standard genetic algorithm (SGA) is first used for global optimiza-
tion (this step is referred to as the “main genetic algorithm” in this paper), and then the
optimized population is niche operated: Firstly, the normalized Euclidean distance between
individuals in the population is calculated. If the normalized Euclidean distance of some
individuals is less than a certain threshold, they are clustered into a subpopulation, and
all individuals in each subpopulation have similar genetic characteristics. Secondly, the
individual with the highest fitness in the subpopulation retains its original fitness value,
and the fitness of the other individuals is set to 0. This operation makes the probability
that the genetic characteristics of each subpopulation will be eliminated in the selection
process of the next iteration very low to ensure the genetic diversity of the population.
After the niche operation, the original population is divided into several subgroups. Then,
the individual with the highest fitness is selected from each subpopulation with population
size greater than 1, and the micro genetic algorithm is used for a neighborhood search.
Thus, the full utilization of neighborhood information is realized, and the search accuracy
and efficiency of the algorithm are improved.

The flowchart of the HNOGA algorithm is shown in Figure 2 .
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Figure 2. Flowchart of HNOGA algorithm.

3.2. Master Genetic Algorithm
3.2.1. Coding and Initial Population Generation

The HNOGA algorithm uses real coding to map from the spectrum allocation scheme
to the chromosome array. Assuming that there are N devices in the region, the chromosome
is an array of real numbers Gs = {g1, g2, · · · , gN} of length N. Each gene locus gk of the
chromosome corresponds to a device, and the value of gk is the central frequency of the
operating band of the corresponding device. Assuming that the working bandwidth of the
k-th device is Bk, the start frequency of the working band of the device is fks = gk − 0.5Bk
and the end frequency is fks = gk + 0.5Bk, k ∈ [1, N].

The HNOGA algorithm uses random coding to generate the initial population: for
each device, the center frequency is randomly generated within its natural frequency band
range, and the value is taken as the gene value of the corresponding position of the device
on the chromosome. A complete individual can be generated by performing the above
operations for all device. It should be noted that if the randomly generated center frequency
value does not meet the three constraints of the model, it should be generated again until the
location meets the constraints. Performing the above group size operation times generates
the initial group.

3.2.2. Function of Fitness

The fitness function of the HNOGA algorithm is the same as the objective function
of the system model. The fitness f (Gs) of an individual Gs = {g1, g2,...,gN} is defined as
shown in Equation (10):

f (Gs) =
N

∑
i=1

ai(Gs) =
N

∑
i=0

N

∑
j=1,j 6=i

[(1−Q(gi, gj)) · (1− I(gi)) · (pmax − pj)] (10)

3.2.3. Selection Operator

The choice operator of the HNOGA algorithm is stochastic tournament selection.
Compared with the commonly used roulette selection, the tournament selection strategy
has the advantages of high solution accuracy and fast solution speed, so it is widely used in
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the construction of genetic algorithms [20,21]. The basic steps of the tournament selection
strategy are as follows:

(1) total of t individuals are randomly selected from the parental population;
(2) Among the t individuals, the individuals with the highest fitness are selected and

retained in the middle group;
(3) assuming that the parental population size is M, the above steps are repeated M− 1

times to form a complete intermediate population.
The variable t is an artificially set parameter whose value greatly affects the actual

effect of tournament selection. In this algorithm, the value t is set to 2.

3.2.4. Crossover Operator

In this paper, a uniform crossover operator based on an orthogonal experiment is
proposed; it is called an orthogonal uniform crossover operator.

Orthogonal experimental design is an efficient and economical experimental design
method that mainly studies the influence mechanism of several specific factors in a system at
different levels on the overall state or performance of the system. It designs a variety of the
most-representative test schemes based on the principle of orthogonality to evenly disperse
and match the levels of factors with the factors. The effect of a few tests is equivalent to
that of a full test. The main tool for orthogonal experimental design is the orthogonal table,
which is a matrix arranged by rows and columns and is usually represented as Lx(qy),
where L represents the orthogonal table, x represents the number of trials, q represents the
number of factor levels, and y represents the number of factors. This paper uses a two-level
orthogonal table.

