
Citation: Luo, F.; Zhang, X.; Yang, Z.;

Jiang, Y.; Wang, J.; Wu, M.; Feng, W.

Cybersecurity Testing for

Automotive Domain: A Survey.

Sensors 2022, 22, 9211. https://

doi.org/10.3390/s22239211

Academic Editors: Andrea Marin and

Pietro Ferrara

Received: 14 November 2022

Accepted: 24 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Review

Cybersecurity Testing for Automotive Domain: A Survey
Feng Luo 1, Xuan Zhang 1,* , Zhenyu Yang 1, Yifan Jiang 1 , Jiajia Wang 1, Mingzhi Wu 2 and Wanqiang Feng 2

1 School of Automotive Studies, Tongji University, Shanghai 201804, China
2 Nanchang Automotive Institute of Intelligence and New Energy, Tongji University (NAIT),

Nanchang 330052, China
* Correspondence: zhangxuan@tongji.edu.cn

Abstract: Modern vehicles are more complex and interconnected than ever before, which also means
that attack surfaces for vehicles have increased significantly. Malicious cyberattacks will not only
exploit personal privacy and property, but also affect the functional safety of electrical/electronic
(E/E) safety-critical systems by controlling the driving functionality, which is life-threatening.
Therefore, it is necessary to conduct cybersecurity testing on vehicles to reveal and address rel-
evant security threats and vulnerabilities. Cybersecurity standards and regulations issued in recent
years, such as ISO/SAE 21434 and UNECE WP.29 regulations (R155 and R156), also emphasize the
indispensability of cybersecurity verification and validation in the development lifecycle but lack
specific technical details. Thus, this paper conducts a systematic and comprehensive review of the
research and practice in the field of automotive cybersecurity testing, which can provide reference and
advice for automotive security researchers and testers. We classify and discuss the security testing
methods and testbeds in automotive engineering. Furthermore, we identify gaps and limitations in
existing research and point out future challenges.

Keywords: automotive; cybersecurity testing; penetration testing; fuzzing; model-based testing

1. Introduction

With the development of information and communications technology (ICT), au-
tomobiles have gradually become intelligent and interconnected. While increased
connectivity has brought us convenience and comfort, it has also made automobiles
more vulnerable to external cyberattacks [1]. Over the past decade, frequent automo-
tive cybersecurity incidents have exposed cybersecurity vulnerabilities in automobiles.
In particular, Miller and Valasek’s compromise of Jeep led to the recall of 1.4 million
vehicles, which brought public attention to automotive cybersecurity [2]. Therefore,
it is crucial to effectively test and discover threats and vulnerabilities before vehicle
production. Much of the research on automotive cybersecurity has focused on secu-
rity analysis [3] and countermeasures [4]. This positive direction can expose many
security issues. However, the issues may not be fully considered, and potential vul-
nerabilities will be overlooked. Several studies highlight the urgent need for security
testing in the current automotive industry [5]. Security testing is an effective way
to identify security vulnerabilities and is a practical activity to verify the security
requirement of the system under test (SUT). In addition, with the release of automotive
cybersecurity standards and regulations, such as SAE J3061 [6], ISO/SAE 21434 [7],
and WP.29 R155 [8], the importance of security testing has also been emphasized,
and security testing is an essential part of the automotive security development life
cycle [9]. These regulations and standards state that security testing is imminent
but do not provide OEMs and suppliers with specific implementation methods. The
only high-level guidance makes the actual execution of the test difficult. Due to the
complexity of automotive systems, various hardware and software technologies are

Sensors 2022, 22, 9211. https://doi.org/10.3390/s22239211 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239211
https://doi.org/10.3390/s22239211
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6442-4855
https://orcid.org/0000-0001-9888-1501
https://doi.org/10.3390/s22239211
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239211?type=check_update&version=2

Sensors 2022, 22, 9211 2 of 27

involved and the sources of threat vulnerabilities are diverse. Thus, automotive se-
curity testing is very challenging. Currently, it is unclear what cybersecurity testing
methods are available in the automotive field and the extent to which each method is
utilized. Moreover, the cost, automation level, and safety of security testing are also
issues encountered in the testing process. These problems are the starting points for
our study.

To the best of our knowledge, there are currently few review articles on automotive
cybersecurity testing. Pekaric et al. [10] perform a systematic mapping study (SMS) on
automotive security testing techniques. They discuss various security testing techniques
and map them to the vehicle lifecycle, the AUTomotive Open System ARchitecture
(AUTOSAR) layers, and attack types. However, they study security testing from a
macro perspective and do not cover testing technical details and applications. Mah-
mood et al. [11] outline a few testing methods and testbeds, but the categories are not
comprehensive. There is no comparative analysis of the characteristics of the various
techniques. Bayer et al. [12] provide a short description of embedded security assessment,
which includes practical security testing. Security testing is divided into four types:
functional testing, vulnerability scanning, fuzzing, and penetration testing. However,
there are only simple usage scenario descriptions, which also lack comparative analy-
sis. Ebert et al. [13] introduce security testing techniques from the perspective of tools,
outline the advantages and limitations of widely used testing tools, and compare their
scalability, usability, and availability. Their research aspects only focus on testing tools,
and the analysis dimension is one-sided. Due to the limitations of previous surveys, we
expect to complete a more comprehensive review of automotive cybersecurity testing
through a systematic literature search process.

As far as we know, this is the first systematic and complete review of existing auto-
motive cybersecurity testing with a systematic literature review (SLR) approach. Since
2022 is still ongoing, and we collected literature by year, some relevant publications may
be published at the end of the year. These publications may affect the statistical results;
therefore, we only screened the literature up to 2021. We thoroughly describe the different
testing methods and testbeds used in the automotive field from 2010 to 2021. This paper
shows the technical details and application scenarios of various technologies by comparing
the literature. Through the research presented in this paper, we illustrate the importance of
automotive security testing and demonstrate some existing methods and testbeds, includ-
ing their characteristics and applications. This paper provides a concrete foundation and
guidance for engineers and researchers in this research area. We expect this work can help
them to better evaluate automotive cybersecurity with practical tests, rather than being
limited to theoretical analysis and design.

The rest of this article is organized as follows: Section 2 presents the process of
conducting a SLR. Section 3 introduces the methods of automotive cybersecurity testing.
Section 4 compares the characteristics of different cybersecurity testing testbeds. The
research challenge of the target topic is analyzed in Section 5. Finally, a conclusion is drawn
in Section 6.

2. Methodology
2.1. Research Questions

The main goal is to conduct a more comprehensive review of cybersecurity testing in
the automotive domain. The paper summarizes the state of the arts and challenges in the
topic area. This section raises the following three research questions (RQs) addressed in
this paper:

RQ1. What are cybersecurity testing methods applied in the automotive domain?
RQ2. What testbeds are used for automotive cybersecurity testing?
RQ3. What are the research challenges in this topic area?

Sensors 2022, 22, 9211 3 of 27

These three RQs address the issues raised in Section 1. RQ1 focuses on the ap-
propriate methods of cybersecurity testing utilized in the automotive domain. Be-
cause of the cost and safety of real vehicle testing, security testbeds are used. RQ2
aims to research automotive cybersecurity testbeds from 2010 to 2021. RQ3 discusses
challenges for automotive cybersecurity testing, including current limitations and
future trends.

2.2. Search Process

We collected and analyzed the literature in a manual search method. The search
process was conducted based on the following steps.

2.2.1. Search Database

Six common databases were adopted, including SAE Mobilus, commonly used in
the automotive industry. Additionally, the latest research work on security is generally
presented at security-related conferences, such as Black Hat, Defcon, etc. Therefore, Google
Scholar was used as a supplement in the backward snowballing phase. Table 1 shows the
databases for the search.

Table 1. Databases for searching.

Database URL

IEEE Explore https://ieeexplore.ieee.org/
Springer https://link.springer.com/

ACM Digital Library https://dl.acm.org/
ScienceDirect https://www.sciencedirect.com/

Wiley https://onlinelibrary.wiley.com/
SAE Mobilus https://saemobilus.sae.org/

Google Scholar https://scholar.google.com/

2.2.2. Search String

We needed to construct a search string containing boolean operators to search the
relevant literature. The search string needed to be adjusted for different databases. The
general search string can be determined as follows.

(automotive OR vehicle) AND (security OR threat OR vulnerability OR risk) AND
(fuzz OR penetration OR test)

We focused on the literature related to automotive cybersecurity testing; therefore,
the first bracket in the search string indicates that it is related to vehicles, the second
represents security, including threats, vulnerabilities, and risks, and the third shows that
it is related to testing. Of course, security testing also includes fuzz and penetration.

2.2.3. Search Procedure

The first step of the search process was to filter the literature in seven databases us-
ing the defined search string. The second was to screen the literature based on inclusion
and exclusion criteria. Then, we refined the literature through abstracts and full texts.
Finally, we identified new papers through backward snowballing, a method for
including new papers by examining the title, publication venue and authors in the refer-
ence list of the selected paper [14]. Meanwhile, we used Google Scholar to supplement
the search for some security conference articles. Figure 1 shows an overview of the entire
search process.

https://ieeexplore.ieee.org/
https://link.springer.com/
https://dl.acm.org/
https://www.sciencedirect.com/
https://onlinelibrary.wiley.com/
https://saemobilus.sae.org/
https://scholar.google.com/

Sensors 2022, 22, 9211 4 of 27Sensors 2022, 22, 9211 4 of 27

Figure 1. The process of literature search.

2.3. Search Criterion

After the initial screening of the search string, it was necessary to determine the

search criteria for further selection. The search criterion can be seen in Table 2.

Table 2. Inclusion and exclusion criteria.

Aspect Inclusion Criteria Exclusion Criteria

Time 2010–2021 Not within the defined time

Language Papers written in English Papers not written in English

Accessibility Full text is available Full text is not available

Topic
Topics about security testing in the automotive

domain

Papers related to general automotive security

topics, including security mechanisms, design,

etc.

Is it peer reviewed? Yes No

2.4. Search Results

The search process can be seen in Table 3. We calculated statistics based on the final

selected papers and plotted a graph from three aspects: year of publication, and number

and source of papers. Figure 2 depicts the distribution of papers by source from 2010 to

2021. We can see a significant increase in articles on the target topic starting in 2015 due

to Miller and Valasek’s remote control of a Jeep that led to the recall of 1.4 million vehicles,

drawing public attention to automotive cybersecurity.

Table 3. Paper numbers in the search process.

Database Initial Search
Inclusion/

Exclusion Criteria
Abstract Full Text

Backward

Snowballing

IEEE Explore 4438 81 42 30 32

Springer 6585 40 13 8 9

ACM Digital Library 8146 69 10 6 8

ScienceDirect 5529 52 3 2 3

Wiley 1072 16 1 1 1

Figure 1. The process of literature search.

2.3. Search Criterion

After the initial screening of the search string, it was necessary to determine the search
criteria for further selection. The search criterion can be seen in Table 2.

Table 2. Inclusion and exclusion criteria.

Aspect Inclusion Criteria Exclusion Criteria

Time 2010–2021 Not within the defined time
Language Papers written in English Papers not written in English

Accessibility Full text is available Full text is not available

Topic Topics about security testing
in the automotive domain

Papers related to general
automotive security topics,

including security mechanisms,
design, etc.

Is it peer reviewed? Yes No

2.4. Search Results

The search process can be seen in Table 3. We calculated statistics based on the final
selected papers and plotted a graph from three aspects: year of publication, and number
and source of papers. Figure 2 depicts the distribution of papers by source from 2010 to
2021. We can see a significant increase in articles on the target topic starting in 2015 due to
Miller and Valasek’s remote control of a Jeep that led to the recall of 1.4 million vehicles,
drawing public attention to automotive cybersecurity.

Sensors 2022, 22, 9211 5 of 27

Table 3. Paper numbers in the search process.

Database Initial Search Inclusion/
Exclusion Criteria Abstract Full Text Backward

Snowballing

IEEE Explore 4438 81 42 30 32
Springer 6585 40 13 8 9

ACM Digital Library 8146 69 10 6 8
ScienceDirect 5529 52 3 2 3

Wiley 1072 16 1 1 1
SAE Mobilus 1726 17 8 5 5

Google Scholar N/A N/A N/A N/A 15
Total 27,496 275 77 52 73

N/A = Not applicable.

Sensors 2022, 22, 9211 5 of 27

SAE Mobilus 1726 17 8 5 5

Google Scholar N/A N/A N/A N/A 15

Total 27496 275 77 52 73

N/A = Not applicable.

Figure 2. Distribution of papers by source from 2010 to 2021.

3. Automotive Cybersecurity Testing Methods

Concerning RQ1, as shown in Figure 3, cybersecurity testing methods can be classi-

fied from three perspectives: knowledge level, level of automation, and test objective. The

knowledge-based method focuses on the knowledge level of the SUT. Depending on the

knowledge level, it can be divided into three types: black-box, white-box, and gray-box

tests. The automation-based method pays attention to the level of automation of the test

tool. It can be classified into three types based on the level of automation of the tool: fully

automated testing, semi-automated testing, and manual testing. Based on the test objec-

tive, it can be classified into threat-based and requirement-based types. The threat-based

method conducts testing to reveal threats and vulnerabilities of the SUT. This method

aims to evaluate the security of the target system. Threat-based testing can be categorized

into four sub-types: vulnerability scanning, penetration testing, fuzzing, and risk-based

testing. Requirement-based testing is performed to verify the security functional require-

ments and specifications. Thus, we also refer to it as functional security testing. Moreover,

model-based testing has also been discussed as an advanced testing technique in this pa-

per.

