
Citation: Liu, Y.; Zhao, Y.; Yan, S.;

Song, C.; Li, F. A Sampling-Based

Algorithm with the Metropolis

Acceptance Criterion for Robot

Motion Planning. Sensors 2022, 22,

9203. https://doi.org/10.3390/

s22239203

Academic Editors: Luis Payá, Oscar

Reinoso García and Helder Jesus

Araújo

Received: 21 October 2022

Accepted: 23 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Sampling-Based Algorithm with the Metropolis Acceptance
Criterion for Robot Motion Planning
Yiyang Liu 1,2,3,4 , Yang Zhao 1,2,3,5,* , Shuaihua Yan 1,2,3,6 , Chunhe Song 1,2,3,* and Fei Li 1,2,3,7

1 Key Laboratory of Networked Control Systems, Chinese Academy of Sciences, Shenyang 110016, China
2 Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
3 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
4 Kunshan Intelligent Equipment Research Institute, Kunshan 215300, China
5 School of Automation and Electrical Engineering, Shenyang Ligong University, Shenyang 110159, China
6 School of Computer Science and Technology, University of Chinese Academy of Sciences,

Beijing 100049, China
7 College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
* Correspondence: zhaoyang2@sia.cn (Y.Z.); songchunhe@sia.cn (C.S.)

Abstract: Motion planning is one of the important research topics of robotics. As an improvement of
Rapidly exploring Random Tree (RRT), the RRT* motion planning algorithm is widely used because
of its asymptotic optimality. However, the running time of RRT* increases rapidly with the number of
potential path vertices, resulting in slow convergence or even an inability to converge, which seriously
reduces the performance and practical value of RRT*. To solve this issue, this paper proposes a
two-phase motion planning algorithm named Metropolis RRT* (M-RRT*) based on the Metropolis
acceptance criterion. First, to efficiently obtain the initial path and start the optimal path search phase
earlier, an asymptotic vertex acceptance criterion is defined in the initial path estimation phase of
M-RRT*. Second, to improve the convergence rate of the algorithm, a nonlinear dynamic vertex
acceptance criterion is defined in the optimal path search phase, which preferentially accepts vertices
that may improve the current path. The effectiveness of M-RRT* is verified by comparing it with
existing algorithms through the simulation results in three test environments.

Keywords: motion planning; sampling-based algorithms; RRT; Metropolis acceptance criterion;
asymptotic optimality

1. Introduction

Robotics is evolving rapidly and has dramatically improved the efficiency of industrial
production and the convenience of people’s lives. Motion planning is indispensable in
robotics, which requires finding a feasible path from the initial state to the target state
subject to obstacle avoidance constraints. Nowadays, motion planning has been widely
applied to various robots, including but not limited to industrial robots [1,2], free-floating
space robots [3], rescue robots [4], medical robots [5], and autonomous vehicles [6].

According to the research order and fundamental principles, various motion planning
algorithms can be mainly divided into four categories: bionic algorithms, artificial potential
field methods, grid-based searches, and sampling-based algorithms [7]. The ant colony
algorithm [8], one of the representative bionic algorithms, draws a lesson from the behavior
of ants exploring paths to find food, showing strong robustness. However, it has the
problems of slow convergence and a poor quality of the solution when dealing with large-
scale problems [9]. The artificial potential field (APF) [10] method assumes a gravitational
force of the goal state and repulsive forces of the obstacles. By calculating their resultant
force, the following motion state of the moving object can be determined. Though APF has
a simple structure and a small amount of computation, it is faced with the disadvantages of
a local minimum value, large path oscillations, and complex path searches between similar

Sensors 2022, 22, 9203. https://doi.org/10.3390/s22239203 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239203
https://doi.org/10.3390/s22239203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7839-050X
https://orcid.org/0000-0003-1182-9351
https://orcid.org/0000-0002-7137-8719
https://orcid.org/0000-0001-8392-1777
https://doi.org/10.3390/s22239203
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239203?type=check_update&version=2


Sensors 2022, 22, 9203 2 of 20

obstacles [11]. The grid-based searches represented by A* [12,13] map motion planning
problems into graphs and solve them in discrete state spaces. Although A* can return to
the path with a minimal cost, the computation time and storage space of the data grow
exponentially as the dimension of the state space increases.

Compared with grid-based searches, sampling-based algorithms avoid discretizing
the state space in motion planning and efficiently perform in high-dimensional state spaces,
such as Rapidly exploring Random Tree (RRT) [14] and Probabilistic RoadMap (PRM) [15].
Since RRT-based algorithms have the characteristics of a high search efficiency and low
resource consumption, they have been frequently used to solve manipulators, autonomous
surface vehicles, and other robot motion planning problems [16–18]. Furthermore, many
variants of RRT have emerged. RRT-connect [19] simultaneously expands two trees from
the initial and target states and then connects the two at the appropriate position, speeding
up the pathfinding process. Kang et al. proposed a triangular inequality-based rewiring
method for the RRT-connect algorithm [20]. The improved algorithm shows a shorter path
length than RRT-connect. The above algorithms have probabilistic completeness, i.e., as
the number of iterations approaches infinity, the probability of finding a feasible solution
tends towards one. However, none of these methods can ensure optimality. RRT* [21]
solves the problem by adopting the ChooseParent and Rewire procedures, which provide
asymptotic optimality. An algorithm with asymptotic optimality means that as the number
of iterations approaches infinity, the algorithm guarantees that the probability of finding an
optimal solution approaches one [22].

Although RRT* can improve the initial solution to the optimum, it has a slow con-
vergence rate due to the large amount of computation caused by the continuous increase
in the number of vertices. Therefore, enhancing the convergence rate of RRT* is of great
significance and has attracted extensive attention. Jonathan et al. proposed Informed-
RRT* [23] based on direct sampling. This method defines the acceptable sampling space
as a hyper-ellipsoid and samples directly from it. By narrowing the sampling region,
Informed-RRT* may converge to the optimal path rapidly. However, when the relevant
hyper-ellipsoid exceeds the region of the motion planning problem, the algorithm will not
be applicable. Quick-RRT* [24] uses triangular inequality to improve the ChooseParent
and Rewire procedures and converges faster than RRT*. The downside is that it wastes
many computing resources on useless vertices, which do not help in finding the optimal
path. MOD-RRT* [25] introduces a re-planning procedure to improve the performance of
the algorithm, which is used to modify unfeasible paths to generate high-quality paths.
GMR-RRT* [26] uses Gaussian mixture regression (GRM). This algorithm learns the human
driving path and finds key features through GRM to form a probability distribution to
guide sampling. Jun et al. proposed Feedback-RRT* (F-RRT*) [27], with a data-driven risk
network and feedback module. F-RRT* can use the information extracted from situation
data to constrain the growth of the random tree and make biased adjustments to improve
planning efficiency.

This paper proposes Metropolis-RRT* (M-RRT*) for the motion planning of mobile
robots. Based on the principle of the Metropolis acceptance criterion, on one hand, in the
initial path estimation phase of the algorithm, an asymptotic vertex acceptance criterion
is developed, which preferentially accepts vertices close to the target state. On the other
hand, in the optimal path search phase, a nonlinear dynamic vertex acceptance criterion is
also developed, which preferentially accepts vertices that may lower the current optimal
path cost. Therefore, M-RRT* substantially reduces the number of vertices required for
planning, thereby obtaining the initial path more efficiently and converging to the optimal
path faster.

The M-RRT* algorithm proposed in this study is applied to solve the motion planning
problem of mobile robots, with the following main contributions:

• Propose an asymptotic vertex acceptance criterion in the initial path estimation phase
of the algorithm to effectively reduce the time of finding the initial path and make the
algorithm start searching for the optimal path earlier.