The orthogonal uniform crossover operator is an improvement and supplement to the
uniform crossover operator, and it uses a similar operation mode as the uniform crossover
operator. Each gene of the progeny chromosome is derived from one of the alleles at the
corresponding location of the two parental chromosomes that have been paired [22,23].
The difference is that the uniform crossover operator randomly selects crossed genes to
obtain two individuals, while the orthogonal uniform crossover operator quickly selects
the best combination of alleles of parental individuals through orthogonal experiments
to obtain only one individual. Specifically, the process of finding the best combination
of alleles can be regarded as a two-level orthogonal experiment in which the factors are
the genes on the chromosome and the two-level of each factor is the specific values of the
corresponding alleles of the two parental chromosomes. According to the chromosome
length (i.e., the number of factors), a two-level orthogonal table can be established for the
experiment. Each experiment gets a new individual. The fitness of all individuals obtained
by the orthogonal experiment is calculated, and the individual with the highest fitness is
taken as the result of the orthogonal uniform crossover.

3.2.5. Mutation Operator

The mutation operator of the HNOGA algorithm uses a uniform mutation operator,
and the specific operation steps are as follows:

(1) Each locus of an individual is designated as the point of variation.
(2) For each gene locus, a uniform mutation operation is performed with mutation

probability pm.
(3) It is determined whether the working frequency band meets the three constraints

of the model. If it does, continue; otherwise, go back to the second step.
(4) All individuals perform the above operations.
Compared with the variation strategy, the uniform variation strategy has greater

variation intensity and better searchability. It can not only improve the diversity of the
population, but also avoid the prematurity of the algorithm, which is suitable for solving
complex problems.
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3.3. Niche Operation

The HNOGA algorithm uses a niche technology based on a Clearing Procedure. Its
basic idea is to classify all individuals based on the Euclidean distance between individuals,
divide the whole population into multiple subgroups, and select the individual with the
highest fitness within each subgroup to participate in further optimization [24,25]. The
steps are as follows:

Step 1: If the fitness of two individuals is not 0, the normalized Euclidean distance
between the two individuals is calculated. For any two individuals Gi = {gi1, gi2, · · · , giN},
Gj =

{
gj1, gj2, · · · , gjN

}
, their normalized Euclidean distance is defined by Equation (11):

∥∥Gi − Gj
∥∥ =

√√√√ 1
N

N

∑
k=1

(
gik − gjk

)2
,
(

i = 1, 2, ..., M− 1
j = i + 1, ..., M

)
(11)

Step 2: For any two individuals, if their normalized Euclidean distance is less than
or equal to the niche radius D, the fitness of the two individuals is compared. The fitness
of the individuals with small fitness is set to 0, while the fitness of the individuals with
large fitness remains unchanged and they are placed in a subgroup. If their normalized
Euclidean distance is greater than the niche radius D, no operation is performed.

Step 3: All individuals perform the above operations.
These non-zero fitness individuals are essentially representatives of a class of indi-

viduals in the original population. Niche operations keep them in place in the iteration
process, retaining the genetic characteristics of such individuals in the population and
thus maintaining the diversity of the population. At the same time, this also avoids the
phenomenon of a high-performance individual quickly replacing other individuals in the
iterative process, resulting in the algorithm falling into a local optimum.

From the perspective of mathematical optimization, if the objective function of the
problem solved by the genetic algorithm is a complex multi-peak function, the clustering
phenomenon of some individuals in the population may be caused by the fact that these
individuals search the neighborhood of the same local optimal solution. In the real genetic
algorithm population, a class of individuals classified by Euclidean distance may be located
near the same extreme point. The non-zero-fitness individual is the one closest to the local
optimal solution after the niche operation. Then, a local search with higher precision can
be further approached or even found with this individual as the starting point. Every
extreme point of a multimodal function may be the global optimal solution, so the idea of a
local search based on the individuals near the extreme point is significant for determining
the global optimal solution. Local search methods are often referred to as “hill-climbing
operators”.

3.4. Micro Genetic Algorithm

In this paper, MGA is extended and a real micro genetic algorithm is proposed [26,27].
The length of the chromosome Gm =

{
gp1, gp2, · · · , gpN

}
is equal to the number of devices

N, and each gene location of the chromosome gpk corresponds to one device. The value gpk
is the perturbation momentum of the center frequency of the operating frequency band of
the corresponding device. The perturbation momentum should meet gpk ∈

[
−gpb, gpb

]
,

where gpb is the perturbation amplitude, namely the maximum perturbation momentum
allowed by the algorithm k ∈ [1, N]. The micro genetic algorithm randomly generates the
initial population in the same way as the main genetic algorithm.