Figure 2. Distribution of papers by source from 2010 to 2021.

3. Automotive Cybersecurity Testing Methods

Concerning RQ1, as shown in Figure 3, cybersecurity testing methods can be classified
from three perspectives: knowledge level, level of automation, and test objective. The
knowledge-based method focuses on the knowledge level of the SUT. Depending on the
knowledge level, it can be divided into three types: black-box, white-box, and gray-box
tests. The automation-based method pays attention to the level of automation of the
test tool. It can be classified into three types based on the level of automation of the
tool: fully automated testing, semi-automated testing, and manual testing. Based on the
test objective, it can be classified into threat-based and requirement-based types. The
threat-based method conducts testing to reveal threats and vulnerabilities of the SUT. This
method aims to evaluate the security of the target system. Threat-based testing can be
categorized into four sub-types: vulnerability scanning, penetration testing, fuzzing, and
risk-based testing. Requirement-based testing is performed to verify the security functional
requirements and specifications. Thus, we also refer to it as functional security testing.

Sensors 2022, 22, 9211 6 of 27

Moreover, model-based testing has also been discussed as an advanced testing technique
in this paper.

Sensors 2022, 22, 9211 6 of 27

Figure 3. The classification of automotive cybersecurity testing methods.

3.1. Knowledge-Based Testing

The knowledge-based testing is conducted based on the degree of knowledge of the

SUT. In general, it can be divided into the following three categories.

For black-box testing, testers do not have functional specifications and documents

related to the SUT, and the target system is treated as a black box. Testers verify the secu-

rity design and defense of the system from the outside, which is closer to the actual attack

situation and can assess the system’s resistance to attacks. Since the information is not

available, it can be challenging in the early stage of testing, requiring significant time and

cost to reverse engineer the system. Moreover, without specifics, potential threats and

vulnerabilities are difficult to identify. Penetration testing is a kind of black-box testing in

most cases and will be thoroughly presented in Section 3.3.2.

White-box testing means that the internal details of the target system are known. Po-

tential threat vulnerabilities can be carefully revealed based on functional specifications

and source code without wasting much time and effort on information acquisition. Test

coverage can be significantly improved by accessing the full source code, but this would

take a significant amount of time. This method is commonly used in dynamic and static

code scanning of automotive applications [15]. This approach enables comprehensive test-

ing of the automotive system from source code to architecture design.

Grey-box testing is a combination of black-box and white-box, a method that takes

into account time and cost trade-offs. Grey-box testing means that the tester knows part

of the information of the SUT and can build test cases based on acquired knowledge,

which takes less time and effort than white-box testing. Ebert et al. [16] proposed a grey-

box testing method. It can obtain part of the knowledge in the system and determine the

high-priority risks to test through security analysis, thereby saving testing time and re-

sources. Its good traceability is also beneficial for validating our testing requirements. A

comparison of the three methods is given (see Table 4).

Table 4. Comparison of the knowledge-based testing.

Aspect Black-Box Testing Grey-Box Testing White-Box Testing

Time Short Medium Long

Cost Low Medium High

Test coverage Low Medium High

Knowledge of the target Little Medium Much

Figure 3. The classification of automotive cybersecurity testing methods.

3.1. Knowledge-Based Testing

The knowledge-based testing is conducted based on the degree of knowledge of the
SUT. In general, it can be divided into the following three categories.

For black-box testing, testers do not have functional specifications and documents
related to the SUT, and the target system is treated as a black box. Testers verify the security
design and defense of the system from the outside, which is closer to the actual attack
situation and can assess the system’s resistance to attacks. Since the information is not
available, it can be challenging in the early stage of testing, requiring significant time and
cost to reverse engineer the system. Moreover, without specifics, potential threats and
vulnerabilities are difficult to identify. Penetration testing is a kind of black-box testing in
most cases and will be thoroughly presented in Section 3.3.2.

White-box testing means that the internal details of the target system are known.
Potential threat vulnerabilities can be carefully revealed based on functional specifications
and source code without wasting much time and effort on information acquisition. Test
coverage can be significantly improved by accessing the full source code, but this would
take a significant amount of time. This method is commonly used in dynamic and static
code scanning of automotive applications [15]. This approach enables comprehensive
testing of the automotive system from source code to architecture design.

Grey-box testing is a combination of black-box and white-box, a method that takes into
account time and cost trade-offs. Grey-box testing means that the tester knows part of the
information of the SUT and can build test cases based on acquired knowledge, which takes
less time and effort than white-box testing. Ebert et al. [16] proposed a grey-box testing
method. It can obtain part of the knowledge in the system and determine the high-priority
risks to test through security analysis, thereby saving testing time and resources. Its good
traceability is also beneficial for validating our testing requirements. A comparison of the
three methods is given (see Table 4).

Sensors 2022, 22, 9211 7 of 27

Table 4. Comparison of the knowledge-based testing.

Aspect Black-Box Testing Grey-Box Testing White-Box Testing

Time Short Medium Long
Cost Low Medium High

Test coverage Low Medium High
Knowledge of the

target Little Medium Much

3.2. Automation-Based Testing

Automated-based testing can be classified into three types based on the level of
automation of testing tools and frameworks: fully automated, semi-automated, and
manual testing.

With the increasing complexity of electronic and electrical systems in automobiles,
manual testing has been unable to meet the growing testing requirements. Automotive
development is a cost-sensitive activity, and the time and cost of testing must be considered
throughout the vehicle development lifecycle. Automated testing can significantly improve
test efficiency, reduce human workload, and avoid deviations caused by human subjective
factors. For example, in the security audit of the source code, if the security testing of
the software is performed by manual testing, it is time-consuming and complicated. In
this case, an automated code inspection tool will be commonly utilized. Testing tools may
only be dedicated to some specific application scenarios and cannot fully automate the
entire testing process. It is necessary to cooperate with some automated testing frameworks
or testbeds to form a complete testing process. A fully automated method is ideal and
expensive, so it is usually superior to use a semi-automated testing method that combines
manual and automated testing. In our surveyed literature, Marksteiner et al. [17] proposed
a conceptual framework to transfer threats into executable test cases using a workflow-
based system. In 2021, they also presented an automated automotive cybersecurity security
testing process based on ISO/SAE 21343, bridging the gap between existing automotive
security standards and actual system testing [18]. Table 5 shows the comparison of the
automated testing methods.

Table 5. Comparison of the automated testing methods.

Aspect Fully Automated
Testing

Semi-Automated
Testing Manual Testing

Time Short Medium Long
Cost Low Medium High

Efficiency High Medium Low
Knowledge of

the target Little Medium Much

3.3. Threat-Based Testing

Threat-based testing is a threat-centric approach. Security threats can lead to vulnera-
bilities in automotive safety-critical systems that attackers can exploit to cause catastrophic
consequences. Therefore, it is essential to find the potential threats to the system. The
threat-based method aims to discover loopholes in the system, identify potential attack
paths and exploit the vulnerabilities to attack the system. Several threat-based testing
methods are discussed below.

3.3.1. Vulnerability Scanning

Vulnerability scanning is a typical security testing approach used in the traditional
IT industry. It generally refers to using automated scanning tools or scripts to dis-
cover potential vulnerabilities of target systems based on common security vulnerability
databases, such as common vulnerabilities and exposures (CVE), national vulnerability

Sensors 2022, 22, 9211 8 of 27

database (NVD), etc. For source code scanning, it must also comply with the corre-
sponding code specifications, such as MISRA C [19]. This method can quickly and
efficiently expose some security risks, especially those known in the database. However,
the vulnerabilities discovered in this way are not comprehensive, and some unknown
attacks may require further identification with other testing technologies. Vulnerability
scanning is a more proactive security measure to detect threats than passive defenses
such as automotive firewalls. The cybersecurity architecture of ICVs can be described in
three aspects: cloud, pipe end, and vehicle end. For cloud infrastructures, traditional IT-
based vulnerability scanning can be used to discover the open ports and services of the
backend server. This section is devoted to two other vulnerability scanning approaches
in the automotive domain. It can be classified into static/dynamic code analysis and
communication service scanning.

The first one is static/dynamic code analysis. The software-defined vehicles (SDV)
concept has recently become popular. The software has become the basis of future au-
tomotive intelligence. Today, the software size in cars has exceeded 100 million lines of
code [20], and software code security has become a critical task. Objects for static/dynamic
analysis can be source code or binary files. Testers can use automated tools to find known
vulnerabilities, such as stack overflow [21]. Alternatively, they also can use lightweight
scripts to check whether the program’s system security hardening measures are enabled,
such as data execution prevention (DEP), position independent executable (PIE), etc.

The other is communication service scanning. The communication here can be
wireless or wired communication. Traditional vulnerability scanning can be used for
classic wireless communication, such as Wi-Fi, cellular network, and Bluetooth, which is
also the most commonly used attack vector for hackers to compromise vehicles [1]. This
attack is more straightforward and less expensive than accessing a physical interface
like on-board diagnostics (OBD). Franco et al. [22] utilized Nmap and Nessus scanners
to obtain sensitive data of car infotainment systems through Wi-Fi, such as a physical
address, chip manufacturer, open ports, and conduct a denial of service (DoS) attack
on Wi-Fi communication. The other is the physical interface of direct contacts, such
as the OBD interface, which generally runs the unified diagnostic services (UDS) on
the CAN. UDS is a diagnostic protocol based on the application layer in the open
systems interconnection (OSI) model defined by ISO-14229 [23]. Among them, ISO
14229-1 defines diagnostic services. However, it does not involve the network layer
and implementation details, only the content of the application layer so that it can be
implemented on different automotive buses such as CAN, Local Interconnect Network
(LIN), Flexray, Ethernet. and K-line. Attackers can tamper with the configuration
of the electronic control unit (ECU) through the UDS protocol, which can affect the
functionality of the ECU. However, before reading and writing data, a simple security
access verification is required by the UDS security access service. The client must send
a seed request first, and then the server replies with the seed of a positive response.
The client calculates the secret key according to the seed and the security algorithm.
The client sends the secret key, and the server compares the received secret key with
its secret key. If the keys match, the server unlocks the relevant data or service. If
it does not match, it is considered a bad attempt. There are several security holes in
this verification process. First, if the randomness of the seed is weak, the system can
be easily broken by an attacker. In addition, if there is no time interval between false
attempts, then the attacker can use brute force to crack. Therefore, we can use some
automated scanning tools or scripts to verify the randomness of the seed and whether
there is a delay among multiple false attempts. In our other work [24], we used our
self-developed software tool to automatically discover ECUs with UDS protocol in the in-
vehicle network and further identify the UDS services supported by various ECUs. The
information obtained from the previous UDS topology discovery and service scanning
can facilitate subsequent penetration testing and fuzzing. Weiss et al. [25] also designed
a security scanning tool for the CAN transport layer to help assess the attack surface of

Sensors 2022, 22, 9211 9 of 27

the system. Table 6 compares various vulnerability scanning methods by time, cost, test
scope and limitation.

Table 6. Comparison of various vulnerability scanning methods.

Aspect Static/Dynamic Code
Analysis

Communication Service Scanning

Wired Wireless

Time Long Medium Low
Cost High Medium Low

Test scope Application source code Wired communication
(In-vehicle network)

Wireless communication
(Bluetooth, Wi-Fi, cellular)

Limitation Source code required Physical contact required Physical contact not required

3.3.2. Penetration Testing

Penetration testing, also called pen testing, is a traditional testing method com-
monly used in the IT field to test the security of web applications. Security testers usually
imitate hackers to conduct malicious attacks on the system under test to discover system
security loopholes. The objectives tested generally contains applications, communica-
tion networks and security-critical systems. As it develops, penetration testing is not
only a testing technology but also a testing process. Nowadays, there have been some
agreed rules that describe the steps of penetration testing. One of the most famous is
the penetration testing execution standard (PTES). In summary, PTES can be divided
into five steps: intelligence gathering, threat modeling, vulnerability analysis, exploita-
tion, and reporting. Intelligence gathering is the first step of penetration testing. This
phase is responsible for collecting security-related information about the SUT, such as
system architecture, communication methods, etc. This information is beneficial to the
subsequent penetration work. The threat modeling phase analyzes the possible threats
to the system through threat analysis and risk assessment and determines the best way
to attack. Vulnerability analysis combines the information from the first two steps and
identifies the attack points. The exploitation phase conducts the actual attack on the
identified threat vulnerabilities to reach the purpose of penetration testing. Finally, the
report phase summarizes the entire penetration process and condenses the details of
the test. Although there is no standardized penetration testing methodology for the
automotive sector, the above-mentioned traditional testing process for IT can provide a
reference for the application of penetration testing in automobiles.

From SAE J3061 in 2016 to SAE/ISO 21434 in 2021, the standards clearly state that
penetration testing should be performed as a necessary activity in the verification and
validation phase during automotive development. However, the standard does not guide
the specific implementation details of automotive security testing, so it is necessary for us
to conduct this study to investigate the application and prospects of penetration testing in
the automotive industry by reviewing the research of scholars and experts.

Concerning automotive penetration testing, we analyzed 20 papers and found
that penetration testing is one of the most widely used security testing techniques.
Generally, automobile penetration testing includes component and vehicle penetration
testing. Since various components are sourced from different suppliers, each part
must be tested individually before system integration to ensure security. A typical
penetration test is black-box, so it depends more on the tester’s experience. From the
attack vector’s perspective, the penetration testing objectives can be divided into network
communication, software, and hardware.