Sensors 2022, 22, 9203 3 of 20

• Propose a nonlinear dynamic vertex acceptance criterion in the optimal path search
phase of the algorithm. This criterion can reduce the number of vertices in the algo-
rithm that are not capable of improving the current path so as to rapidly converge to
the optimal path.

• The experimental results in three common types of environments show that the
proposed algorithm has an outstanding performance. It takes less time to find the
initial path and has a fast convergence rate in the cluttered environment and the
regular environment. Due to the complexity of the maze, M-RRT* does not improve
much in the initial path estimation phase, but more importantly, its convergence speed
still increases significantly.

The rest of this paper is structured as follows. Section 2 introduces the definition
of the motion planning problem and related algorithms. Section 3 explains the pro-
posed algorithm in detail. Section 4 analyzes the simulation results compared with RRT*,
Informed-RRT*, and Q-RRT*. Section 5 summarizes this paper and looks forward to future
research plans.

2. Problem Definition and Related Work

This section defines the motion planning problem and details the basic algorithm of
M-RRT*. To understand the comparative analysis in Section 4, this section also provides an
explanation of Informed-RRT* and Q-RRT*.

2.1. Problem Definition

When a robot performs a given task, the robot itself or a certain part moves from the
initial state to the target state. Motion planning can provide the robot with a collision-free
path from the initial state to the target state, which is called a feasible path. As mentioned in
the previous section, motion planning has been applied to various robots, and the planning
results directly affect the efficiency of the robot in completing a given task. Planners require
motion planning not only to be able to search for an optimal path but also to make the
planning process as fast as possible. The mathematical definition of motion planning is
described in detail below.

Let X ⊆ Rd be a d-dimensional configuration space, X obs ⊂ X be the obstacle region,
and X free = cl(X\X obs) be the obstacle-free region, where d ∈ N, d ≥ 2, and cl(·) refers to the
closure of the set. xinit ∈ X free is the initial state, and X goal ⊂ X free is the goal region, where
the motion planning will be completed if the object reaches this region. The continuous
function σ: [0, 1] 7→ X is called a path. A path σ: [0, 1] 7→ X free is collision-free if ∀τ ∈ [0, 1],
σ(τ) ∈ X free.

Definition 1. (Feasible motion planning) Given a motion planning problem {xinit, X goal, X obs},
find a collision-free path σ, where σ(0) = xinit, σ(1) ∈ X goal. This path is called a feasible path.

Definition 2. (Optimal motion planning) Given a motion planning problem {xinit, X goal, X obs},
find a feasible path σ that minimizes the cost c(σ*), i.e., c(σ*) = min{c(σ*): σ ∈ Σ}, where c(σ)
is the cost of a feasible path σ in X measured by the Euclidean distance, and Σ is the set of all
feasible paths.

Definition 3. (Fast motion planning) Given a motion planning problem {xinit, X goal, X obs}, find
the optimal feasible path σ* in the shortest possible time.

2.2. RRT*

RRT* is a sampling-based motion planning algorithm. Since RRT* is an extended
algorithm of RRT, a brief description of its basic algorithm is required first. RRT gradually
explores the collision-free path from the initial state xinit which is the only vertex with no
edges. In each iteration, xrand is randomly sampled in the collision-free space X free. Then,
we find the vertex xnearest closest to the sample xrand from the tree based on the Euclidean



Sensors 2022, 22, 9203 4 of 20

metric. After finding xnearest, extend a distance from xnearest towards xrand to obtain a new
vertex xnew, and this distance η is called the step size. Determine whether the path from
xnearest to xnew collides with obstacles based on the environmental information. If a collision
occurs, the path is discarded, and the next iteration proceeds. If no collision occurs, it is a
feasible path, and this path and the vertex xnew are added to the tree. Repeat the above steps
until a feasible path is found and output. As shown in Algorithm 1, the major difference
from RRT is that RRT* contains the ChooseParent and Rewire procedures, which makes it
asymptotically optimal.

Algorithm 1 RRT*

1: G← (V, E); V← xinit;
2: for i = 1 to n do
3: xrand ← Sample(i);
4: xnearest ← Nearest(V, xrand);
5: (xnew, σ)← Steer(xnearest, xrand);
6: if CollisionFree(σ) then
7: Xnear ← Near(V, xnew);
8: (xparent, σparent)← ChooseParent(Xnear, xnearest, xnew, σ);
9: V← AddVertex(xnew);
10: E← AddEdge(xparent, xnew);
11: G← Rewire(G, xnew, Xnear);
12: end if
13: end for
14: return G;

In the ChooseParent procedure, RRT* searches for a vertex in a hypersphere of a
specific radius centered at xnew such that the path through this vertex to xnew has the lowest
cost. It is then used as the parent vertex of xnew, as shown in Figure 1a. In the Rewire
procedure, the vertices in the hypersphere are represented by xnear in turn. Compare the cost
of the current path to xnear with the cost of the path through xnew to xnear until every vertex
in the hypersphere has been compared. During each comparison, if the path through xnew is
less costly, change its wiring, as shown in Figure 1b. Algorithm 2 shows the ChooseParent
procedure, and Algorithm 3 shows the Rewire procedure.

Algorithm 2 ChooseParent(Xnear, xnearest, xnew, σnearest)

1: xmin ← xnearest;
2: σmin ← σnearest;
3: cmin ← Cost(xmin) + Cost(σmin);
4: for each xnear ∈ Xnear do
5: σ← Connect(xnear, xnew);
6: c← Cost(xnear) + Cost(σ);
7: if c < cmin then
8: if CollisionFree(σ) then
9: xmin ← xnear;
10: σmin ← σ;
11: cmin ← c;
12: end if
13: end if
14: end for
15: return (xmin, σmin);



Sensors 2022, 22, 9203 5 of 20

Sensors 2022, 22, x FOR PEER REVIEW 4 of 21 
 

 

2.2. RRT* 
RRT* is a sampling-based motion planning algorithm. Since RRT* is an extended al-

gorithm of RRT, a brief description of its basic algorithm is required first. RRT gradually 
explores the collision-free path from the initial state xinit which is the only vertex with no 
edges. In each iteration, xrand is randomly sampled in the collision-free space 𝒳𝒳free. Then, 
we find the vertex xnearest closest to the sample xrand from the tree based on the Euclidean 
metric. After finding xnearest, extend a distance from xnearest towards xrand to obtain a new ver-
tex xnew, and this distance η is called the step size. Determine whether the path from xnearest 
to xnew collides with obstacles based on the environmental information. If a collision oc-
curs, the path is discarded, and the next iteration proceeds. If no collision occurs, it is a 
feasible path, and this path and the vertex xnew are added to the tree. Repeat the above 
steps until a feasible path is found and output. As shown in Algorithm 1, the major dif-
ference from RRT is that RRT* contains the ChooseParent and Rewire procedures, which 
makes it asymptotically optimal. 