Assuming that the optimization result of the main genetic algorithm is Gs =
{gs1, gs2, · · · , gsN} and an individual of MGA is Gp =

{
gp1, gp2, · · · , gpN

}
, then Gs will

generate a new individual G under the action of Gp. The action mechanism is shown in
Equation (12):

G = Gs + Gp = {g1, g2, ...,gN} =
{

gs1 + gp1, gs2 + gp2, · · · , gsN + gpN
}

(12)
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The objective of the micro genetic algorithm is to find an appropriate perturbation
gs to obtain a new individual G with the highest performance possible. Therefore, the
objective function of the micro genetic algorithm is shown in Equation (13):

f (G) =
N

∑
i=1

ai(G) =
N

∑
i=0

N

∑
j=1,j 6=i

[(
1−Q

(
gi, gj

))
· (1− I(gi)) ·

(
pmax − pj

)]
(13)

MGA used in this paper adopts three genetic operators, namely random league
selection, orthogonal uniform crossover, and uniform mutation. It should be noted that
MGA may produce illegal individuals in the process of coding and mutation, and Gs will
generate new individuals that do not meet the constraints of the system model under the
action of the individual. In this paper, the method to deal with this problem is to re-encode
or mutate until a legitimate individual is generated.

Through the combination of the main genetic algorithm and MGA, the HNOGA
algorithm forms an iterative process including an outer loop and inner loop. When the
number of outer loops is too many and the number of inner loops is too few, the local
searchability of the algorithm decreases. When the number of outer loops is too small and
the number of inner loops is too large, the global optimization ability of the algorithm is
limited. Therefore, the ratio of internal and external circulation times should be reasonably
allocated. The literature [28] puts forward that the optimal ratio of internal to external
circulation is 0.3 to 0.5. In addition, an elite strategy is also used in the MGA, in which
the worst individual in each iteration is replaced by the best individual in the previous
iteration.

4. Simulation Results
4.1. Experimental Data Setting

Assume that there are 10 devices in the system, and the working bandwidth of each
device is different. The data for each device are shown in Table 2 .

Table 2. Device parameters.

Device ID Priority
Location (Height,

Latitude,
Longitude)

Sensitivity
(dBm) Pt (dBm) Inherent

Frequency (MHz)
Bandwidth

(MHz)

1 2 (30, 35, 4) −93 14 (0, 220) 20
2 0 (31, 35, 4) −86 15 (0, 220) 35
3 4 (32, 35, 4) −89 16 (0, 220) 22
4 3 (33, 35, 4) −90 14 (0, 220) 16
5 1 (34, 35, 4) −88 15 (0, 220) 21
6 2 (35, 35, 4) −87 12 (0, 220) 18
7 0 (36, 35, 4) −95 13 (0, 220) 14
8 4 (37, 35, 4) −94 12 (0, 220) 23
9 3 (38, 35, 4) −90 19 (0, 220) 12
10 1 (39, 35, 4) −88 17 (0, 220) 20

In the actual scenario, there is only one protected zone. The start frequency and end
frequency of the protected band in this zone are 150 MHz and 175 MHz, respectively. The
protected area is a cuboid area with a latitude between 20 and 60 degrees, a longitude
between 1 and 4 degrees, and a height between 20 and 50 m. There is only one denial
spectrum in actual service scenarios. The rejection frequency band starts at 25 MHz and
ends at 50 MHz. It can be seen that the total bandwidth of the commonly available
frequency band is 200 MHz, while the sum of the working bandwidth of each device is
224 MHz. Since this paper does not consider the case of allocation failure, interference
between devices cannot be avoided.
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4.2. Simulation of Orthogonal Uniform Crossover Operator

To verify the performance of the orthogonal uniform crossover operator, this paper has
carried out simulation experiments on SGA using the single-point crossover operator [29],
two-point crossover operator [30], uniform crossover operator [31] and orthogonal uniform
crossover operator. In the above four experiments, the selection operator used by the GA is
a random league selection operator, the mutation operator is a uniform mutation operator,
and the elite strategy is used in all of them. The population size M is 100, the largest number
of iterations T is 200 times. The mutation probability pm is 10 %. The single-point crossover
and multipoint crossover probability pc is 100%. The uniform crossover probability puc is
70%. The content of the elite strategy of each algorithm is to replace the worst individual
of the offspring with the best individual of the parent. Each algorithm is run 100 times
respectively, and the average fitness of the optimal individual in each iteration of each
experiment is taken to draw the simulation curve shown in Figure 3 .
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Figure 3. Simulation graph of crossover operator performance.

Figure 3 shows that the convergence rate of the uniform orthogonal crossover opera-
tor and the optimization effect are better than those of the other three kinds of common
crossover operators. Compared with the other three strong crossover operators, the ran-
domness of the uniform orthogonal crossover operator search efficiency is higher. At the
same time, the orthogonal homogeneity operator can select the approximate optimal cross
result of the two paired individuals through the orthogonal experiment.