Automotive network communication is divided into internal and external communi-
cation. Internal communication contains wired types such as CAN, LIN, and automotive
Ethernet, while external communication includes wireless types such as Wi-Fi, Bluetooth,
cellular network, etc. The automotive network is a common entry point for attackers to
break into vehicles. Due to possible flaws in the design and implementation of network
communication protocols, security testers utilize various attack methods to violate the

Sensors 2022, 22, 9211 10 of 27

security properties of network communication from the perspective of attackers, thereby
discovering potential security vulnerabilities in automotive network communication.
The security attributes involved in communications generally include confidentiality,
integrity, authentication, availability, authorization (CIAAA). For each security attribute,
different attack methods can be applied, such as sniffing, tampering, spoofing, DoS,
unauthorization access, etc. Testers build single-step or multi-step combined attacks that
violate the security properties according to the security requirements of real scenarios
and evaluate the security risk.

As for software testing, penetration testing mainly performs malicious operations on
the application software, such as injection and tampering, to change its control logic. Testers
can tamper with the ECU firmware or employ the UDS function to affect the behavior of the
ECU [26]. They also can install malicious apps on the smartphone to connect to the car’s in-
vehicle infotainment system (IVI), then exploit the IVI vulnerability to send malicious CAN
messages that impact the safety-critical function [27]. Through these attacks, the software
system’s defense resistance to malicious attacks can be assessed, and the vulnerability of
the software can be effectively discovered.

Regarding hardware, the research on attack and testing sensors such as lidar, millimeter-
wave radar, and cameras has become increasingly popular in recent years. As the core
components of intelligent networked vehicles, sensors play a crucial role in guiding driving.
If the sensor is compromised, it could endanger human life. Yan et al. [28] performed spoof-
ing and jamming attacks on multiple Tesla sensors, causing the automotive self-driving to
malfunction. Shin et al. [29] present a saturation attack to affect the ability of the lidar to
detect objects.

A brief comparison of penetration testing in the surveyed literature from the perspec-
tives of attack vectors, attack types, and knowledge level (� = Black box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = White box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = Grey box) can be found in Table 7. Figures 4 and 5 show the distribution of papers by
attack type and vector. In the surveyed literature, sniffing/eavesdropping and injection
attack are the most used, followed by spoofing, and DoS is the third. As for the attack
vector, the in-vehicle network is the most commonly used attack entry point for penetration
testing as it undertakes critical communication tasks inside the vehicle.

Table 7. A comparative overview of penetration testing in the surveyed literature.

Literature Year Attack Vector Attack Type Knowledge Level

Koscher [26] 2010
OBD,
CAN,
ECU

Sniffing, DoS,
reverse engineering,
unauthorized access,

ECU tampering,
injection attack

�

Miller [30] 2013
OBD,
CAN,
ECU

Sniffing, DoS,
injection attack,

diagnostic attack,
firmware

extraction/modification,
ECU tampering,
detecting attacks

�

Shoukry [31] 2013 ABS wheel
speed sensors

Spoofing, tampering,
injection attack �

Woo [32] 2015

OBD,
CAN,

Mobile app,
Bluetooth

Sniffing, DoS,
replay attack,

wireless attack,
malicious app installation

�

Sensors 2022, 22, 9211 11 of 27

Table 7. Cont.

Literature Year Attack Vector Attack Type Knowledge Level

Petit [33] 2015 Sensors

Blinding attack,
jamming attack,

replay attack
relay attack, spoofing

�

Abbott-McCune [34] 2016 OBD,
CAN

Sniffing, DoS,
replay attack �

Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection

�

Yan [28] 2016 Sensors Jamming attack,
spoofing �

Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack

�

Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack

�

Shin [29] 2017 Lidar Channel attack �

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware
extraction/modification,

fault injection
�

Jeong [38] 2018 Keyless entry Relay attack �

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering �

Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering �

He [41] 2020 GNSS Spoofing,
jamming attack �

Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack �

He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering

�

Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack

�

Ebert [16] 2021 Ethernet,
IVI

DoS, spoofing,
eavesdropping,

malicious code injection

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box.

� = Black box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = Grey box.

Sensors 2022, 22, 9211 12 of 27

Sensors 2022, 22, 9211 12 of 27

Figure 4. Distribution of papers by attack type.

Figure 5. Distribution of papers by attack vector.

3.3.3. Fuzzing

Fuzz testing, also named fuzzing, is a software testing technique that verifies the se-

curity and robustness of the SUT. This approach identifies security vulnerabilities in the

SUT by feeding a large amount of random or unexpected data to and monitoring the be-

havior of the SUT. Fuzzing comprises three parts: a test case generator, a monitoring sys-

tem, and a test environment. This testing is generally executed by a dedicated software

tool called fuzzer. Fuzzer can be divided into two types based on how the test data is

generated: mutation-based and generation-based. The mutation-based approach gener-

ates test cases by randomly mutating existing data samples. It is a black-box approach.

However, the generation-based approach is a white-box approach, which uses the syntax

and structure of known protocols or files to generate test cases based on specific rules or

models. The generation-based approach has a higher test case pass rate and test coverage

than the mutation-based approach, but with a relatively higher cost. Therefore, a gray-box

testing technique that combines the advantages of both types is sometimes utilized. Alt-

hough fuzzing is relatively mature in operating systems and application software, it is still

rare in automotive systems [20]. In addition, fuzzers in the traditional IT industry cannot

be directly applied to the automotive industry. Therefore, the development and applica-

tion of fuzzing tools in the automotive field is also an important task.

The applicable scenarios of fuzzing are different for various attack vectors. The first

one is network communication. The fuzzing of communication protocols is aimed to iden-

tify vulnerabilities in their principles or implementations. The second is application ser-

vices, and this type is mainly for testing the implementation of application services to

prevent malicious exploitation by attackers. The third type targets automotive systems,

which aims to discover the security vulnerabilities in automotive systems to guarantee the

stability and robustness of security-critical systems.

Figure 4. Distribution of papers by attack type.

Sensors 2022, 22, 9211 12 of 27

Figure 4. Distribution of papers by attack type.

Figure 5. Distribution of papers by attack vector.

3.3.3. Fuzzing

Fuzz testing, also named fuzzing, is a software testing technique that verifies the se-

curity and robustness of the SUT. This approach identifies security vulnerabilities in the

SUT by feeding a large amount of random or unexpected data to and monitoring the be-

havior of the SUT. Fuzzing comprises three parts: a test case generator, a monitoring sys-

tem, and a test environment. This testing is generally executed by a dedicated software

tool called fuzzer. Fuzzer can be divided into two types based on how the test data is

generated: mutation-based and generation-based. The mutation-based approach gener-

ates test cases by randomly mutating existing data samples. It is a black-box approach.

However, the generation-based approach is a white-box approach, which uses the syntax

and structure of known protocols or files to generate test cases based on specific rules or

models. The generation-based approach has a higher test case pass rate and test coverage

than the mutation-based approach, but with a relatively higher cost. Therefore, a gray-box

testing technique that combines the advantages of both types is sometimes utilized. Alt-

hough fuzzing is relatively mature in operating systems and application software, it is still

rare in automotive systems [20]. In addition, fuzzers in the traditional IT industry cannot

be directly applied to the automotive industry. Therefore, the development and applica-

tion of fuzzing tools in the automotive field is also an important task.

The applicable scenarios of fuzzing are different for various attack vectors. The first

one is network communication. The fuzzing of communication protocols is aimed to iden-

tify vulnerabilities in their principles or implementations. The second is application ser-

vices, and this type is mainly for testing the implementation of application services to

prevent malicious exploitation by attackers. The third type targets automotive systems,

which aims to discover the security vulnerabilities in automotive systems to guarantee the

stability and robustness of security-critical systems.

Figure 5. Distribution of papers by attack vector.

3.3.3. Fuzzing

Fuzz testing, also named fuzzing, is a software testing technique that verifies the
security and robustness of the SUT. This approach identifies security vulnerabilities in
the SUT by feeding a large amount of random or unexpected data to and monitoring the
behavior of the SUT. Fuzzing comprises three parts: a test case generator, a monitoring
system, and a test environment. This testing is generally executed by a dedicated software
tool called fuzzer. Fuzzer can be divided into two types based on how the test data is
generated: mutation-based and generation-based. The mutation-based approach generates
test cases by randomly mutating existing data samples. It is a black-box approach. However,
the generation-based approach is a white-box approach, which uses the syntax and structure
of known protocols or files to generate test cases based on specific rules or models. The
generation-based approach has a higher test case pass rate and test coverage than the
mutation-based approach, but with a relatively higher cost. Therefore, a gray-box testing
technique that combines the advantages of both types is sometimes utilized. Although
fuzzing is relatively mature in operating systems and application software, it is still rare
in automotive systems [20]. In addition, fuzzers in the traditional IT industry cannot be
directly applied to the automotive industry. Therefore, the development and application of
fuzzing tools in the automotive field is also an important task.

Sensors 2022, 22, 9211 13 of 27

The applicable scenarios of fuzzing are different for various attack vectors. The first
one is network communication. The fuzzing of communication protocols is aimed to
identify vulnerabilities in their principles or implementations. The second is application
services, and this type is mainly for testing the implementation of application services to
prevent malicious exploitation by attackers. The third type targets automotive systems,
which aims to discover the security vulnerabilities in automotive systems to guarantee the
stability and robustness of security-critical systems.

In network communication, Lee et al. [45] mutated the CAN ID and data fields from
sniffed CAN messages. The generated fuzzy CAN data was then injected into the CAN bus
via the Bluetooth of the computer, and the behavior of the vehicle was monitored. Thus, the
vulnerability of the automotive network is exposed. Fowler et al. [46] developed a custom
PC-based fuzzer. A mutation-based approach was utilized for CAN bus experiments on
the vehicle simulator and instrumentation components to avoid damage to the vehicle. In
2019, they improved their fuzzer prototype and proposed a systematic fuzzy test scheme.
The security properties of the ECU were also tested by fuzzy data injection of the display
ECU [47]. Werquin et al. [48] developed a sensor harness to facilitate automated detection
of the system’s behavior, which has significant advantages over previous manual testing
approaches. Furthermore, the method has been integrated into the open-source security
testing tool CaringCaribou.

Most of the above fuzzy test cases for CAN are random variants of CAN-specific
data, and the test coverage is not high. Radu et al. [49] created initial seeds for fuzzing
using relevant static data from control flow graphs extracted from ECU firmware. This
approach can improve the test coverage and is better than the random mutation strategy.
Zhang et al. [50] proposed a more novel fuzzing approach to expose the vulnerability of
CAN. They developed two fuzzy data generators. One reverses CAN by bit-flip rate (BFR)
and performs a mutation operation on the identified signals to prevent data combination
explosion. The other uses generative adversarial networks (GAN) in deep learning to learn
protocol models and generate test cases. They conducted experimental evaluations on
intrusion detection systems (IDS) and live vehicles. The results show that both approaches
are more effective than the random mutation approach.

In addition to CAN, Nishimura et al. [51] developed an interface to support CAN FD
based on the existing fuzzing tool beSTORM and calculated test execution time parameters
to evaluate the usability. Li et al. [52] developed a fuzzer for the automotive Ethernet
Scalable service-Oriented MiddlewarE over IP (SOME/IP) protocol, and the fuzzer can
enable multiple test processes simultaneously to improve testing efficiency. In addition,
valid packet headers can be generated by structural mutation, which can successfully
expose the implementation flaws of SOME/IP.

In application services, Bayer et al. [53] implemented four UDS service request message
models and performed fuzzer tests on simulated ECUs. The results show that their fuzzer
effectively detects faults and standards compliance of automotive ECUs. Patki et al. [54]
developed a fuzzing tool for the UDS protocol. It uses a mutation-based approach to
create invalid inputs to find hidden vulnerabilities in the automotive environment. They
also compared their proposed system with other existing fuzzers (Defensics and extended
Peach) to highlight the advantages.

As for automotive systems, Moukahal et al. [55] designed a fuzz testing framework,
VulFuzz. The framework uses security metrics to rank the security priority of automotive
components and tests the most vulnerable components thoroughly. They used the frame-
work to evaluate an autonomous driving system, OpenPliot, and compared the test results
with American fuzzy lop (AFL) and a mutation-based fuzzer. The proposed framework
performs better in exposing crashes for the same code coverage. In the same year, they
improved their fuzzing framework [56]. The new framework can enhance vulnerability
identification and improve branch coverage with lower overhead.

In addition to the fuzzing technology itself, researchers are also studying how to
integrate fuzzing into existing automotive security engineering. Vinzenz [57] and Oka [58]

Sensors 2022, 22, 9211 14 of 27

both recommend performing fuzzing early in the automotive development life cycle and
using the results of fuzzing to enhance other testing activities.

Table 8 presents an overview of fuzzing applied in the automotive domain based on the
following five dimensions: attack vector, characteristics, knowledge level
(� = Black box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = White box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = Grey box), type and testing platform. Figure 6
shows the distribution of papers by attack vector in fuzzing literature. It can be seen that
CAN is the most used attack vector in fuzzing.

Table 8. Overview of fuzzing in literature by different dimensions.