Algorithm 1 RRT* 
1: G ← (V, E); V ← xinit;  
2: for i = 1 to n do 
3: xrand ← Sample(i); 
4: xnearest ← Nearest(V, xrand); 
5: (xnew, σ) ← Steer(xnearest, xrand); 
6: if CollisionFree(σ) then 
7: Xnear ← Near(V, xnew); 
8: (xparent , σparent) ← ChooseParent(Xnear, xnearest, xnew, σ); 
9: V ← AddVertex(xnew); 

10: E ← AddEdge(xparent, xnew); 
11: G ← Rewire(G, xnew, Xnear);  
12: end if 
13: end for 
14: return G; 

In the ChooseParent procedure, RRT* searches for a vertex in a hypersphere of a specific 
radius centered at xnew such that the path through this vertex to xnew has the lowest cost. It 
is then used as the parent vertex of xnew, as shown in Figure 1a. In the Rewire procedure, 
the vertices in the hypersphere are represented by xnear in turn. Compare the cost of the 
current path to xnear with the cost of the path through xnew to xnear until every vertex in the 
hypersphere has been compared. During each comparison, if the path through xnew is less 
costly, change its wiring, as shown in Figure 1b. Algorithm 2 shows the ChooseParent 
procedure, and Algorithm 3 shows the Rewire procedure. 

  
(a)  (b)  

Figure 1. (a) ChooseParent (RRT*); (b) Rewire (RRT*). (red dot: xnew, dashed blue circle: Near(xnew).) 

 

 

xnew xnew

xnearest xnearestxparent

xnewxnew

xnear xnear

Figure 1. (a) ChooseParent (RRT*); (b) Rewire (RRT*). (red dot: xnew, dashed blue circle: Near(xnew.)).

Algorithm 3 Rewire(G, xnew, Xnear)

1: for each xnear ∈ Xnear do
2: σ← Connect(xnew, xnear);
3: if Cost(xnew) + Cost(σ) < Cost(xnear) then
4: if CollisionFree(σ) then
5: G← Reconnect(G, xnew, Xnear, σ);
6: end if
7: end if
8: end for
9: return G;

The following briefly describes the basic procedures used in the RRT* algorithm.

• Sample: Returns a random sample from X .
• Nearest: Given a graph G = (V, E) and a state x, it returns the vertex closest to x

according to the given Euclidean distance function.
• Steer: Given two states xs, xt ∈ X , it extends xs to xt by a given distance to obtain the

state xd ∈ X . Then, it returns xd and the path from xs to xt.
• CollisionFree: Checks whether the given path σ is a feasible path.
• Near: Given a graph G = (V, E) and a state x, it sets a hypersphere of a given ra-

dius centered at x and returns the set Xnear of vertices in V that are contained in
this hypersphere.

• AddVertex: Given a state x, it adds x to the graph.
• AddEdge: Given two states xs, xt ∈ X , it adds the path from xs to xt to the graph.
• Connect: Given two states xs, xt ∈ X , it returns the path from xs to xt.
• Reconnect: Given a graph G = (V, E), two states xs, xt ∈ X , and a path σ from xs to xt, it

replaces the parent vertex of xt with xs and adds σ to graph G.
• RRT searches for a feasible path by imitating a randomly grown tree, but this algo-

rithm cannot find the optimal path. Unlike RRT, RRT* has asymptotic optimality by
introducing the ChooseParent and Rewire procedures. However, due to the frequent
running of these two procedures, the convergence speed of RRT* is slow.

2.3. Informed-RRT*

Informed-RRT* has the same procedure as RRT* until the initial path is found. In the
optimal path search phase, Informed-RRT* constructs a hyper-ellipsoid with focal points
xinit and xgoal. It then samples directly inside the hyper-ellipsoid to find the optimal path.
The sampling region of the set of vertices satisfies

‖x− xinit‖+ ‖xgoal − x‖ ≤ c(σ∗), (1)

where x is the random sample, σ* is the best path with the minimum cost at the current
time, c(σ∗) is the cost of σ*, and ‖x− y‖ is the Euclidean distance between x and y. Figure 2
shows the hyper-ellipsoid set by Informed-RRT*. When the current best solution is updated,
its cost c(σ∗) is also updated. Therefore, the sampling region, i.e., the hyper-ellipsoid,
gradually becomes smaller, and the probability of the sample being on the optimal path
is greater.



Sensors 2022, 22, 9203 6 of 20

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

xinit and xgoal. It then samples directly inside the hyper-ellipsoid to find the optimal path. 
The sampling region of the set of vertices satisfies 

‖x − xinit‖ + ‖xgoal − x‖ ≤ c(σ*), (1) 

where x is the random sample, σ* is the best path with the minimum cost at the current 
time, c(σ*) is the cost of σ*, and ‖x − y‖ is the Euclidean distance between x and y. Figure 
2 shows the hyper-ellipsoid set by Informed-RRT*. When the current best solution is up-
dated, its cost c(σ*) is also updated. Therefore, the sampling region, i.e., the hyper-ellip-
soid, gradually becomes smaller, and the probability of the sample being on the optimal 
path is greater. 

 
Figure 2. Hyper-ellipsoid of Informed-RRT*. 

The direct sampling method significantly increases the convergence rate of In-
formed-RRT*. However, Informed-RRT* does not improve the efficiency of finding the 
initial solution. Moreover, although Informed-RRT* converges faster than RRT*, its effi-
ciency decreases when the region of the hyper-ellipsoid exceeds the configuration space. 

2.4. Q-RRT* 
Quick-RRT* (Q-RRT*) makes adjustments to the ChooseParent and Rewire proce-

dures. In the ChooseParent procedure, RRT* searches for the potential parent vertex of 
xnew from Xnear, while the search scope of Quick-RRT* also includes the ancestors of Xnear. 
Quick-RRT* defines a depth in advance, which is used to set the number of vertices back-
tracked when searching for ancestors. In Figure 3a, through the ChooseParent procedure, 
xnew selects xparent as the parent vertex, and xparent is the ancestor vertex of xnearest, with a depth 
of 2. Similar to the ChooseParent procedure, the Rewire procedure also considers the an-
cestor of the vertex xnew, as shown in Figure 3b. 

  
(a)  (b)  

Figure 3. (a) ChooseParent (Q-RRT*); (b) Rewire (Q-RRT*). 

Q-RRT* essentially improves the structure of the random tree. Compared with RRT*, 
the ChooseParent and Rewire procedures of Q-RRT* make the path more optimized. Alt-
hough this algorithm can improve the structure, it needs to search more vertices. If most 
of the vertices do not meet the connection conditions, it means that the algorithm wastes 
a lot of time. 

3. Methods 
This section describes the proposed M-RRT* algorithm in detail. Most algorithms 

based on RRT* are divided into two phases: finding the initial path and finding the opti-
mal path. The initial path is the first feasible path found by the algorithm. Since the initial 

xgoalxinit

x

c(σ*)

xnew xnew

xnearest xnearest
xparent

xnewxnew

xnear xnear

Figure 2. Hyper-ellipsoid of Informed-RRT*.

The direct sampling method significantly increases the convergence rate of In-formed-
RRT*. However, Informed-RRT* does not improve the efficiency of finding the initial
solution. Moreover, although Informed-RRT* converges faster than RRT*, its efficiency
decreases when the region of the hyper-ellipsoid exceeds the configuration space.

2.4. Q-RRT*

Quick-RRT* (Q-RRT*) makes adjustments to the ChooseParent and Rewire procedures.
In the ChooseParent procedure, RRT* searches for the potential parent vertex of xnew from
Xnear, while the search scope of Quick-RRT* also includes the ancestors of Xnear. Quick-RRT*
defines a depth in advance, which is used to set the number of vertices backtracked when
searching for ancestors. In Figure 3a, through the ChooseParent procedure, xnew selects
xparent as the parent vertex, and xparent is the ancestor vertex of xnearest, with a depth of 2.
Similar to the ChooseParent procedure, the Rewire procedure also considers the ancestor
of the vertex xnew, as shown in Figure 3b.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 21 
 

 

xinit and xgoal. It then samples directly inside the hyper-ellipsoid to find the optimal path. 
The sampling region of the set of vertices satisfies 

‖x − xinit‖ + ‖xgoal − x‖ ≤ c(σ*), (1) 

where x is the random sample, σ* is the best path with the minimum cost at the current 
time, c(σ*) is the cost of σ*, and ‖x − y‖ is the Euclidean distance between x and y. Figure 
2 shows the hyper-ellipsoid set by Informed-RRT*. When the current best solution is up-
dated, its cost c(σ*) is also updated. Therefore, the sampling region, i.e., the hyper-ellip-
soid, gradually becomes smaller, and the probability of the sample being on the optimal 
path is greater. 