Based on 100 executions of each of the above four experiments, the optimal fitness,
worst fitness, average fitness, and variance of each experiment are shown in Table 3:

Table 3. Experimental results of crossover operator performance verification.

Optimal Fitness Worst Possible Fitness Average of Fitness Variance

Single-point crossover 268.865 265.71 267.398 0.382667
Two-point crossover 268.533 265.165 267.189 0.489417

Uniform cross 268.799 265.904 267.711 0.3326
Orthogonal uniform

crossing 269.244 266.742 268.489 0.204459



Sensors 2022, 22, 9227 12 of 17

It can be seen from Table 3 that the optimal fitness, the worst fitness and the average
fitness of the orthogonal uniform crossover operator in the results of 100 runs are better
than those of the other three crossover operators, and it has the advantage of good stability.

4.3. Performance Simulation of a Mountain Climbing Operator Based on the Micro
Genetic Algorithm

In this paper, MGA, simulated annealing algorithm (SA) [32] and Tabu search algo-
rithm (TS) [33] are respectively applied to the standard genetic algorithm as mountain
climbing operators. At the same time, the three algorithms are simulated 100 times, respec-
tively. The three algorithms all use random league selection, uniform crossover, uniform
mutation and elite strategy. The population size M is 100, the maximum iteration number
T is 200, the mutation probability pm is 10%, and the crossover probability puc is 70%. The
population size of the micro genetic algorithm is 10, the maximum number of iterations
is 20, the perturbation amplitude gpb is 10, and the mutation probability is 1%. The Tabu
length of TS is 5, the maximum number of iterations is 20, and the neighborhood search
method adopts uniform mutation with a mutation probability of 0.5%. SGA adopts the
strategy described in the literature. The maximum number of iterations is 20, and the
annealing rate is 0.01 in SA. The content of the elite strategy of each algorithm is to replace
the worst individual of the offspring with the best individual of the parent.

Each algorithm is run 100 times respectively, the average fitness of the optimal indi-
vidual in each iteration of each experiment is taken, and the simulation curve is drawn as
shown in Figure 4.
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Figure 4. Simulation experimental curve of hill-climbing operator performance.

As can be seen from Figure 4, the convergence speed and optimization effect of MGA
are significantly better than for other two hill-climbing operators because MGA can search
multiple directions simultaneously from the starting point, which is more efficient.

Based on executing each of the above three algorithms 100 times, the optimal fitness,
worst fitness, average fitness, and variance of the optimization results of each algorithm
are shown in Table 4 .
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Table 4. Experimental results of crossover operator performance verification.

Optimal Fitness Worst Possible
Fitness

Average
of Fitness Variance

SA 269.169 265.953 267.635 0.419217
TS 268.991 266.11 267.696 0.354487

MGA 269.337 267.321 268.555 0.150796

In the statistical results of 100 experiments, the optimal fitness, the worst fitness and
the average fitness of MGA are better than for the other two mountain climbing operators.
However, for any algorithm, the performance improvement in some aspects is often offset
by a performance reduction in other aspects. When MGA is applied to the standard genetic
algorithm, its stability is between that of the other two algorithms. This is caused by a large
number of random factors in the process of MGA.

4.4. HNOGA Algorithm Performance Simulation Experiment

In this paper, simulation experiments are conducted on the HNOGA algorithm, SGA,
niche genetic algorithm based on scavenging mechanism (NGAC)) [34], improved ant
colony optimization (IACO) [35] algorithm and greedy algorithm, and the above algorithms
are run 100 times. In terms of simulation parameters, the population size M of the HNOGA
algorithm is 100, the maximum number of iterations T is 200, the mutation probability
pm is 1%, the niche neighborhood search probability pm1 is 80%, the optimal individual
neighborhood search probability pm2 is 30%, and the number of elite individuals q is 30.
The population size of the micro genetic algorithm is 5. The maximum number of iterations
is 10. The perturbation amplitude gpb is 10, and the mutation probability is 1%. SGA
uses random league selection, uniform crossover, uniform mutation and elite strategy.
The population size M is 100, the maximum number of iterations T is 200, the mutation
probability pm is 10%, and the crossover probability puc is 70%. The content of the elite
strategy is to replace the worst individual in the offspring with the best individual in the
parent. NGAC uses random league selection, uniform crossover and uniform mutation
and adopted the same elite strategy as the HNOGA algorithm. The population size M
is 100, the maximum number of iterations T is 200, the mutation probability pm1 is 10%,
the crossover probability q is 70%, and the number of elite individuals is 15. In IACO, the
number of ants m is 15. Pheromone constant Q is 20, pheromone factor α is 2, pheromone
volatile factor ρ is 0.3, and the maximum number of iterations T is 200 times. The greedy
algorithm is only used as the control group in this experiment, and its results are directly
shown in the figure without reflecting the iterative process. Each algorithm is run 100 times,
the average fitness of the optimal individual in each iteration of each experiment is taken,
and the simulation curve is drawn as shown in Figure 5.