Literature Attack Vector Characteristics Knowledge
Level Type Testing Platform

Lee [45] Bluetooth,
CAN Attacking ECU � Mutation Instruments,

real ECU

Fowler [46] CAN Reversing engineer,
attacking network � Mutation

Vehicle simulator,
an instrument

cluster

Fowler [47] CAN Reversing engineer,
inject message into ECU � Mutation Display ECU

Werquin [48] CAN Reverse engineering � Mutation Instrument Clusters

Radu [49] CAN,
ECU Firmware

Control flow graph,
static analysis

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Generation Real ECU

Zhang [50] CAN Bit flip rate,
generative adversarial network � Hybrid Actual vehicle,

IDS

Nishimura [51] CAN FD
Adaption for CAN FD,

test execution time
measurement

� Mutation Real ECU

Li [52] SOME/IP Attach fuzzing mode,
structural mutation

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Hybrid Program from
GENIVI/vsomeip

Bayer [53] UDS UDS fuzzing

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Generation Simulated ECU

Patki [54] UDS UDS fuzzing

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Generation Real ECU

Moukahal [55] Automotive
system

Vulnerability-oriented fuzz,
structure-aware mutation

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Hybrid OpenPilot

Moukahal [56] Automotive
system

Prioritized and targeted
concolic execution

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. Hybrid OpenPilot

Hybrid = Generation + Mutation, � = Black box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = White box,

Sensors 2022, 22, 9211 11 of 27

relay attack, spoofing

Abbott-McCune [34] 2016
OBD,
CAN

Sniffing, DoS,
replay attack



Mazloom [27] 2016 IVI

Data extraction,
reverse engineering,

heap overflow attack,
malicious code injection



Yan [28] 2016 Sensors Jamming attack,
spoofing



Nie [35] 2017
Wi-Fi,

cellular,
CAN

Privilege escalation,
Unauthorized access,

ECU tampering,
reverse engineering,

injection attack



Cheah [36] 2017 Bluetooth
Sniffing, DoS,

data extraction,
injection attack



Shin [29] 2017 Lidar Channel attack 

Milburn [37] 2018
CAN

debug interfaces,
ECU

Firmware extraction/modification,
fault injection



Jeong [38] 2018 Keyless entry Relay attack 

Dürrwang [39] 2018 Airbag ECU Diagnostic attack,
signal tampering



Sommer [40] 2019 In-vehicle network Eavesdropping,
reverse engineering



He [41] 2020 GNSS Spoofing,
jamming attack



Zachos [42] 2020 OBD,
CAN

Spoofing,
diagnostic attack



He [43] 2020 OTA

Sniffing, DoS, spoofing,
tampering, replay attack,

unauthorized access,
reverse engineering



Wen [44] 2020 Wireless OBD dongle
Spoofing,

eavesdropping,
injection attack



Ebert [16] 2021
Ethernet,

IVI

DoS, spoofing,
eavesdropping,

malicious code injection


 = Black box,  = White box,  = Grey box. = Grey box.

Sensors 2022, 22, 9211 14 of 27

Table 8. Overview of fuzzing in literature by different dimensions.

Literature Attack Vector Characteristics Knowledge Level Type Testing Platform

Lee [45]
Bluetooth,

CAN
Attacking ECU  Mutation

Instruments,

real ECU

Fowler [46] CAN
Reversing engineer,

attacking network
 Mutation

Vehicle simulator,

an instrument cluster

Fowler [47] CAN
Reversing engineer,

inject message into ECU
 Mutation Display ECU

Werquin [48] CAN Reverse engineering  Mutation Instrument Clusters

Radu [49]
CAN,

ECU Firmware

Control flow graph,

static analysis
 Generation Real ECU

Zhang [50] CAN

Bit flip rate,

generative adversarial net-

work

 Hybrid
Actual vehicle,

IDS

Nishimura [51] CAN FD

Adaption for CAN FD,

test execution time meas-

urement

 Mutation Real ECU

Li [52] SOME/IP
Attach fuzzing mode,

structural mutation
 Hybrid

Program from

GENIVI/vsomeip

Bayer [53] UDS UDS fuzzing  Generation Simulated ECU

Patki [54] UDS UDS fuzzing  Generation Real ECU

Moukahal [55]
Automotive

system

Vulnerability-oriented

fuzz,

structure-aware mutation

 Hybrid OpenPilot

Moukahal [56]
Automotive

system

Prioritized and targeted

concolic execution
 Hybrid OpenPilot

Hybrid = Generation + Mutation,  = Black box,  = White box,  = Grey box.

Figure 6. Distribution of papers by attack vector in fuzzing literature.

3.3.4. Risk-Based Security Testing

Risk-based security testing (RBST) is a risk-oriented approach. Compared with tra-

ditional security testing, it incorporates threat analysis and risk assessment (TARA) tech-

niques and can use the results of risk assessment to optimize the security testing process.

Figure 7 illustrates the generic process of risk-based security testing based on the surveyed

literature. As the first step, TARA aims to identify vulnerabilities and threats, and then

assess and prioritize system security risks. Step 2 refers to model design. This step aims

to design a security test model based on a threat model for risk assessment and a func-

Figure 6. Distribution of papers by attack vector in fuzzing literature.

Sensors 2022, 22, 9211 15 of 27

3.3.4. Risk-Based Security Testing

Risk-based security testing (RBST) is a risk-oriented approach. Compared with
traditional security testing, it incorporates threat analysis and risk assessment (TARA)
techniques and can use the results of risk assessment to optimize the security testing
process. Figure 7 illustrates the generic process of risk-based security testing based on the
surveyed literature. As the first step, TARA aims to identify vulnerabilities and threats,
and then assess and prioritize system security risks. Step 2 refers to model design. This
step aims to design a security test model based on a threat model for risk assessment
and a functional or behavioral model for system requirements. The goal of step 3, test
case generation, is to select the appropriate criteria and algorithms to generate test cases
from the test model. Test cases can be automated scripts or manual test scenarios. The
test execution runs the generated test cases based on the test environment. Test cases are
executed either by automated scripts or manually. The test execution results are often
some new threat vulnerabilities that can be fed back into the TARA step as a complement
to starting a new round of testing. Thus, RBST is an iterative testing methodology with
TARA playing a key role.

Sensors 2022, 22, 9211 15 of 27

tional or behavioral model for system requirements. The goal of step 3, test case genera-

tion, is to select the appropriate criteria and algorithms to generate test cases from the test

model. Test cases can be automated scripts or manual test scenarios. The test execution

runs the generated test cases based on the test environment. Test cases are executed either

by automated scripts or manually. The test execution results are often some new threat

vulnerabilities that can be fed back into the TARA step as a complement to starting a new

round of testing. Thus, RBST is an iterative testing methodology with TARA playing a key

role.

Figure 7. Generic process of risk-based security testing.

TARA serves as the core of risk-based testing. TARA results include threat identifi-

cation, probability and impact of threat scenarios, and risk values. Using the risk assess-

ment results can help prioritize test cases and test execution. In the past, risk assessment

was not an activity in automotive development. However, with the promulgation of SAE

J3601 and ISO/SAE 21434, risk-based security activities have been introduced throughout

the automotive cybersecurity development process. The standard also provides a TARA

methodology for OEMs and suppliers to implement, as shown in Figure 8. Moreover,

based on the research literature, Table 9 describes several security analysis methods and

techniques in the automotive domain. It also compares the threat models. In addition,

whether the analysis method involves safety and security is considered.

Table 9. Overview of TARA methods in automotive domain.

Method Brief Description Application Scope
Threat

Model
Co-Analysis

EVITA [59]

A method in the E-safety Vehicle Intrusion Pro-

tected Applications (EVITA) project which pro-

vides four evaluation dimensions: safety, privacy,

financial, and operational.

Vehicular IT

systems
Attack tree Yes

HEAVENS [60]

A method in the HEAling vulnerabilities to en-

hance software (HEAVENS) project, which pro-

vides a complete evaluation process to propose a

systematic approach so that cybersecurity require-

ments for automotive electrical and electronic sys-

tems can be obtained

Automotive

Electrical and elec-

tronic

systems

STRIDE Yes

FMVEA [61]

FMVEA (Failure Mode, Vulnerabilities and Effects

Analysis) extends the FMEA approach with secu-

rity threat models

Automotive cyber-

physical systems
STRIDE Yes

SAHARA [62]

SAHARA (security-aware hazard analysis and risk

assessment) is a method that combines HARA in

functional safety and STRIDE threat models

Automotive embed-

ded systems
STRIDE Yes

Figure 7. Generic process of risk-based security testing.

TARA serves as the core of risk-based testing. TARA results include threat iden-
tification, probability and impact of threat scenarios, and risk values. Using the risk
assessment results can help prioritize test cases and test execution. In the past, risk
assessment was not an activity in automotive development. However, with the pro-
mulgation of SAE J3601 and ISO/SAE 21434, risk-based security activities have been
introduced throughout the automotive cybersecurity development process. The stan-
dard also provides a TARA methodology for OEMs and suppliers to implement, as
shown in Figure 8. Moreover, based on the research literature, Table 9 describes several
security analysis methods and techniques in the automotive domain. It also compares
the threat models. In addition, whether the analysis method involves safety and security
is considered.

Sensors 2022, 22, 9211 16 of 27

Sensors 2022, 22, 9211 16 of 27

SARA [63]

SARA is a systematic TARA framework that in-

cludes improved threat models, asset maps, new

attack methods, attacker participation in the attack

tree, and new driving system metrics

Automated driving

system

STRIDELC,

Attack tree,

Attack map

Yes

CHASSIS [64]

CHASSIS (Combined harm assessment of safety

and security) is a safety and security co-analysis

method for information systems based on HAZOP

guidewords

Automotive cyber-

physical systems
HAZOP Yes

TVRA [65]

TVRA (Threat, Vulnerabilities, and implementation

Risks Analysis) is a process-driven threat analysis

and risk assessment method proposed by the Euro-

pean Telecommunications Standards Institute

(ETSI)

Automotive data/tel-

ecommunications

networks

Threat tree No

SINA [66]

SINA (Security in Networked Automotive) is a

method to identify security issues for Connected

automotive systems

Connected automo-

tive systems

STRIDE,

Attack tree
Yes

SGM [67]
SGM (Security Guideword Method) is a safety

analysis method using security guide words

Automotive embed-

ded systems

SGM,

Attack Tree
Yes

STRIDE(LC) = Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Eleva-

tion of Privilege (Linkability, Confusion).

Figure 8. TARA in ISO/SAE 21434.

3.4. Requirements-Based Testing

 The requirement-based testing (RBT) is to check whether the technical security re-

quirements of the SUT are correctly implemented. Unlike threat-based testing, which tar-

gets threats and vulnerabilities, RBT is essentially the verification of compliance with a

requirement specification or standard. The requirements here refer more to the functional

requirements of the SUT, so functional security testing will be described below.

Functional Security Testing

The goal of threat-based testing is to identify unknown system vulnerabilities caused

by security design flaws and code defects, usually using malicious means to attack the

system like a hacker. The threat-based testing aims to identify unknown system vulnera-

bilities caused by security design flaws and code defects. This testing is accomplished by

mimicking a hacker using malicious means to attack the system. However, functional se-

curity testing is mainly to verify that the security-critical functions or systems are correctly

Figure 8. TARA in ISO/SAE 21434.

Table 9. Overview of TARA methods in automotive domain.

Method Brief Description Application Scope Threat Model Co-Analysis

EVITA [59]

A method in the E-safety Vehicle Intrusion
Protected Applications (EVITA) project which
provides four evaluation dimensions: safety,

privacy, financial, and operational.

Vehicular IT systems Attack tree Yes

HEAVENS [60]

A method in the HEAling vulnerabilities to
enhance software (HEAVENS) project, which

provides a complete evaluation process to
propose a systematic approach so that

cybersecurity requirements for automotive
electrical and electronic systems can

be obtained

Automotive Electrical
and electronic systems STRIDE Yes

FMVEA [61]
FMVEA (Failure Mode, Vulnerabilities and

Effects Analysis) extends the FMEA approach
with security threat models

Automotive
cyber-physical systems STRIDE Yes

SAHARA [62]

SAHARA (security-aware hazard analysis and
risk assessment) is a method that combines

HARA in functional safety and STRIDE
threat models

Automotive embedded
systems STRIDE Yes

SARA [63]

SARA is a systematic TARA framework that
includes improved threat models, asset maps,
new attack methods, attacker participation in

the attack tree, and new driving system metrics

Automated driving
system

STRIDELC,
Attack tree,
Attack map

Yes

Sensors 2022, 22, 9211 17 of 27

Table 9. Cont.

Method Brief Description Application Scope Threat Model Co-Analysis

CHASSIS [64]

CHASSIS (Combined harm assessment of
safety and security) is a safety and security
co-analysis method for information systems

based on HAZOP guidewords

Automotive
cyber-physical systems HAZOP Yes

TVRA [65]

TVRA (Threat, Vulnerabilities, and
implementation Risks Analysis) is a

process-driven threat analysis and risk
assessment method proposed by the European
Telecommunications Standards Institute (ETSI)

Automotive
data/telecommunications

networks
Threat tree No

SINA [66]
SINA (Security in Networked Automotive) is a

method to identify security issues for
Connected automotive systems

Connected automotive
systems

STRIDE,
Attack tree Yes

SGM [67] SGM (Security Guideword Method) is a safety
analysis method using security guide words

Automotive embedded
systems

SGM,
Attack Tree Yes

STRIDE(LC) = Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service, Elevation of Privilege
(Linkability, Confusion).