 
Figure 2. Hyper-ellipsoid of Informed-RRT*. 

The direct sampling method significantly increases the convergence rate of In-
formed-RRT*. However, Informed-RRT* does not improve the efficiency of finding the 
initial solution. Moreover, although Informed-RRT* converges faster than RRT*, its effi-
ciency decreases when the region of the hyper-ellipsoid exceeds the configuration space. 

2.4. Q-RRT* 
Quick-RRT* (Q-RRT*) makes adjustments to the ChooseParent and Rewire proce-

dures. In the ChooseParent procedure, RRT* searches for the potential parent vertex of 
xnew from Xnear, while the search scope of Quick-RRT* also includes the ancestors of Xnear. 
Quick-RRT* defines a depth in advance, which is used to set the number of vertices back-
tracked when searching for ancestors. In Figure 3a, through the ChooseParent procedure, 
xnew selects xparent as the parent vertex, and xparent is the ancestor vertex of xnearest, with a depth 
of 2. Similar to the ChooseParent procedure, the Rewire procedure also considers the an-
cestor of the vertex xnew, as shown in Figure 3b. 

  
(a)  (b)  

Figure 3. (a) ChooseParent (Q-RRT*); (b) Rewire (Q-RRT*). 

Q-RRT* essentially improves the structure of the random tree. Compared with RRT*, 
the ChooseParent and Rewire procedures of Q-RRT* make the path more optimized. Alt-
hough this algorithm can improve the structure, it needs to search more vertices. If most 
of the vertices do not meet the connection conditions, it means that the algorithm wastes 
a lot of time. 

3. Methods 
This section describes the proposed M-RRT* algorithm in detail. Most algorithms 

based on RRT* are divided into two phases: finding the initial path and finding the opti-
mal path. The initial path is the first feasible path found by the algorithm. Since the initial 

xgoalxinit

x

c(σ*)

xnew xnew

xnearest xnearest
xparent

xnewxnew

xnear xnear

Figure 3. (a) ChooseParent (Q-RRT*); (b) Rewire (Q-RRT*).

Q-RRT* essentially improves the structure of the random tree. Compared with RRT*,
the ChooseParent and Rewire procedures of Q-RRT* make the path more optimized. Al-
though this algorithm can improve the structure, it needs to search more vertices. If most
of the vertices do not meet the connection conditions, it means that the algorithm wastes a
lot of time.

3. Methods

This section describes the proposed M-RRT* algorithm in detail. Most algorithms
based on RRT* are divided into two phases: finding the initial path and finding the optimal
path. The initial path is the first feasible path found by the algorithm. Since the initial path
of the sampling-based algorithm is not optimal, it is necessary to continue sampling to find
the optimal path.

Similarly, M-RRT* includes the initial path estimation and optimal path search phases.
Inspired by the Metropolis acceptance criterion, we design different vertex acceptance
criteria in the above two phases to calculate the retention probability of the new vertex
generated by each iteration. M-RRT* uses the asymptotic vertex acceptance criterion in the
initial path estimation phase. These enable the algorithm to obtain the initial solution faster.
In the optimal path search phase, M-RRT* uses the nonlinear dynamic vertex acceptance
criterion to improve the efficiency of finding the optimal solution. The following briefly
introduces the Metropolis acceptance criterion.



Sensors 2022, 22, 9203 7 of 20

3.1. Metropolis Acceptance Criterion

The core of the Metropolis acceptance criterion is the limited acceptance of inferior
solutions. It is generally used in the simulated annealing algorithm to calculate the ac-
ceptance probability of a solution. The probability of a new solution being accepted is
given by

P=
{

1 , ∆E < 0
exp(− ∆E/T), ∆E ≥ 0

(2)

where exp(·) refers to an exponential function, T is temperature, defined as the control
parameter, E is internal energy, defined as the objective function, and ∆E = E(n + 1)− E(n).
The energy of the current state n of the system is E(n), and the energy of the next state is
E(n + 1). The algorithm tries to gradually decrease the value of the objective function as the
temperature T decreases until E tends to the global minimum, just like the solid annealing
process. A new solution will change the internal energy at the corresponding temperature,
and the size of the change is ∆E. It can be seen from (2) that if ∆E < 0, the new solution is
accepted. If ∆E ≥ 0, the new solution is accepted by probability P = exp(− ∆E/T). The
following describes the effect of the variation of T on the candidate solutions.

• If T is a fixed value, the probability of accepting the candidate solution that reduces
the value of E is greater than the probability of accepting the solution that increases
the value.

• If T gradually decreases, the probability of accepting the candidate solution that
increases the value of E also decreases.

• If T tends to zero, the algorithm only accepts the candidate solution that reduces the
value of E.

Generally, a large T will perform a global search, but the computational cost will
increase. While a small T will search locally and make a fast convergence rate, it tends to
trap the algorithm in a local optimum.

3.2. Asymptotic Vertex Acceptance Criterion

The ChooseParent and Rewire procedures make RRT* asymptotically optimal, but
frequent collision detection and searching for neighboring vertices increase the algorithm’s
complexity. Therefore, this paper introduces the asymptotic vertex acceptance criterion
into the initial path estimation phase. After M-RRT* samples a new vertex, the impact
of this vertex on finding the initial solution is quantified as a prediction value through
a prediction function, and the probability of retaining this vertex is calculated according
to the predicted value. If the new vertex is not retained, M-RRT* does not perform the
subsequent calculation steps of this iteration and directly starts the next iteration. This
method enables the random tree to grow to the target region faster; thus, an initial feasible
solution is found more quickly.

To facilitate the description, we denote the target state by xgoal, the new vertex gen-
erated by the nth iteration by xn, and the vertex closest to the xgoal, i.e., the vertex with
the smallest Euclidean distance to xgoal, by xpeak. We can describe the process of finding an
initial path as making xpeak asymptotically approach xgoal until it reaches the location of
xgoal. The admissible heuristic estimate ĥ is cost-to-go, i.e., the cost to go from any state to
the goal. The prediction function for xn is as follows,

C(n)= ĥ(xn)− ĥ(xpeak) (3)

where ĥ(xn) is the Euclidean distance from xn to xgoal and ĥ(xpeak) is the Euclidean distance
from xpeak to xgoal. Similar to the Metropolis acceptance criterion, we can judge whether
xn is closer to xgoal by C(n). As shown in Figure 4, one of the following two cases occurs
during the nth iteration.



Sensors 2022, 22, 9203 8 of 20

Sensors 2022, 22, x FOR PEER REVIEW 8 of 21 
 

 

To facilitate the description, we denote the target state by xgoal, the new vertex gener-
ated by the nth iteration by xn, and the vertex closest to the xgoal, i.e., the vertex with the 
smallest Euclidean distance to xgoal, by xpeak. We can describe the process of finding an initial 
path as making xpeak asymptotically approach xgoal until it reaches the location of xgoal. The 
admissible heuristic estimate h� is cost-to-go, i.e., the cost to go from any state to the goal. 
The prediction function for xn is as follows, 

C(n) = h�(xn) − h�(xpeak) (3) 

where h�(xn) is the Euclidean distance from xn to xgoal and h�(xpeak) is the Euclidean distance 
from xpeak to xgoal. Similar to the Metropolis acceptance criterion, we can judge whether xn 
is closer to xgoal by C(n). As shown in Figure 4, one of the following two cases occurs during 
the nth iteration. 