As can be seen from Figure 5, although the greedy algorithm has the advantage of
a simple process, it easily falls into local optima, and the optimization effect is weaker
than that of ICAO, NGAC and HNOGA. Due to the complexity of the multi-service
irregular spectrum allocation problem, the optimization effect of the standard genetic
algorithm is poor and the convergence speed is slow. The result of 200 iterations is only
slightly better than that of the greedy algorithm. Compared with the standard genetic
algorithm, the optimization effect and convergence speed of the niche genetic algorithm
based on the scavenging mechanism is significantly improved due to its better population
diversity. Compared with the other two genetic algorithms, the convergence speed of the
HNOGA algorithm, which combines orthogonal uniform crossover, niche technology and
neighborhood search of the micro genetic algorithm, is greatly improved, and the final
average optimization effect has obvious advantages.
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Figure 5. Performance simulation experimental curve of HNOGA algorithm.

Based on executing each of the above three genetic algorithms 100 times, the optimal
fitness, worst fitness, average fitness, and standard deviation of the optimization results
of each algorithm are shown in Table 5 .

Table 5. Experimental results of crossover operator performance verification.

Optimal Fitness Worst Possible
Fitness

Average
of Fitness Variance

SGA 268.799 265.904 267.711 0.3326
IACO 268.698 266.015 267.743 0.313765
NGAC 268.622 266.127 267.786 0.275283

HNOGA 269.422 268.201 268.946 0.0733335

It can be seen from Table 5 that the optimal fitness, the worst fitness and the average
fitness of the HNOGA algorithm in the results of 100 runs are better than those of the other
three, and it has the advantage of relatively good stability.

4.5. HNOGA Algorithm Priority Function Verification Simulation Experiment

In this paper, the function of the HNOGA algorithm to meet the frequency demand
of high-priority devices is experimentally verified. Firstly, the verification index—the
non-interference coefficient Ui—is proposed, which is defined as Equation (14):

Ui =


N
∑

j=1
j 6=i

1− Iji ·
(Bi+Bj)

/
2−| fic− f jc|
Bi

,
∣∣ fic − f jc

∣∣ < (Bi+Bj)
2 , i ∈ [1, N]

0,
∣∣ fic − f jc

∣∣ ≥ (Bi+Bj)
2 , i ∈ [1, N]

(14)

As can be seen from the above equation, the non-interference coefficient Ui represents
the degree to which device i is not interfered with by other devices.

The HNOGA algorithm is repeated for 100 experiments, the non-interference coeffi-
cient and average value are calculated according to the above steps, and the red regular
bandwidth curve in Figure 6 is drawn.
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Figure 6. Experimental curve of priority function verification.

It can be seen that the degree of interference of high-priority devices is lower than that
of the low-priority device, and the curve does not have any jitter, showing a strictly mono-
tonically decreasing trend. This shows that the HNOGA algorithm meets the functional
requirements of priority to meet the frequency demand of high-priority devices.

5. Conclusions

In the space–air–ground integrated network, the existing spectrum allocation tech-
nology cannot be applied to the multi-service scenario where the frequency devices have
irregular working bandwidths and different priorities. This paper proposes a hybrid niche
orthogonal genetic algorithm to solve the problem. The algorithm improves population
diversity by introducing niche technology based on a clearing mechanism, proposes a new
orthogonal uniform crossover operator to improve the search efficiency of the algorithm,
and uses the joint optimization of the standard genetic algorithm and micro genetic al-
gorithm to significantly improve the global searchability and local search accuracy of the
algorithm. The simulation results show that the method in this paper effectively solves
the problem of electromagnetic spectrum allocation of multi-service-type devices under
irregular frequency demand and has the function of preferentially meeting the frequency
demand of high-priority devices. In addition, compared with various existing improved
genetic algorithms, the hybrid niche orthogonal genetic algorithm proposed in this paper
has the performance advantages of good optimization effect, fast convergence speed and
strong stability.
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