3.4. Requirements-Based Testing

The requirement-based testing (RBT) is to check whether the technical security re-
quirements of the SUT are correctly implemented. Unlike threat-based testing, which
targets threats and vulnerabilities, RBT is essentially the verification of compliance with a
requirement specification or standard. The requirements here refer more to the functional
requirements of the SUT, so functional security testing will be described below.

Functional Security Testing

The goal of threat-based testing is to identify unknown system vulnerabilities caused
by security design flaws and code defects, usually using malicious means to attack the
system like a hacker. The threat-based testing aims to identify unknown system vulnera-
bilities caused by security design flaws and code defects. This testing is accomplished by
mimicking a hacker using malicious means to attack the system. However, functional secu-
rity testing is mainly to verify that the security-critical functions or systems are correctly
implemented according to the technical requirements in the design specification. Functional
security testing is more concerned with the correctness, performance, compliance, and ro-
bustness of security-critical systems [12]. It is a kind of white-box testing, which requires a
thorough understanding of the technical requirements, implementation, and configuration
of security mechanisms. Compared with traditional functional testing, it focuses more on
security-related functions, such as encryption/decryption and authentication algorithms,
intrusion detection systems, etc.

In order to ensure the security of the internal communication data of the connected
car, a secure in-vehicle communication solution is generally adopted. The secure onboard
communication (SecOC) in the AUTOSAR software specification is generally acknowledged
in the automotive industry. The SecOC mechanism can verify the authenticity, integrity, and
freshness of the communication between ECUs. Figure 9 shows the freshness verification
and message authentication process of SecOC. On the sender side, the SecOC module uses
the secret key to generate the message authentication code (MAC) for the message protocol
data unit (PDU). It adds the freshness value to obtain the Secured I-PDU. After receiving
the Secured I-PDU, the receiver will use the same algorithm to check whether the MAC of
the message is consistent with the sender to ensure the authenticity and integrity of the
data. Additionally, the freshness value can prevent replay attacks. However, SecOC cannot
guarantee the confidentiality of data, so researchers developed CINNAMON (Confidential,
INtegral aNd Authentic on board coMunicatiON), which extended the SecOC module to
ensure the confidentiality of transmitted data [68]. It is necessary to know the corresponding

Sensors 2022, 22, 9211 18 of 27

algorithms for testing cryptographic and verification functions. If not, it needs to be fetched
by the reverse engineer, such as machine learning [69]. After obtaining the algorithm,
the inverse operation can be performed in the test system to verify whether the output is
consistent with the input.

Sensors 2022, 22, 9211 17 of 27

implemented according to the technical requirements in the design specification. Func-

tional security testing is more concerned with the correctness, performance, compliance,

and robustness of security-critical systems [12]. It is a kind of white-box testing, which

requires a thorough understanding of the technical requirements, implementation, and

configuration of security mechanisms. Compared with traditional functional testing, it fo-

cuses more on security-related functions, such as encryption/decryption and authentica-

tion algorithms, intrusion detection systems, etc.

In order to ensure the security of the internal communication data of the connected

car, a secure in-vehicle communication solution is generally adopted. The secure onboard

communication (SecOC) in the AUTOSAR software specification is generally acknowl-

edged in the automotive industry. The SecOC mechanism can verify the authenticity, in-

tegrity, and freshness of the communication between ECUs. Figure 9 shows the freshness

verification and message authentication process of SecOC. On the sender side, the SecOC

module uses the secret key to generate the message authentication code (MAC) for the

message protocol data unit (PDU). It adds the freshness value to obtain the Secured I-

PDU. After receiving the Secured I-PDU, the receiver will use the same algorithm to check

whether the MAC of the message is consistent with the sender to ensure the authenticity

and integrity of the data. Additionally, the freshness value can prevent replay attacks.

However, SecOC cannot guarantee the confidentiality of data, so researchers developed

CINNAMON (Confidential, INtegral aNd Authentic on board coMunicatiON), which ex-

tended the SecOC module to ensure the confidentiality of transmitted data [68]. It is nec-

essary to know the corresponding algorithms for testing cryptographic and verification

functions. If not, it needs to be fetched by the reverse engineer, such as machine learning

[69]. After obtaining the algorithm, the inverse operation can be performed in the test sys-

tem to verify whether the output is consistent with the input.

Figure 9. Freshness verification and message authentication process of SecOC [70].

3.5. Model-Based Testing

The above describes the cybersecurity testing methods for automobiles from three

perspectives: the level of knowledge of the system, the automation level, and the test ob-

jectives. Next, we would like to illustrate an advanced testing technique that may be ap-

plied in these testing methods.

Model-based security testing (MBST) is a relatively advanced security testing tech-

nology. It is a combination of security testing and model-based testing, mainly through

models, to verify the security requirements of the system. Currently, it is widely studied

in software engineering and academia, but it is a relatively new research area in the auto-

motive industry. Automotive cybersecurity testing usually relies on physical systems and

is often performed at a later stage of the V-model development. Vulnerabilities identified

later may require much more time and effort to fix. Therefore, model-based security test-

ing shows certain advantages and can obtain security test cases according to the functional

Figure 9. Freshness verification and message authentication process of SecOC [70].

3.5. Model-Based Testing

The above describes the cybersecurity testing methods for automobiles from three
perspectives: the level of knowledge of the system, the automation level, and the test
objectives. Next, we would like to illustrate an advanced testing technique that may be
applied in these testing methods.

Model-based security testing (MBST) is a relatively advanced security testing tech-
nology. It is a combination of security testing and model-based testing, mainly through
models, to verify the security requirements of the system. Currently, it is widely studied
in software engineering and academia, but it is a relatively new research area in the
automotive industry. Automotive cybersecurity testing usually relies on physical sys-
tems and is often performed at a later stage of the V-model development. Vulnerabilities
identified later may require much more time and effort to fix. Therefore, model-based
security testing shows certain advantages and can obtain security test cases according to
the functional model or threat model of the system in the early stage of development
and conduct security verification.

Cheah et al. [71] presented a test case generation method based on attack trees model
using communicating sequential processes (CSP). CSP is a process-algebraic formalism
for analyzing and modeling dynamic systems. They conduct testing on the Bluetooth
and CAN. Since the construction of attack trees still mainly relies on manual effort,
this is a semi-automatic approach. Heneghan et al. [72] further propose a framework
for automated security testing of ECU at the component level based on CSP. They
expect to identify vulnerabilities and verify functional security with model checking
techniques. Mahmood et al. [73] provide a systematic MBST approach based on their
work in [4], they design a software tool and a testbed for generating and executing test
cases automatically. They launch several simulated attacks against the automotive Over-
the-Air (OTA) system using the Uptane framework. Although only one type of attack is
described in this paper, the effectiveness and prospect of this method are shown from the
complete implementation process. Dos Santos et al. [74] considered the security flaws of
automotive systems and vehicular network at an abstract level with Predicate/Transition
(PrT) nets, which are a graphical dynamic system modeling language. They model four

Sensors 2022, 22, 9211 19 of 27

common attacks (interception, fabrication, modification of data, and interruption) and
demonstrate the accuracy of the threat model in three real-world vehicle scenarios. They
believe that the functional model of unified modeling language (UML) can be combined
to generate the code of security test cases, but it was not implemented at the time.

Sommer et al. [75] proposed a concept of a security testing model, which is based
on the vulnerabilities and attack privileges of the E/E architecture. They believe that the
Extended Finite State Machine (EFSM) security model can be automatically generated
through a formal description and point out that it is possible to generate test cases
through model-checking techniques. Aouadi et al. [76] designed an automatic formal
testing tool for distributed systems. They improved the tool by developing a user
interface and also proposed a method to automatically generate test objects, which saves
time and increases efficiency.

Marksteiner et al. [77] presented an approach to create a cyber digital twin model
using binary analysis and generate test cases through formal transformation, model
checking, and fault injection without a priori knowledge. In the same year, they also pro-
posed the use of fingerprinting and model learning to construct attack tree models and
utilize graph theory to generate attack paths. These approaches offer the possibility of
automating cybersecurity testing, but these approaches are still at a conceptual stage [78].
Mahmood et al. [73] introduced an automated security testing approach, which uses
attack trees for threat modeling. The model can then be formalized using CSP, and test
cases can be automatically generated using model-checking techniques. Automated tools
and security testbeds were developed to support the research. They performed an attack
on the OTA update system and the experimental results demonstrate the effectiveness of
their proposed approach.

Table 10 compares model types, model characteristics, and use cases. In addition, we
distinguish whether the proposed method is a concept or a practical solution. Figure 10
depicts the distribution of papers by model type. The literature number on the attack tree
model is the largest because the expression of tree models is intuitive and concise.

Sensors 2022, 22, 9211 19 of 27

Table 10. Comparison of model-based testing approaches.

Author Model Type Model Characteristics Use Case
Solution or

Concept

Aouadi [76] EFSM

An automatic formal testing tool for distrib-

uted systems is proposed, which permits the

automatic generation of test cases

ITS Solution

Dos Santos [74] PrT net
Create threat and attack model with PrT net at

an abstract level

Vehicular systems

and networks.
Concept

Dos Santos [79]
Attack tree,

CSP

Use CSP to create automotive bus systems

and corresponding attack models
Vehicular systems Concept

Cheah [80]
Attack tree,

CSP

The attack tree can be transferred into a for-

mal structure with CSP, and test cases can be

generated automatically

Bluetooth-enabled

OBD device
Concept

Cheah [71] Attack tree

Develop a proof-of-concept tool to execute

testing on vehicle compromise based on the

attack model

Bluetooth,

diagnostics device
Concept

Heneghan [72] CSP
Security evaluation of ECU with CSP formal

models
ECUs Concept

Mahmood [73]
Attack tree,

CSP

Construct threat model with attack trees and

generate test cases by model-checking
OTA Solution

Sommer [75] EFSM
Security model with attack privileges and vul-

nerabilities
Vehicle networks Concept

Marksteiner [77]
Cyber digital

twin model

A cyber digital twin model using binary anal-

ysis and generating test cases through formal

transformation, model checking, and fault in-

jection

Vehicular systems Concept

Marksteiner [78] Attack tree
Construct attack tree model with fingerprint-

ing and model learning
Vehicular systems Concept

Figure 10. Distribution of papers by model type in the literature.

Figure 10. Distribution of papers by model type in the literature.

Sensors 2022, 22, 9211 20 of 27

Table 10. Comparison of model-based testing approaches.

Author Model Type Model Characteristics Use Case Solution or Concept

Aouadi [76] EFSM

An automatic formal testing tool for
distributed systems is proposed, which

permits the automatic generation of
test cases

ITS Solution

Dos Santos [74] PrT net Create threat and attack model with PrT
net at an abstract level

Vehicular systems
and networks. Concept

Dos Santos [79] Attack tree,
CSP

Use CSP to create automotive bus
systems and corresponding

attack models
Vehicular systems Concept

Cheah [80] Attack tree,
CSP

The attack tree can be transferred into a
formal structure with CSP, and test cases

can be generated automatically

Bluetooth-enabled
OBD device Concept

Cheah [71] Attack tree
Develop a proof-of-concept tool to

execute testing on vehicle compromise
based on the attack model

Bluetooth,
diagnostics device Concept

Heneghan [72] CSP Security evaluation of ECU with CSP
formal models ECUs Concept

Mahmood [73] Attack tree,
CSP

Construct threat model with attack trees
and generate test cases by

model-checking
OTA Solution

Sommer [75] EFSM Security model with attack privileges
and vulnerabilities Vehicle networks Concept

Marksteiner [77] Cyber digital twin
model

A cyber digital twin model using binary
analysis and generating test cases

through formal transformation, model
checking, and fault injection

Vehicular systems Concept

Marksteiner [78] Attack tree Construct attack tree model with
fingerprinting and model learning Vehicular systems Concept

4. Automotive Cybersecurity Testing Testbeds

In this chapter, we address question RQ2 and conduct research on automotive cy-
bersecurity testing testbeds. Unexpected situations can occur during security testing on
an actual vehicle. Unrecoverable crashes or unintended activation of automobiles can
cause economic and safety issues. Therefore, it is necessary to conduct testing on non-real,
simulated automotive cybersecurity testbeds, which can save time and cost.

The testbed can simulate automotive network communication in a cost-effective
way. Network communication includes in-vehicle communication such as CAN, LIN, and
automotive Ethernet and out-of-vehicle communication such as Wi-Fi, cellular network,
etc. In addition, testbeds can be divided into two types depending on whether they
contain actual physical components: software and hybrid. Software-based testbeds enable
virtual communication networks and ECU in the form of software, with no actual physical
components in the system. This testbed is free from hardware constraints and is more
convenient and flexible to use, but the test results may deviate from the actual system.
Hybrid testbeds provide physical signals with physical components and can be controlled
and monitored via software. It is a hardware-in-the-loop testbed that combines the best of
both software and hardware.

Table 11 presents various automotive cybersecurity testbeds from 2010 to 2021. We
briefly introduce their functionality and compare their characteristics from several aspects,
including supported network protocols, types of testbeds, etc.

Sensors 2022, 22, 9211 21 of 27

Table 11. Comparison of cybersecurity testbeds.