  
(a) (b) 

Figure 4. Tree construction of case (a) and case (b). 

• If C(n) < 0, xn lies in a spherical range with xgoal as the center and h�(xpeak) as the radius; 
this means that xn is closer to xgoal than xpeak. Therefore, xn is likely to play a positive 
role in finding the initial feasible path, at which point xn is retained with a probability 
of one and is defined as xpeak, as shown in Figure 4a. 

• If C(n) ≥ 0, xn is outside the spherical range, and it is further away from xgoal than xpeak. 
In this case, the probability of retaining xn must be calculated based on the predicted 
value, as shown in Figure 4b. 
It is worth noting that at the beginning of M-RRT*, the only vertex in the state space, 

xinit, which is the start state, is at the same position as xpeak. To quickly estimate the initial 
feasible solution, the heuristic value of each extended vertex preferably shows a down-
ward trend. However, when C(n) ≥ 0, xn must be accepted with a certain probability to 
prevent the algorithm from falling into a local optimum. Therefore, this paper proposes 
the asymptotic vertex acceptance criterion combined with the prediction function. The 
probability of accepting xn is 

Pn = �
                1               ,C(n) < 0

exp( − C(n)/h�(xinit)),C(n) ≥ 0
 (4) 

where h�(xinit) is the Euclidean distance from xinit to xgoal. Compared with xpeak, it is clear that 
the probability of acceptance is smaller if xn is further away from the goal, and vice versa. 
Since h�(xinit) is the cost of the theoretical optimal path, it has a reference value for the cal-
culation of the acceptance probability of vertices. In this paper, we define h�(xinit) as the 
control parameter. 

xn

h(xn)

xpeak

xgoal

h(xpeak ) h(xpeak )

xgoal

xn

xpeak

h(xn)

Figure 4. Tree construction of case (a) and case (b).

• If C(n) < 0, xn lies in a spherical range with xgoal as the center and ĥ(xpeak) as the
radius; this means that xn is closer to xgoal than xpeak. Therefore, xn is likely to play a
positive role in finding the initial feasible path, at which point xn is retained with a
probability of one and is defined as xpeak, as shown in Figure 4a.

• If C(n) ≥ 0, xn is outside the spherical range, and it is further away from xgoal than
xpeak. In this case, the probability of retaining xn must be calculated based on the
predicted value, as shown in Figure 4b.

It is worth noting that at the beginning of M-RRT*, the only vertex in the state space,
xinit, which is the start state, is at the same position as xpeak. To quickly estimate the
initial feasible solution, the heuristic value of each extended vertex preferably shows a
downward trend. However, when C(n) ≥ 0, xn must be accepted with a certain probability
to prevent the algorithm from falling into a local optimum. Therefore, this paper proposes
the asymptotic vertex acceptance criterion combined with the prediction function. The
probability of accepting xn is

Pn =

{
1 , C(n) < 0

exp(− C(n)/ĥ(xinit)), C(n) ≥ 0
(4)

where ĥ(xinit) is the Euclidean distance from xinit to xgoal. Compared with xpeak, it is clear
that the probability of acceptance is smaller if xn is further away from the goal, and vice
versa. Since ĥ(xinit) is the cost of the theoretical optimal path, it has a reference value for the
calculation of the acceptance probability of vertices. In this paper, we define ĥ(xinit) as the
control parameter.

In this phase, the probability of accepting each expanded vertex is greater than zero;
thus, M-RRT* is capable of jumping out of the local optimum, but in some complex
environments, it may take longer. We design a method to jump out of the local optimum
quickly. If the value of ĥ(xpeak) does not change after using Equation (4) to calculate the
probability 20 times, the algorithm is considered to fall into the local optimum. The
acceptance probability of the subsequent extended new vertex is one until the value of
ĥ(xpeak) changes. Then, the random tree is closer to the goal, indicating that the algorithm
jumps out of the local optimum and continues to use Equation (4).

The asymptotic vertex acceptance criterion makes M-RRT* obtain the initial feasible
path faster. At the same time, the algorithm performs the optimal path search phase earlier
and improves the overall efficiency.

3.3. Nonlinear Dynamic Vertex Acceptance Criterion

Given an optimal path σ from xinit through x ∈ X ; to xgoal, g(x) is equal to the cost
of the optimal path from xinit to x, h(x) is equal to the cost of the optimal path from x to
xgoal, and the cost of σ is c(σ) = g(x) + h(x). ĝ(x) and ĥ(x) are admissibility heuristics for



Sensors 2022, 22, 9203 9 of 20

g(x) and h(x), respectively. In the problem of solving the optimal path length in Rd, the
Euclidean distance applies to both heuristics.

An algorithm based on RRT* will continue to iterate to search for the optimal path
after completing the process of finding the initial feasible path. When xn is generated at the
nth iteration, there exists a feasible path σ* with the minimum cost at the current time. To
make σ* approach the optimal path asymptotically, M-RRT* not only estimates the path
cost from the new vertex xn to xgoal but also considers the path cost from xinit to xn. Next,
we will introduce the nonlinear dynamic vertex acceptance criterion in detail, which is
applied to the optimal path search phase of M-RRT*.

In Figure 5, ĝ(xn) is the Euclidean distance from xinit to xn, ĥ(xn) is the Euclidean
distance from xn to xgoal, σ* is the best path with the minimum cost at the current time, and
c(σ∗) is the cost of σ*. Obviously, ĝ(xn) + ĥ(xn) is the cost of the theoretically optimal path
through xn.

Sensors 2022, 22, x FOR PEER REVIEW 9 of 21 
 

 

In this phase, the probability of accepting each expanded vertex is greater than zero; 
thus, M-RRT* is capable of jumping out of the local optimum, but in some complex envi-
ronments, it may take longer. We design a method to jump out of the local optimum 
quickly. If the value of h�(xpeak) does not change after using Equation (4) to calculate the 
probability 20 times, the algorithm is considered to fall into the local optimum. The ac-
ceptance probability of the subsequent extended new vertex is one until the value of 
h�(xpeak) changes. Then, the random tree is closer to the goal, indicating that the algorithm 
jumps out of the local optimum and continues to use Equation (4). 

The asymptotic vertex acceptance criterion makes M-RRT* obtain the initial feasible 
path faster. At the same time, the algorithm performs the optimal path search phase earlier 
and improves the overall efficiency. 

3.3. Nonlinear Dynamic Vertex Acceptance Criterion 
Given an optimal path σ from xinit through x ∈ 𝒳𝒳 to xgoal, g(x) is equal to the cost of the 

optimal path from xinit to x, h(x) is equal to the cost of the optimal path from x to xgoal, and 
the cost of σ is c(σ) = g(x) + h(x). g�(x) and h�(x) are admissibility heuristics for g(x) and 
h(x), respectively. In the problem of solving the optimal path length in ℝd, the Euclidean 
distance applies to both heuristics. 

An algorithm based on RRT* will continue to iterate to search for the optimal path 
after completing the process of finding the initial feasible path. When xn is generated at 
the nth iteration, there exists a feasible path σ* with the minimum cost at the current time. 
To make σ* approach the optimal path asymptotically, M-RRT* not only estimates the 
path cost from the new vertex xn to xgoal but also considers the path cost from xinit to xn. 
Next, we will introduce the nonlinear dynamic vertex acceptance criterion in detail, which 
is applied to the optimal path search phase of M-RRT*. 