Testbeds Network Protocol Type Cost Functionality and Features

A cyber assurance testbed for heavy vehicle
electronic controls [81]

J1939,
J1708,
CAN

H Low Supports remote experimentation, Key
exchange strength and IDS assessment

A testbed for security analysis of modern
vehicle systems [82]

CAN,
Ethernet H Low

A testbed integrating CAN simulator and
IVI system with flexible configuration for

efficient security analysis

A testbed for automotive cybersecurity [83] CAN S Low
A testbed consisting of a real-time CAN

simulator and supporting
reverse-engineering

ATG: An Attack Traffic Generation Tool for
Security Testing of In-vehicle CAN Bus [84] CAN S Low Automatic generation of CAN

attack traffic

PASTA: Portable Automotive Security
Testbed with Adaptability [85] CAN H Low An open, safe, adaptable, and portable

testbed against automotive attacks

A hardware-in-loop based testbed for
automotive embedded systems
cybersecurity evaluation [86]

V2X,
CAN H Low

A hardware-in-the-loop testbed that can
simulate V2X communication and

perform GPS spoofing

A Connected Vehicle System (CVS)
prototype testbed [87]

ETSI ITS-G5, 3G/4G, LTE,
Ethernet, CAN, Wi-Fi H Medium Support V2I communication test and

security assurance evaluation

Ori: A Greybox Fuzzer for SOME/IP
Protocols in Automotive Ethernet [52]

Ethernet,
SOME/IP S Low Fuzz SOME/IP protocols to

find vulnerabilities

A novel testbed for automotive
security analysis [88] CAN H Medium

Data collected are analyzed visually and
replayed through a test environment

similar to a vehicle

SEPAD: Security Evaluation Platform for
Autonomous Driving [89]

CAN/CAN FD, PLC,
Bluetooth, WLAN, cellular,

Ethernet
H Medium A novel testbed for autonomous driving,

supporting security mechanisms testing

HybridgeCAN: a hybrid bridged CAN
platform for automotive security testing [90] CAN H Low A low-cost testbed connecting physical

ECUs with virtual components

S = Software, H = Hardware and software.

5. Discussion

This part will discuss the challenges and future trends of automotive cybersecurity
testing in relation to RQ3.

We analyzed various security testing methods individually in the above. However,
the security threats and vulnerabilities discovered individually in practical engineering
may be limited. We need to integrate multiple testing methods into the continuous testing
activities of automotive engineering. Designing a feasible test evaluation framework to
assess the security risks of automobiles reliably is a topic that needs to be considered
for a long time. Currently, several researchers have proposed some preliminary security
testing frameworks. Strandberg et al. [91] proposed a theoretical SPMT methodology to
predict and identify threats in the vehicle. Wooderson [9] introduced a framework for
implementing cybersecurity engineering and described the tests suitable for different
phases based on SAE J3061. Marksteiner [18] proposed a security testing framework
that conforms to the SAE/ISO 21434 standard. This testing framework aims to prioritize
risks and develop test scenarios for different risks to generate test cases. It is a good
solution but has not been implemented yet. Ekert et al. [92] presented the verification
and validation process framework required by 21434. Most of these frameworks have
been proposed as concepts, and a few have been implemented as prototypes. It can be
seen that the approach based on 21434 is becoming a trend, but whether or not it works
needs to be verified in actual engineering.

While the standards and regulations for automotive cybersecurity have been released,
there is no description of the technical details of security testing. There is no unified
standard for researchers and testers to use for practical testing. Currently, security testing
is not automated to a high degree, especially in penetration testing. Penetration testing

Sensors 2022, 22, 9211 22 of 27

may only utilize simple automated scripts and tools at certain stages, while manual effort
is still required at other stages.

Currently, model-based approaches are still in the academic research phase, as this
requires a high level of expertise, and if the system is particularly complex, building the
model can also be challenging. Some studies have shown that there are still some problems
in model-based testing, such as redundancy of test cases and optimization of models [93,94].
Some scholars propose a formalized model and apply appropriate coverage criteria to
generate test cases, which provide a reference for automated testing [95]. Model-based
testing technology is expected to automate testing in the future when modeling methods
and tools mature.

In addition to model-based approaches, research on other advanced technologies, such
as blockchain and artificial intelligence (AI), is also gradually increasing in the automotive
field. Blockchain is regarded as a secure, trusted, and decentralized solution. Javed et al. [96]
provided a comprehensive survey of blockchain and federated learning applications on
vehicular networks. Jabbar et al. [97] compared the application of blockchain technology
in intelligent transportation system. Kapassa et al. [98] discussed the limitations and
contributions of blockchain technology in the application of the Internet of Vehicles. Zhou
et al. [99] studied blockchain technology for secure authentication and trading between
automobiles. AI is mainly applied in automotive security countermeasures, including
secure communication [100,101], access control mechanisms [102], and IDS [103]. These two
technologies are currently mainly utilized in security design, which can protect automotive
cybersecurity, but their application in security testing remains to be studied.

6. Conclusions

Modern vehicles are connected and open systems. The attack surface and security
risks to the vehicle have increased significantly. It is necessary to identify threats and
vulnerabilities in the vehicle, and security testing plays a crucial role in this regard. Mean-
while, security testing is also an inevitable phase in the automotive development life cycle.
With the release of ISO/SAE 21434 and WP.29 regulations, security testing of vehicles has
become mandatory for type approval.

In this paper, we completed a comprehensive review of automotive cybersecu-
rity testing. We performed statistics and classification of the screened literature. We
classified automotive cybersecurity testing from three perspectives: knowledge level,
level of automation, and test objective. Security testing can be divided into black-box,
white-box, and grey-box types based on knowledge level. From the perspective of test
tools and framework automation, testing can be classified into fully automated, semi-
automated, and manual testing. For testing objectives, we focused on threat-based and
requirement-based approaches, including vulnerability scanning, penetration testing,
fuzzing, risk-based security testing, and functional security testing. Then, advanced
model-based testing techniques were specifically described. Based on the surveyed
literature, we compared the characteristics and applications of various methods. In
addition, we also presented the automotive security testbeds between 2010 and 2021,
which aims to provide a reference for researchers and engineers to study and establish
an automotive security test platform. We introduced their functionality and compared
their characteristics from protocols, types, and cost. Challenges still exist. We pointed
out the limitations of current security testing frameworks and model-based automated
testing but are optimistic about their future. Besides model-based testing, we also briefly
outlined the application of blockchain and artificial intelligence technology in automo-
tive cybersecurity. These two techniques are mainly applied in security countermeasures,
such as authentication and intrusion detection, but their application in security testing
remains to be studied.

In the future, we plan to work on how to apply these testing methods to actual
usage scenarios in automotive engineering. Automation of security testing tools is also an

Sensors 2022, 22, 9211 23 of 27

important task. Moreover, by combining automation tools and model-based techniques,
we expect to implement an automated automotive cybersecurity testing framework.

Author Contributions: Conceptualization, X.Z. and F.L.; methodology, Y.J.; validation, Z.Y. and J.W.;
investigation, X.Z.; resources, M.W.; data curation, X.Z.; writing—original draft preparation, X.Z.;
writing—review and editing, X.Z. and Y.J.; visualization, Z.Y. and J.W.; supervision, Z.Y. and J.W.;
funding acquisition, M.W. and W.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Perspective Study Funding of Nanchang Automotive
Institute of Intelligence and New Energy, Tongji University (TPD-TC202211-06).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Upstream. Upstream Security Global Automotive Cybersecurity Report 2022; Upstream Security Ltd.: Herzliya, Israel, 2022.
2. Miller, C.; Valasek, C. Remote exploitation of an unaltered passenger vehicle. In Proceedings of the Black Hat USA 2015, Las Vegas,

NV, USA, 1–6 August 2015; p. 91.
3. Thing, V.L.L.; Wu, J. Autonomous Vehicle Security: A Taxonomy of Attacks and Defences. In Proceedings of the 2016 IEEE

International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016;
pp. 164–170. [CrossRef]

4. Yu, J.; Wagner, S.; Wang, B.; Luo, F. A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication
Systems. SAE Int. J. Transp. Cybersecur. Priv. 2021, 4, 97–116. [CrossRef]

5. Zhang, Y.; Han, S.; Zhong, S.; Shi, P.; Shao, X. Research on Information Security Test Evaluation Method Based on Intelligent
Connected Vehicle. In Security and Privacy in New Computing Environments, Proceedings of the International Conference on Security
and Privacy in New Computing Environments, Tianjin, China, 13–14 April 2019; Springer: Cham, Switzerland, 2019; pp. 178–197.

6. SAE J3061; Cybersecurity Guidebook for Cyber-Physical Vehicle Systems. SAE International: Warrendale, PA, USA, 2016.
7. ISO/SAE 21434:2021; Road Vehicles—Cybersecurity Engineering. ISO/TC 22/SC 32 Electrical and Electronic Components and

General System Aspects. ISO: Geneva, Switzerland, 2021.
8. WP.29 R155; UN Regulation No. 155-Cyber Security and Cyber Security Management System. The United Nations Economic

Commission for Europe (UNECE): Geneva, Switzerland, 2021.
9. Wooderson, P.; Ward, D. Cybersecurity Testing and Validation. In Proceedings of the WCX 17: SAE World Congress Experience,

Detroit, MI, USA, 4–6 April 2017. [CrossRef]
10. Pekaric, I.; Sauerwein, C.; Felderer, M. Applying Security Testing Techniques to Automotive Engineering. In Proceedings of the

14th International Conference on Availability, Reliability and Security, Canterbury, UK, 26–29 August 2019; p. 10. [CrossRef]
11. Mahmood, S.; Nguyen, H.N.; Shaikh, S.A. Automotive Cybersecurity Testing: Survey of Testbeds and Methods. In Digital

Transformation, Cyber Security and Resilience of Modern Societies; Tagarev, T., Atanassov, K.T., Kharchenko, V., Kacprzyk, J., Eds.;
Springer International Publishing: Cham, Switzerland, 2021; pp. 219–243.

12. Bayer, S.; Enderle, T.; Oka, D.-K.; Wolf, M. Automotive Security Testing—The Digital Crash Test. In Energy Consumption and
Autonomous Driving, Proceedings of the 3rd CESA Automotive Electronics Congress, Paris, France, 3–4 December 2014; Springer: Cham,
Switzerland, 2016; pp. 13–22.

13. Ebert, C.; Rekik, Y.; Karade, R. Security Test. IEEE Softw. 2020, 37, 13–20. [CrossRef]
14. Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering. In Proceedings

of the 18th International Conference on Evaluation and Assessment in Software Engineering, London, UK, 13–14 May 2014;
pp. 1–10. [CrossRef]

15. Imparato, A.; Maietta, R.R.; Scala, S.; Vacca, V. A Comparative Study of Static Analysis Tools for AUTOSAR Automotive Software
Components Development. In Proceedings of the IEEE International Symposium on Software Reliability Engineering Workshops
(ISSREW), Toulouse, France, 23–26 October 2017; pp. 65–68. [CrossRef]

16. Ebert, C.; Ray, R. Penetration Testing for Automotive Cybersecurity. ATZelectronics Worldw. 2021, 16, 16–22. [CrossRef]
17. Marksteiner, S.; Ma, Z. Approaching the Automation of Cyber Security Testing of Connected Vehicles. In Proceedings of the

Third Central European Cybersecurity Conference, Munich, Germany, 14 November 2019; pp. 1–3. [CrossRef]
18. Marksteiner, S.; Marko, N.; Smulders, A.; Karagiannis, S.; Stahl, F.; Hamazaryan, H.; Schlick, R.; Kraxberger, S.; Vasenev, A.

A Process to Facilitate Automated Automotive Cybersecurity Testing. In Proceedings of the IEEE 93rd Vehicular Technology
Conference (VTC2021-Spring), Helsinki, Finland, 25–28 April 2021; pp. 1–7. [CrossRef]

http://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.52
http://doi.org/10.4271/11-04-02-0005
http://doi.org/10.4271/2017-01-1655
http://doi.org/10.1145/3339252.3340329
http://doi.org/10.1109/MS.2019.2958354
http://doi.org/10.1145/2601248.2601268
http://doi.org/10.1109/ISSREW.2017.21
http://doi.org/10.1007/s38314-021-0629-4
http://doi.org/10.1145/3360664.3360729
http://doi.org/10.1109/VTC2021-Spring51267.2021.9448913

Sensors 2022, 22, 9211 24 of 27

19. MISRA C:2012; Guidelines for the Use of the C Language Critical Systems. MIRA Ltd.: Nuneaton, UK, 2013.
20. Altinger, H.; Wotawa, F.; Schurius, M. Testing methods used in the automotive industry: Results from a survey. In Proceedings of

the Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and Model-Based Testing (JAMAICA 2014),
San Jose, CA, USA, 21 July 2014; pp. 1–6. [CrossRef]

21. Montisci, D. Security-Oriented Dynamic Code Analysis in Automotive Embedded Systems. Master’s Thesis, Politecnico di
Torino, Torino, Italy, 2018.

22. Josephlal, E.F.M.; Adepu, S. Vulnerability Analysis of an Automotive Infotainment System’s WIFI Capability. In Proceedings of
the IEEE 19th International Symposium on High Assurance Systems Engineering (HASE), Hangzhou, China, 3–5 January 2019;
pp. 241–246. [CrossRef]

23. ISO 14229; Road Vehicles—Unified Diagnostic Services (UDS). ISO/TC 22/SC 31 Data Communication. ISO: Geneva,
Switzerland, 2013.