In Figure 5, g�(xn) is the Euclidean distance from xinit to xn, h�(xn) is the Euclidean 
distance from xn to xgoal, σ* is the best path with the minimum cost at the current time, and 
c(σ*) is the cost of σ*. Obviously, g�(xn) + h�(xn) is the cost of the theoretically optimal path 
through xn.  

 
Figure 5. Tree construction. 

If c(σ*) < g�(xn) + h�(xn), it indicates that the cost of any path through xn cannot be less 
than c(σ*). Then, the probability of accepting xn is Pn = 0, and M-RRT* starts the next iter-
ation directly. Therefore, it removes vertices that are entirely impossible to improve the 
path length, avoiding wasting time on these useless vertices.  

If c(σ*) ≥ g�(xn) + h�(xn), we must refer to the actual cost g(xn) from xinit to xn and establish 
the prediction function 

C(n) = g(xn) + h�(xn) − c(σ*) (5) 

c(σ*)

h(xn)
xgoal

xn

g(xn)

xinit

Figure 5. Tree construction.

If c(σ∗) < ĝ(xn) + ĥ(xn), it indicates that the cost of any path through xn cannot be
less than c(σ∗). Then, the probability of accepting xn is Pn= 0, and M-RRT* starts the next
iteration directly. Therefore, it removes vertices that are entirely impossible to improve the
path length, avoiding wasting time on these useless vertices.

If c(σ∗) ≥ ĝ(xn) + ĥ(xn), we must refer to the actual cost g(xn) from xinit to xn and
establish the prediction function

C(n)= g(xn) + ĥ(xn)− c(σ∗) (5)

where g(xn) is the actual cost of the path from xinit to xn, and ĥ(xn) is the estimated cost from
xn to xgoal, which is the Euclidean distance. Similar to the Metropolis acceptance criterion,
we predict whether the new vertex xn can improve the current optimal path σ* by C(n).
As shown in Figure 6, xn is generated by extending the distance η from the nearest vertex
xnearest on the random tree; thus, the actual cost g(xn) = g(xnearest) + η. As mentioned in
the previous section, ĥ(xn) is the estimated cost of xn to xgoal. One of the following two
cases occurs during the nth iteration.

• If C(n) < 0, the predicted value is lower than the current minimum cost c(σ∗).
Therefore, xn is likely to play a positive role in finding the optimal path, and the
probability of retaining xn is one.

• If C(n) ≥ 0, the probability of retaining xn must be calculated based on the pre-
dicted value.



Sensors 2022, 22, 9203 10 of 20

Sensors 2022, 22, x FOR PEER REVIEW 10 of 21 
 

 

where g(xn) is the actual cost of the path from xinit to xn, and h�(xn) is the estimated cost 
from xn to xgoal, which is the Euclidean distance. Similar to the Metropolis acceptance 
criterion, we predict whether the new vertex xn can improve the current optimal path σ* 
by C(n). As shown in Figure 6, xn is generated by extending the distance η from the nearest 
vertex xnearest on the random tree; thus, the actual cost g(xn) = g(xnearest) + η. As mentioned 
in the previous section, h�(xn) is the estimated cost of xn to xgoal. One of the following two 
cases occurs during the nth iteration. 

 
Figure 6. Tree construction. (g(xn) = g(xnearest) + η.) 

• If C(n) < 0, the predicted value is lower than the current minimum cost c(σ*). There-
fore, xn is likely to play a positive role in finding the optimal path, and the probability 
of retaining xn is one. 

• If C(n) ≥ 0, the probability of retaining xn must be calculated based on the predicted 
value. 
In the case of C(n) ≥ 0, the probability of retaining xn cannot be zero, because after the 

ChooseParent and Rewire procedures, the actual cost from xinit to xn may be reduced. In 
this case, xn has the possibility of optimizing the path, but, of course, the larger the value 
of the prediction function, the smaller the possibility. Combined with the prediction func-
tion, the probability of accepting a vertex is 

Pn = �
                            1                         ,C(n) < 0

exp( −
C(n)

c(σ*)/ln(n − N − 1 + e)
),C(n) ≥ 0

 (6) 

where c(σ*) is the current minimum cost, n is the current number of iterations, and N is 
the number of iterations when σ* is found. Therefore, N changes dynamically with the 
update of σ*, and the next iteration number n after the update is equal to N + 1. The non-
linear dynamic cost {c(σ*)/ln(n − N − 1 + e)} increases from c(σ*), and then the algorithm 
gradually reduces the probability of accepting vertices that make C(n) ≥ 0. The nonlinear 
dynamic vertex acceptance criterion makes the algorithm sample in an extensive range in 
the early stage to prevent falling into the local optimum. As the number of iterations in-
creases, the retained samples are more targeted, enabling the algorithm to quickly con-
verge and find the optimal path. Moreover, there is always a probability of global sam-
pling, allowing M-RRT* to explore a wider area while converging quickly, ensuring its 
asymptotic optimality. 

3.4. M-RRT* 
Compared with RRT*, M-RRT* adopts the asymptotic vertex acceptance criterion and 

nonlinear dynamic vertex acceptance criterion in finding the initial path and optimal path, 
respectively. It not only preserves the probability of global sampling but also selectively 

xgoal

xnearest

g(xnearest )

η

c(σ*)

h(xn)

xn

xinit

Figure 6. Tree construction. (g(xn) = g(xnearest) + η.).

In the case of C(n) ≥ 0, the probability of retaining xn cannot be zero, because after the
ChooseParent and Rewire procedures, the actual cost from xinit to xn may be reduced. In
this case, xn has the possibility of optimizing the path, but, of course, the larger the value of
the prediction function, the smaller the possibility. Combined with the prediction function,
the probability of accepting a vertex is

Pn =

{
1 , C(n) < 0

exp(− C(n)
c(σ∗)/ ln(n−N− 1+e)

)
, C(n) ≥ 0

(6)

where c(σ∗) is the current minimum cost, n is the current number of iterations, and N is
the number of iterations when σ* is found. Therefore, N changes dynamically with the
update of σ*, and the next iteration number n after the update is equal to N + 1. The
nonlinear dynamic cost {c(σ∗)/ ln(n − N − 1 + e)} increases from c(σ∗), and then the
algorithm gradually reduces the probability of accepting vertices that make C(n) ≥ 0.
The nonlinear dynamic vertex acceptance criterion makes the algorithm sample in an
extensive range in the early stage to prevent falling into the local optimum. As the number
of iterations increases, the retained samples are more targeted, enabling the algorithm
to quickly converge and find the optimal path. Moreover, there is always a probability
of global sampling, allowing M-RRT* to explore a wider area while converging quickly,
ensuring its asymptotic optimality.

3.4. M-RRT*

Compared with RRT*, M-RRT* adopts the asymptotic vertex acceptance criterion and
nonlinear dynamic vertex acceptance criterion in finding the initial path and optimal path,
respectively. It not only preserves the probability of global sampling but also selectively
accepts vertices conducive to finding solutions and removes many useless vertices. M-RRT*
prunes the random tree, significantly improving computational efficiency and reducing
memory usage. Algorithm 4 shows the pseudocode of M-RRT*.

The following briefly describes the basic procedures used in the M-RRT* algorithm.

• Dis: Given two states xs, xt ∈ X , it returns the Euclidean distance between xs and xt.
• AVAC: Asymptotic vertex acceptance criterion.
• NDVAC: Nonlinear dynamic vertex acceptance criterion.
• NearGoal: Given a graph G = (V, E), a state x, and the current number of iterations, if x

is within a given range around xgoal, this procedure returns the feasible path σ* with
the least cost and the current number of iterations N.