24. Luo, F.; Zhang, X.; Hou, S. Research on Cybersecurity Testing for In-vehicle Network. In Proceedings of the International
Conference on Intelligent Technology and Embedded Systems (ICITES), Chengdu, China, 31 October–2 November 2021;
pp. 144–150. [CrossRef]

25. Weiss, N.; Renner, S.; Mottok, J.; Matoušek, V. Transport Layer Scanning for Attack Surface Detection in Vehicular Networks. In
Proceedings of the Computer Science in Cars Symposium (CSCS 20), Feldkirchen, Germany, 4 December 2020; pp. 1–8.

26. Koscher, K.; Czeskis, A.; Roesner, F.; Patel, S.; Kohno, T.; Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; et al.
Experimental Security Analysis of a Modern Automobile. In Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 16–19 May 2010; pp. 447–462. [CrossRef]

27. Mazloom, S.; Rezaeirad, M.; Hunter, A.; McCoy, D. A Security Analysis of an In-Vehicle Infotainment and App Platform. In
Proceedings of the 10th USENIX Workshop on Offensive Technologies (WOOT 16), Austin, TX, USA, 8–9 August 2016.

28. Yan, C.; Xu, W.; Liu, J. Can you trust autonomous vehicles: Contactless attacks against sensors of self-driving vehicle. In
Proceedings of the Def Con Hacking Conference, Las Vegas, NV, USA, 4 August 2016; p. 109.

29. Shin, H.; Kim, D.; Kwon, Y.; Kim, Y. Illusion and Dazzle: Adversarial Optical Channel Exploits against Lidars for Automotive
Applications. In CHES 2017: Cryptographic Hardware and Embedded Systems—CHES 2017, Proceedings of the International Conference
on Cryptographic Hardware and Embedded Systems, Taipei, Taiwan, 25–28 September 2017; Springer: Cham, Switzerland, 2017;
pp. 445–467.

30. Miller, C.; Valasek, C. Adventures in automotive networks and control units. In Proceedings of the Def Con Hacking Conference,
Las Vegas, NV, USA, 1–4 August 2013; pp. 15–31.

31. Shoukry, Y.; Martin, P.; Tabuada, P.; Srivastava, M. Non-invasive Spoofing Attacks for Anti-lock Braking Systems. In Cryptographic
Hardware and Embedded Systems—CHES 2013, Proceedings of the International Conference on Cryptographic Hardware and Embedded
Systems, Santa Barbara, CA, USA, 20–23 August 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 55–72.

32. Woo, S.; Jo, H.J.; Lee, D.H. A Practical Wireless Attack on the Connected Car and Security Protocol for In-Vehicle CAN. IEEE Trans.
Intell. Transp. Syst. 2015, 16, 993–1006. [CrossRef]

33. Petit, J.; Stottelaar, B.; Feiri, M.; Kargl, F. Remote attacks on automated vehicles sensors: Experiments on camera and lidar. In
Proceedings of the Black Hat Europe, Amsterdam, The Netherlands, 10–13 November 2015; p. 995.

34. Abbott-McCune, S.; Shay, L.A. Techniques in hacking and simulating a modem automotive controller area network. In Proceedings
of the IEEE International Carnahan Conference on Security Technology (ICCST), Orlando, FL, USA, 24–27 October 2016; pp. 1–7.
[CrossRef]

35. Nie, S.; Liu, L.; Du, Y. Free-fall: Hacking tesla from wireless to can bus. In Proceedings of the Black Hat USA, Las Vegas, NV, USA,
22–25 July 2017; pp. 1–16.

36. Cheah, M.; Shaikh, S.A.; Haas, O.; Ruddle, A. Towards a systematic security evaluation of the automotive Bluetooth interface.
Veh. Commun. 2017, 9, 8–18. [CrossRef]

37. Milburn, A.; Timmers, N.; Wiersma, N.; Pareja, R.; Cordoba, S. There will be glitches: Extracting and analyzing automotive
firmware efficiently. In Proceedings of the Black Hat USA, Las Vegas, NV, USA, 8–9 August 2018.

38. Jeong, H.; So, J. Channel correlation-based relay attack avoidance in vehicle keyless-entry systems. Electron. Lett. 2018, 54,
395–397. [CrossRef]

39. Dürrwang, J.; Braun, J.; Rumez, M.; Kriesten, R.; Pretschner, A. Enhancement of Automotive Penetration Testing with Threat
Analyses Results. SAE Int. J. Transp. Cybersecur. Priv. 2018, 1, 91–112. [CrossRef]

40. Sommer, F.; Durrwang, J.; Wolf, M.; Juraschek, H.; Ranert, R.; Kriesten, R. Automotive network protocol detection for supporting
penetration testing. In Proceedings of the SECURWARE 2019, Nice, France, 27–31 October 2019; pp. 114–119.

41. He, K.; Qin, K.; Wang, C.; Fang, X. Research on Cyber Security Test Method for GNSS of Intelligent Connected Vehicle. In
Proceedings of the International Conference on Computer Information and Big Data Applications (CIBDA), Guiyang, China,
17–19 April 2020; pp. 200–203. [CrossRef]

42. Zachos, M.; Subke, P. Test Method for the SAE J3138 Automotive Cyber Security Standard. In Proceedings of the WCX SAE World
Congress, Detroit, MI, USA, 21–23 April 2020. [CrossRef]

43. Kexun, H.; Changyuan, W.; Yanyan, H.; Xiyu, F. Research on cyber security Technology and Test Method of OTA for Intelligent
Connected Vehicle. In Proceedings of the International Conference on Big Data, Artificial Intelligence and Internet of Things
Engineering (ICBAIE), Fuzhou, China, 12–14 June 2020; pp. 194–198. [CrossRef]

http://doi.org/10.1145/2631890.2631891
http://doi.org/10.1109/HASE.2019.00044
http://doi.org/10.1109/ICITES53477.2021.9637070
http://doi.org/10.1109/SP.2010.34
http://doi.org/10.1109/TITS.2014.2351612
http://doi.org/10.1109/CCST.2016.7815712
http://doi.org/10.1016/j.vehcom.2017.02.008
http://doi.org/10.1049/el.2017.4360
http://doi.org/10.4271/11-01-02-0005
http://doi.org/10.1109/CIBDA50819.2020.00052
http://doi.org/10.4271/2020-01-0142
http://doi.org/10.1109/ICBAIE49996.2020.00048

Sensors 2022, 22, 9211 25 of 27

44. Wen, H.; Chen, Q.A.; Lin, Z. {Plug-N-Pwned}: Comprehensive Vulnerability Analysis of {OBD-II} Dongles as A New {Over-the-
Air} Attack Surface in Automotive {IoT}. In Proceedings of the 29th USENIX Security Symposium (USENIX Security 20), Boston,
MA, USA, 12–14 August 2020; pp. 949–965.

45. Lee, H.; Choi, K.; Chung, K.; Kim, J.; Yim, K. Fuzzing CAN Packets into Automobiles. In Proceedings of the IEEE 29th
International Conference on Advanced Information Networking and Applications, Gwangju, Korea, 24–27 March 2015;
pp. 817–821. [CrossRef]

46. Fowler, D.S.; Bryans, J.; Shaikh, S.A.; Wooderson, P. Fuzz Testing for Automotive Cyber-Security. In Proceedings of the
48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W), Luxembourg,
25–28 June 2018; pp. 239–246. [CrossRef]

47. Fowler, D.S.; Bryans, J.; Cheah, M.; Wooderson, P.; Shaikh, S.A. A Method for Constructing Automotive Cybersecurity Tests,
a CAN Fuzz Testing Example. In Proceedings of the IEEE 19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019; pp. 1–8. [CrossRef]

48. Werquin, T.; Hubrechtsen, M.; Thangarajan, A.; Piessens, F.; Mühlberg, J.T. Automated Fuzzing of Automotive Control Units. In
Proceedings of the International Workshop on Secure Internet of Things (SIOT), Luxembourg, 26–26 September 2019; pp. 1–8.
[CrossRef]

49. Radu, A.-I.; Garcia, F.D. Grey-box analysis and fuzzing of automotive electronic components via control-flow graph extraction. In
Proceedings of the Computer Science in Cars Symposium, Feldkirchen, Germany, 2 December 2020; pp. 1–11. [CrossRef]

50. Zhang, H.; Huang, K.; Wang, J.; Liu, Z. CAN-FT: A Fuzz Testing Method for Automotive Controller Area Network Bus. In
Proceedings of the International Conference on Computer Information Science and Artificial Intelligence (CISAI), Kunming,
China, 17–19 September 2021; pp. 225–231. [CrossRef]

51. Nishimura, R.; Kurachi, R.; Ito, K.; Miyasaka, T.; Yamamoto, M.; Mishima, M. Implementation of the CAN-FD protocol in the
fuzzing tool beSTORM. In Proceedings of the IEEE International Conference on Vehicular Electronics and Safety (ICVES), Beijing,
China, 10–12 July 2016; pp. 1–6. [CrossRef]

52. Li, Y.; Chen, H.; Zhang, C.; Xiong, S.; Liu, C.; Wang, Y. Ori: A Greybox Fuzzer for SOME/IP Protocols in Automotive Ethernet. In
Proceedings of the 27th Asia-Pacific Software Engineering Conference (APSEC), Singapore, 1–4 December 2020; pp. 495–499.
[CrossRef]

53. Bayer, S.; Enderle, T.; Oka, D.K.; Wolf, M. Security crash test—Practical security evaluations of automotive onboard IT components.
In Proceedings of the 6th Automotive “Safety and Security 2014”, Stuttgart, Germany, 20–22 August 2014; pp. 125–140.

54. Patki, P.; Gotkhindikar, A.; Mane, S. Intelligent Fuzz Testing Framework for Finding Hidden Vulnerabilities in Automotive
Environment. In Proceedings of the Fourth International Conference on Computing Communication Control and Automation
(ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–4. [CrossRef]

55. Moukahal, L.J.; Zulkernine, M.; Soukup, M. Vulnerability-Oriented Fuzz Testing for Connected Autonomous Vehicle Systems.
IEEE Trans. Reliab. 2021, 70, 1422–1437. [CrossRef]

56. Moukahal, L.J.; Zulkernine, M.; Soukup, M. Boosting Grey-box Fuzzing for Connected Autonomous Vehicle Systems. In
Proceedings of the IEEE 21st International Conference on Software Quality, Reliability and Security Companion (QRS-C), Hainan,
China, 6–10 December 2021; pp. 516–527. [CrossRef]

57. Vinzenz, N.; Oka, D.K. Integrating Fuzz Testing into the Cybersecurity Validation Strategy. In Proceedings of the SAE WCX
Digital Summit, Virtual, 12–15 April 2021. [CrossRef]

58. Oka, D.K.; Fujikura, T.; Kurachi, R. Shift left: Fuzzing earlier in the automotive software development lifecycle using hil systems.
In Proceedings of the 16th ESCAR Europe, Brussels, Belgium, 15–16 November 2018; pp. 1–13.

59. E-safety Vehicle Intrusion Protected Applications (EVITA). Available online: http://www.evitaproject.org/ (accessed on
10 November 2022).

60. HEAling Vulnerabilities to ENhance Software Security and Safety (HEAVENS) Project. Available online: https://research.
chalmers.se/en/project/5809 (accessed on 13 November 2022).

61. Schmittner, C.; Ma, Z.; Smith, P. FMVEA for Safety and Security Analysis of Intelligent and Cooperative Vehicles. In Computer
Safety, Reliability, and Security, Proceedings of the International Conference on Computer Safety, Reliability, and Security, Florence, Italy,
8–9 September 2014; Springer: Cham, Switzerland, 2014; pp. 282–288.

62. Macher, G.; Sporer, H.; Berlach, R.; Armengaud, E.; Kreiner, C. SAHARA: A security-aware hazard and risk analysis method. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 9–13 March 2015;
pp. 621–624. [CrossRef]

63. Monteuuis, J.-P.; Boudguiga, A.; Zhang, J.; Labiod, H.; Servel, A.; Urien, P. SARA: Security Automotive Risk Analysis Method. In
Proceedings of the 4th ACM Workshop on Cyber-Physical System Security (CPSS ’18), New York, NY, USA, 4 June 2018; pp. 3–14.
[CrossRef]

64. Schmittner, C.; Ma, Z.; Schoitsch, E.; Gruber, T. A Case Study of FMVEA and CHASSIS as Safety and Security Co-Analysis
Method for Automotive Cyber-physical Systems. In Proceedings of the 1st ACM Workshop on Cyber-Physical System Security
(CPSS ’15), New York, NY, USA, 14 March–14 April 2015; pp. 69–80. [CrossRef]

65. Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and Risk Analysis (TVRA): Nice, France, 2010.
66. Schmidt, K.; Kroll, H.-M.; Tröger, P.; Bünger, T.; Neuhaus, C.; Krueger, F. Adapted Development Process for Security in Networked

Automotive Systems. SAE Int. J. Passeng. Cars—Electron. Electr. Syst. 2014, 7, 516–526. [CrossRef]

http://doi.org/10.1109/AINA.2015.274
http://doi.org/10.1109/DSN-W.2018.00070
http://doi.org/10.1109/QRS-C.2019.00015
http://doi.org/10.1109/SIOT48044.2019.9637090
http://doi.org/10.1145/3385958.3430480
http://doi.org/10.1109/CISAI54367.2021.00050
http://doi.org/10.1109/ICVES.2016.7548161
http://doi.org/10.1109/APSEC51365.2020.00063
http://doi.org/10.1109/ICCUBEA.2018.8697438
http://doi.org/10.1109/TR.2021.3112538
http://doi.org/10.1109/QRS-C55045.2021.00080
http://doi.org/10.4271/2021-01-0139
http://www.evitaproject.org/
https://research.chalmers.se/en/project/5809
https://research.chalmers.se/en/project/5809
http://doi.org/10.7873/DATE.2015.0622
http://doi.org/10.1145/3198458.3198465
http://doi.org/10.1145/2732198.2732204
http://doi.org/10.4271/2014-01-0334

Sensors 2022, 22, 9211 26 of 27

67. Dürrwang, J.; Beckers, K.; Kriesten, R. A Lightweight Threat Analysis Approach Intertwining Safety and Security for the
Automotive Domain. In Computer Safety, Reliability, and Security, Proceedings of the International Conference on Computer Safety,
Reliability, and Security, Trento, Italy, 13–15 September 2017; Springer: Cham, Switzerland, 2017; pp. 305–319.