• Figure 7 shows the flow chart of M-RRT*, and lout is the set path length to which to
converge. The ChooseParent and Rewire procedures have been described in related
work, so they are not shown in detail in the figure. The NearGoal procedure has also
been introduced in this section.



Sensors 2022, 22, 9203 11 of 20Sensors 2022, 22, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 7. Flow chart of M-RRT*. 

4. Simulations 
Since RRT* is the basic algorithm of the algorithm proposed in this paper, Informed-

RRT* is widely recognized as an efficient RRT-based algorithm, and Q-RRT* is a newly 
proposed correlation algorithm, this paper uses them for comparative analysis. Q-RRT* 
has the best efficiency when the depth is 2, so 2 is chosen as the depth in this paper. 

4.1. Environment Configuration and Indicator Description 
M-RRT* is compared with the above three algorithms in three environments of the 

same size of 100×100. The simulation environments are shown in Figure 8. Each algorithm 

Start

Sample(n) in the nth 
iteration 

N = n
Return σ∗

CollisionFree

xpeak = xn

C(n) = h�(xn) − h�(xpeak)

r ≤ exp( − C(n)
c(σ∗)/ln(n−N−1 + e) )

r ≤ exp( − C(n)/h�(xinit))

Search for the 
nearest vertex xnearest

from Sample(n)

C(n) =g(xn) + h�(xn) − c(σ∗)
g(xn) = g(xnearest) + η

xnearest extends 
towards Sample(n) 

by a distance η

Get the expanded 
vertex xn

Take a random 
number r between 

0 and 1
Take a random 

number r between 0 
and 1

Search for the set of 
vertices Near(xn) 

inside the hypersphere

ChooseParent

Rewire

N = 0

C(n) < 0C(n) < 0

NearGoal

c(σ∗) ≤ lout

End

Input lout

N = 0
xpeak = xinit

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

No

AVAC NDVAC

Figure 7. Flow chart of M-RRT*.



Sensors 2022, 22, 9203 12 of 20

Algorithm 4 M-RRT*

1: G← (V, E); V← xinit; xpeak ← xinit; N← 0;
2: ĥ(xpeak)← Dis(xpeak, xgoal);
3: ĥ(xinit)← Dis(xinit, xgoal);
4: for i = 1 to n do
5: xrand ← Sample(i);
6: xnearest ← Nearest(V, xrand);
7: (xn, σ)← Steer(xnearest, xrand);
8: if CollisionFree(σ) then
9: if N = 0 then
10: AVAC(xn, ĥ(xpeak), ĥ(xinit));
11: else
12: NDVAC(xn, xnearest, n, N, σ*);
13: Xnear ← Near(V, xn);
14: (xparent, σparent)← ChooseParent(Xnear, xnearest, xn, σ);
15: V← AddVertex(xn);
16: E← AddEdge(xparent, xn);
17: G← Rewire(G, xn, Xnear);
18: (σ*, N)← NearGoal(G, xn, n);
19: end if
20: end for
21: return G;

4. Simulations

Since RRT* is the basic algorithm of the algorithm proposed in this paper, Informed-
RRT* is widely recognized as an efficient RRT-based algorithm, and Q-RRT* is a newly
proposed correlation algorithm, this paper uses them for comparative analysis. Q-RRT*
has the best efficiency when the depth is 2, so 2 is chosen as the depth in this paper.

4.1. Environment Configuration and Indicator Description

M-RRT* is compared with the above three algorithms in three environments of the
same size of 100× 100. The simulation environments are shown in Figure 8. Each algorithm
was run 100 times because of the randomness of the sampling-based algorithms. The system
and resource characteristics used in the simulation implementation are shown in Table 1.

Sensors 2022, 22, x FOR PEER REVIEW 13 of 21 
 

 

was run 100 times because of the randomness of the sampling-based algorithms. The sys-
tem and resource characteristics used in the simulation implementation are shown in Ta-
ble 1. 

   
(a)  (b)  (c)  

Figure 8. Environments for the simulations. (a) Regular environment; (b) Cluttered environment; 
(c) Maze. (Red dot: start state, green circle: goal region.) 

Table 1. System and resource characteristics. 

Simulation 
Environment 

System CPU GPU RAM 

Python 3.9 
Windows 10 

Professional edition 
Intel(R) Core(TM) 

I5-110400F 
NVIDIA GeForce 

GTX 1050 
16 G 

In this section, all algorithms were simulated with the same parameters. Two evalu-
ation indicators are used to compare the performances of the algorithms. Firstly, some 
problems require finding a feasible solution for motion planning in a short time; hence, 
this paper compares the time of the four algorithms to find the initial path. We define this 
time as the index ‘tinit’. Secondly, four algorithms have asymptotic optimality; thus, they 
can all find the optimal path as the number of iterations approaches infinity. Due to the 
randomness of the sampling-based algorithm, this paper first determines the optimal path 
length in each environment and then compares the time it takes for the algorithms to con-
verge to an approximate optimal path. We define this time as the index ‘T5%’. The length 
of the approximate optimal solution is ‘1.05∗loptimal’, where ‘loptimal’ is the length of the opti-
mal solution. 

Again, because of randomness, the statistical results of 100 runs of each algorithm are 
described by boxplots, and the specific values are shown in tables. In a boxplot, a line in 
the middle of the box represents the median of the data. The bottom and top of the box 
are the upper and lower quartiles of the data, respectively. Therefore, the height of the 
box reflects the fluctuation of the data to some extent. The median can show the perfor-
mance of the randomness algorithms. In addition, the paper also describes the mean, max-
imum, and minimum to prove the efficiency and stability of the algorithms. The difference 
between the upper and lower quartiles is called the interquartile range (IQR). Values that 
are 1.5 times IQR larger than the upper quartile, or 1.5 times IQR less than the lower quar-
tile, are classified as outliers and shown as rhombus in the boxplot. 

4.2. Regular Environment 
The regular environment is shown in Figure 8a. In Figure 9, the paths generated by 

RRT* (tinit = 0.1093, T5% = 1.093), Informed-RRT* (tinit = 0.0781, T5% = 0.453), Q-RRT* (tinit = 
0.6876, T5% = 0.7059), and M-RRT* (tinit = 0.0625, T5% = 0.1406) are shown. In the regular 
environment, loptimal = 70.9268. The grey lines in each figure are the paths explored by the 
algorithm through the extended vertices, and the red line is the approximate optimal path. 
RRT* randomly sampled the entire state space; hence, its vertices grew in any direction. 

Figure 8. Environments for the simulations. (a) Regular environment; (b) Cluttered environment;
(c) Maze. (Red dot: start state, green circle: goal region.).

Table 1. System and resource characteristics.

Simulation
Environment System CPU GPU RAM

Python 3.9 Windows 10
Professional edition

Intel(R) Core(TM)
I5-110400F

NVIDIA GeForce
GTX 1050 16 G



Sensors 2022, 22, 9203 13 of 20

In this section, all algorithms were simulated with the same parameters. Two eval-
uation indicators are used to compare the performances of the algorithms. Firstly, some
problems require finding a feasible solution for motion planning in a short time; hence,
this paper compares the time of the four algorithms to find the initial path. We define
this time as the index ‘tinit’. Secondly, four algorithms have asymptotic optimality; thus,
they can all find the optimal path as the number of iterations approaches infinity. Due to
the randomness of the sampling-based algorithm, this paper first determines the optimal
path length in each environment and then compares the time it takes for the algorithms
to converge to an approximate optimal path. We define this time as the index ‘T5%’. The
length of the approximate optimal solution is ‘1.05∗loptimal’, where ‘loptimal’ is the length of
the optimal solution.