68. Bella, G.; Biondi, P.; Costantino, G.; Matteucci, I. CINNAMON: A Module for AUTOSAR Secure Onboard Communication.
In Proceedings of the 16th European Dependable Computing Conference (EDCC), Munich, Germany, 7–10 September 2020;
pp. 103–110. [CrossRef]

69. Khan, J. Vehicle network security testing. In Proceedings of the Third International Conference on Sensing, Signal Processing and
Security (ICSSS), Chennai, India, 4–5 May 2017; pp. 119–123. [CrossRef]

70. AUTOSAR. Requirements on Secure Onboard Communication AUTOSAR CP Release 4.3.1; AUTOSAR Release Management: Munich,
Germany, 2017.

71. Cheah, M.; Nguyen, H.N.; Bryans, J.; Shaikh, S.A. Formalising Systematic Security Evaluations Using Attack Trees for Automotive
Applications. In Information Security Theory and Practice, Proceedings of the IFIP International Conference on Information Security
Theory and Practice, Heraklion, Greece, 28–29 September 2017; Springer: Cham, Switzerland, 2018; pp. 113–129.

72. Heneghan, J.; Shaikh, S.A.; Bryans, J.; Cheah, M.; Wooderson, P. Enabling Security Checking of Automotive ECUs with Formal
CSP Models. In Proceedings of the 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks
Workshops (DSN-W), Portland, OR, USA, 24–27 June 2019; pp. 90–97. [CrossRef]

73. Mahmood, S.; Fouillade, A.; Nguyen, H.N.; Shaikh, S.A. A Model-Based Security Testing Approach for Automotive Over-The-Air
Updates. In Proceedings of the IEEE International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Porto, Portugal, 24–28 October 2020; pp. 6–13. [CrossRef]

74. Dos Santos, E.; Schoop, D.; Simpson, A. Formal models for automotive systems and vehicular networks: Benefits and challenges.
In Proceedings of the IEEE Vehicular Networking Conference (VNC), Columbus, OH, USA, 8–10 December 2016; pp. 1–8.
[CrossRef]

75. Sommer, F.; Kriesten, R.; Kargl, F. Model-Based Security Testing of Vehicle Networks. In Proceedings of the International
Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 15–17 December 2021;
pp. 685–691. [CrossRef]

76. Aouadi, M.H.E.; Toumi, K.; Cavalli, A. An Active Testing Tool for Security Testing of Distributed Systems. In Proceedings of
the 10th International Conference on Availability, Reliability and Security, Toulouse, France, 24–27 August 2015; pp. 735–740.
[CrossRef]

77. Marksteiner, S.; Bronfman, S.; Wolf, M.; Lazebnik, E. Using Cyber Digital Twins for Automated Automotive Cybersecurity
Testing. In Proceedings of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria,
6–10 September 2021; pp. 123–128. [CrossRef]

78. Marksteiner, S.; Priller, P. A Model-Driven Methodology for Automotive Cybersecurity Test Case Generation. In Proceedings
of the IEEE European Symposium on Security and Privacy Workshops (EuroS&PW), Vienna, Austria, 6–10 September 2021;
pp. 129–135. [CrossRef]

79. Dos Santos, E.; Simpson, A.; Schoop, D. A Formal Model to Facilitate Security Testing in Modern Automotive Systems. In
Proceedings of the Electronic Proceedings in Theoretical Computer Science (EPTCS), Xi’an, China, 16 November 2017; pp. 95–104.
[CrossRef]

80. Cheah, M.; Shaikh, S.A.; Bryans, J.; Wooderson, P. Building an automotive security assurance case using systematic security
evaluations. Comput. Secur. 2018, 77, 360–379. [CrossRef]

81. Daily, J.; Gamble, R.; Moffitt, S.; Raines, C.; Harris, P.; Miran, J.; Ray, I.; Mukherjee, S.; Shirazi, H.; Johnson, J. Towards a cyber
assurance testbed for heavy vehicle electronic controls. SAE Int. J. Commer. Veh. 2016, 9, 339–349. [CrossRef]

82. Zheng, X.; Pan, L.; Chen, H.; Pietro, R.D.; Batten, L. A Testbed for Security Analysis of Modern Vehicle Systems. In Proceedings of
the IEEE Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia, 1–4 August 2017; pp. 1090–1095. [CrossRef]

83. Fowler, D.S.; Cheah, M.; Shaikh, S.A.; Bryans, J. Towards a Testbed for Automotive Cybersecurity. In Proceedings of the IEEE
International Conference on Software Testing, Verification and Validation (ICST), Tokyo, Japan, 13–17 March 2017; pp. 540–541.
[CrossRef]

84. Huang, T.; Zhou, J.; Bytes, A. ATG: An attack traffic generation tool for security testing of in-vehicle CAN bus. In Proceedings of
the 13th International Conference on Availability, Reliability and Security (ARES 2018), Hamburg, Germany, 27 August 2018;
pp. 1–6.

85. Toyama, T.; Yoshida, T.; Oguma, H.; Matsumoto, T. PASTA: Portable automotive security testbed with adaptability. In Proceedings
of the Black Hat Europe 2018, London, UK, 3–6 December 2018.

86. Oruganti, P.S.; Appel, M.; Ahmed, Q. Hardware-in-loop based Automotive Embedded Systems Cybersecurity Evaluation
Testbed. In Proceedings of the ACM Workshop on Automotive Cybersecurity (AutoSec 19), Richardson, TX, USA, 13 March 2019;
pp. 41–44. [CrossRef]

87. Marchetto, A.; Pantazopoulos, P.; Varádi, A.; Capato, S.; Amditis, A. CVS: Design, Implementation, Validation and Implications
of a Real-world V2I Prototype Testbed. In Proceedings of the IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
Antwerp, Belgium, 25–28 May 2020; pp. 1–5. [CrossRef]

http://doi.org/10.1109/EDCC51268.2020.00026
http://doi.org/10.1109/SSPS.2017.8071577
http://doi.org/10.1109/DSN-W.2019.00025
http://doi.org/10.1109/ICSTW50294.2020.00019
http://doi.org/10.1109/VNC.2016.7835940
http://doi.org/10.1109/CSCI54926.2021.00179
http://doi.org/10.1109/ARES.2015.97
http://doi.org/10.1109/EuroSPW54576.2021.00020
http://doi.org/10.1109/EuroSPW54576.2021.00021
http://doi.org/10.4204/eptcs.271.7
http://doi.org/10.1016/j.cose.2018.04.008
http://doi.org/10.4271/2016-01-8142
http://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.357
http://doi.org/10.1109/ICST.2017.62
http://doi.org/10.1145/3309171.3309173
http://doi.org/10.1109/VTC2020-Spring48590.2020.9129136

Sensors 2022, 22, 9211 27 of 27

88. An, Y.; Park, J.; Oh, I.; Kim, M.; Yim, K. Design and Implementation of a Novel Testbed for Automotive Security Analysis. In
Innovative Mobile and Internet Services in Ubiquitous Computing, Proceedings of the International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, Lodz, Poland, 1–3 July 2020; Springer: Cham, Switzerland, 2021; pp. 234–243.

89. Zelle, D.; Rieke, R.; Plappert, C.; Krauß, C.; Levshun, D.; Chechulin, A. SEPAD—Security Evaluation Platform for Autonomous
Driving. In Proceedings of the 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing
(PDP), Västerås, Sweden, 11–13 March 2020; pp. 413–420. [CrossRef]

90. Granata, D.; Rak, M.; Salzillo, G. Towards HybridgeCAN, a hybrid bridged CAN platform for automotive security testing. In
Proceedings of the IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021;
pp. 249–254. [CrossRef]

91. Strandberg, K.; Olovsson, T.; Jonsson, E. Securing the Connected Car: A Security-Enhancement Methodology. IEEE Veh.
Technol. Mag. 2018, 13, 56–65. [CrossRef]

92. Ekert, D.; Dobaj, J.; Salamun, A. Cybersecurity Verification and Validation Testing in Automotive. J. Univers. Comput. Sci. JUCS
2021, 27, 850–867. [CrossRef]

93. Liu, P.; Li, Y.; Li, Z. Some Thoughts on Model-Based Test Optimization. In Proceedings of the IEEE 19th International Conference
on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019; pp. 268–274. [CrossRef]

94. Mussa, M.; Khendek, F. Model-Based Test Cases Reuse and Optimization. In Advances in Computers; Memon, A.M., Ed.; Elsevier:
Amsterdam, The Netherlands, 2019; Volume 113, pp. 47–87.

95. Krichen, M.; Cheikhrouhou, O.; Lahami, M.; Alroobaea, R.; Jmal Maâlej, A. Towards a Model-Based Testing Framework for the
Security of Internet of Things for Smart City Applications. In Smart Societies, Infrastructure, Technologies and Applications, Proceedings
of the International Conference on Smart Cities, Infrastructure, Technologies and Applications, Jeddah, Saudi Arabia, 27–29 November 2017;
Springer: Cham, Switzerland, 2018; pp. 360–365.

96. Javed, A.R.; Hassan, M.A.; Shahzad, F.; Ahmed, W.; Singh, S.; Baker, T.; Gadekallu, T.R. Integration of Blockchain Technology and
Federated Learning in Vehicular (IoT) Networks: A Comprehensive Survey. Sensors 2022, 22, 4394. [CrossRef] [PubMed]

97. Jabbar, R.; Dhib, E.; Said, A.B.; Krichen, M.; Fetais, N.; Zaidan, E.; Barkaoui, K. Blockchain Technology for Intelligent Transporta-
tion Systems: A Systematic Literature Review. IEEE Access 2022, 10, 20995–21031. [CrossRef]

98. Kapassa, E.; Themistocleous, M.; Christodoulou, K.; Iosif, E. Blockchain Application in Internet of Vehicles: Challenges,
Contributions and Current Limitations. Future Internet 2021, 13, 313. [CrossRef]

99. Zhou, C.; Lu, H.; Xiang, Y.; Wu, J.; Wang, F. Geohash-Based Rapid Query Method of Regional Transactions in Blockchain for
Internet of Vehicles. Sensors 2022, 22, 8885. [CrossRef] [PubMed]

100. Sharma, P.; Hong, L.; Honggang, W.; Shelley, Z. Securing wireless communications of connected vehicles with artificial intelligence.
In Proceedings of the IEEE International Symposium on Technologies for Homeland Security (HST), Waltham, MA, USA,
25–26 April 2017; pp. 1–7. [CrossRef]

101. George, N.; Thomas, J. Authenticating Communication of Autonomous Vehicles with Artificial Intelligence. IOP Conf. Ser. Mater.
Sci. Eng. 2018, 396, 012017. [CrossRef]

102. Priscila, S.S.; Sharma, A.; Vanithamani, S.; Ahmad, F.; Mahaveerakannan, R.; Alrubaie, A.J.; Jagota, V.; Singh, B.K. Risk-Based
Access Control Mechanism for Internet of Vehicles Using Artificial Intelligence. Secur. Commun. Netw. 2022, 2022, 3379843.
[CrossRef]

103. Alladi, T.; Kohli, V.; Chamola, V.; Yu, F.R.; Guizani, M. Artificial Intelligence (AI)-Empowered Intrusion Detection Architecture for
the Internet of Vehicles. IEEE Wirel. Commun. 2021, 28, 144–149. [CrossRef]

http://doi.org/10.1109/PDP50117.2020.00070
http://doi.org/10.1109/CSR51186.2021.9527969
http://doi.org/10.1109/MVT.2017.2758179
http://doi.org/10.3897/jucs.71833
http://doi.org/10.1109/QRS-C.2019.00058
http://doi.org/10.3390/s22124394
http://www.ncbi.nlm.nih.gov/pubmed/35746176
http://doi.org/10.1109/ACCESS.2022.3149958
http://doi.org/10.3390/fi13120313
http://doi.org/10.3390/s22228885
http://www.ncbi.nlm.nih.gov/pubmed/36433481
http://doi.org/10.1109/THS.2017.7943477
http://doi.org/10.1088/1757-899X/396/1/012017
http://doi.org/10.1155/2022/3379843
http://doi.org/10.1109/MWC.001.2000428

	Introduction
	Methodology
	Research Questions
	Search Process
	Search Database
	Search String
	Search Procedure

	Search Criterion
	Search Results

	Automotive Cybersecurity Testing Methods
	Knowledge-Based Testing
	Automation-Based Testing
	Threat-Based Testing
	Vulnerability Scanning
	Penetration Testing
	Fuzzing
	Risk-Based Security Testing

	Requirements-Based Testing
	Model-Based Testing

	Automotive Cybersecurity Testing Testbeds
	Discussion
	Conclusions
	References