Again, because of randomness, the statistical results of 100 runs of each algorithm
are described by boxplots, and the specific values are shown in tables. In a boxplot, a
line in the middle of the box represents the median of the data. The bottom and top of
the box are the upper and lower quartiles of the data, respectively. Therefore, the height
of the box reflects the fluctuation of the data to some extent. The median can show the
performance of the randomness algorithms. In addition, the paper also describes the mean,
maximum, and minimum to prove the efficiency and stability of the algorithms. The
difference between the upper and lower quartiles is called the interquartile range (IQR).
Values that are 1.5 times IQR larger than the upper quartile, or 1.5 times IQR less than the
lower quartile, are classified as outliers and shown as rhombus in the boxplot.

4.2. Regular Environment

The regular environment is shown in Figure 8a. In Figure 9, the paths generated
by RRT* (tinit = 0.1093, T5% = 1.093), Informed-RRT* (tinit = 0.0781, T5% = 0.453), Q-RRT*
(tinit = 0.6876, T5% = 0.7059), and M-RRT* (tinit = 0.0625, T5% = 0.1406) are shown. In the
regular environment, loptimal = 70.9268. The grey lines in each figure are the paths explored
by the algorithm through the extended vertices, and the red line is the approximate optimal
path. RRT* randomly sampled the entire state space; hence, its vertices grew in any
direction. Unlike RRT*, once the initial path was found, Informed-RRT* sampled only
inside the hyper-ellipsoid, with the start and target states as the foci. Therefore, most of the
vertices of Informed-RRT* appear to be inside an ellipse. Q-RRT* optimizes the structure
of the random tree so that the path between its vertices and the initial vertex is as straight
as possible. Since M-RRT* preferentially accepted vertices that are conducive to searching
for solutions and had a limited acceptance of vertices that provide inferior solutions, it
generated fewer vertices than the other two algorithms.

The 100 simulation results of tinit and T5% are described by boxplots, as shown
in Figures 10 and 11, respectively. Table 2 counts the specific numerical values of the
simulation results. For the convenience of the comparison, the data in the table are gen-
erally displayed to the fourth decimal place. If the size of the same indicator for the
algorithms is very close, it shows the decimal place where their numbers are different.
The two minimum values of the three algorithms are the same because the length of the
initial path is less than 1.05∗loptimal. Due to the regular distribution of obstacles in this
environment and the small distance between the initial and goal states, the above situa-
tion is common for sampling-based algorithms. Although RRT* and Informed-RRT* have
identical procedures for finding initial solutions, they are less stable, as shown in Figure 10.
Since Q-RRT* consumes more computing resources on the optimized path, it takes a long
time to find the initial path. In addition, M-RRT* takes less time to find the initial solution.
It is clear from Figure 11 that M-RRT* converges faster than the other three algorithms.
Based on the above analysis, M-RRT* outperforms RRT*, Informed-RRT*, and Q-RRT* in
the regular environment.



Sensors 2022, 22, 9203 14 of 20

Sensors 2022, 22, x FOR PEER REVIEW 14 of 21 
 

 

Unlike RRT*, once the initial path was found, Informed-RRT* sampled only inside the 
hyper-ellipsoid, with the start and target states as the foci. Therefore, most of the vertices 
of Informed-RRT* appear to be inside an ellipse. Q-RRT* optimizes the structure of the 
random tree so that the path between its vertices and the initial vertex is as straight as 
possible. Since M-RRT* preferentially accepted vertices that are conducive to searching 
for solutions and had a limited acceptance of vertices that provide inferior solutions, it 
generated fewer vertices than the other two algorithms.  

  
(a)  (b)  

  
(c)  (d)  

Figure 9. Performance of the four algorithms in the regular environment. (a) RRT*. (b) Informed-
RRT*. (c) Q-RRT*. (d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.) 

The 100 simulation results of tinit and T5% are described by boxplots, as shown in Fig-
ures 10 and 11, respectively. Table 2 counts the specific numerical values of the simulation 
results. For the convenience of the comparison, the data in the table are generally dis-
played to the fourth decimal place. If the size of the same indicator for the algorithms is 
very close, it shows the decimal place where their numbers are different. The two mini-
mum values of the three algorithms are the same because the length of the initial path is 
less than 1.05∗loptimal. Due to the regular distribution of obstacles in this environment and 
the small distance between the initial and goal states, the above situation is common for 
sampling-based algorithms. Although RRT* and Informed-RRT* have identical proce-
dures for finding initial solutions, they are less stable, as shown in Figure 10. Since Q-RRT* 
consumes more computing resources on the optimized path, it takes a long time to find 
the initial path. In addition, M-RRT* takes less time to find the initial solution. It is clear 
from Figure 11 that M-RRT* converges faster than the other three algorithms. Based on 
the above analysis, M-RRT* outperforms RRT*, Informed-RRT*, and Q-RRT* in the regu-
lar environment. 

Figure 9. Performance of the four algorithms in the regular environment. (a) RRT*. (b) Informed-
RRT*. (c) Q-RRT*. (d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.).

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 10. tinit in the regular environment. 

 
Figure 11. T5% in the regular environment. 

Table 2. tinit and T5% of four algorithms in the regular environment. 

Algorithm  Mean Median Min Max 

RRT* 
tinit 0.1273 0.1093 0.031243 0.4374 
T5% 2.1116 0.9294 0.031243 13.5426 

Informed-RRT* 
tinit 0.1385 0.1249 0.031241 0.453 
T5% 0.488 0.4061 0.031241 3.1242 

Q-RRT* 
tinit 0.2739 0.2233 0.0678 0.9514 
T5% 1.8275 0.8547 0.0678 14.1172 

M-RRT* 
tinit 0.0799 0.0624 0.0156 0.2499 
T5% 0.3159 0.1952 0.0156 1.2653 

4.3. Cluttered Environment 
The cluttered environment is shown in Figure 8b. In Figure 12, the paths generated 

by RRT* (tinit = 0.337, T5% = 3.1296), Informed-RRT* (tinit = 0.346, T5% = 1.6216), Q-RRT* (tinit 
= 1.0265, T5% = 4.6131), and M-RRT* (tinit = 0.2852, T5% = 0.8666) are shown. In the cluttered 
environment, loptimal = 114.8326. RRT* required many vertices to explore the state space 
fully, while M-RRT* generated the fewest vertices to converge to the approximate optimal 
solution. 

Figure 10. tinit in the regular environment.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 21 
 

 

 
Figure 10. tinit in the regular environment. 

 
Figure 11. T5% in the regular environment. 

Table 2. tinit and T5% of four algorithms in the regular environment. 

Algorithm  Mean Median Min Max 

RRT* 
tinit 0.1273 0.1093 0.031243 0.4374 
T5% 2.1116 0.9294 0.031243 13.5426 

Informed-RRT* 
tinit 0.1385 0.1249 0.031241 0.453 
T5% 0.488 0.4061 0.031241 3.1242 

Q-RRT* 
tinit 0.2739 0.2233 0.0678 0.9514 
T5% 1.8275 0.8547 0.0678 14.1172 

M-RRT* 
tinit 0.0799 0.0624 0.0156 0.2499 
T5% 0.3159 0.1952 0.0156 1.2653 

4.3. Cluttered Environment 
The cluttered environment is shown in Figure 8b. In Figure 12, the paths generated 

by RRT* (tinit = 0.337, T5% = 3.1296), Informed-RRT* (tinit = 0.346, T5% = 1.6216), Q-RRT* (tinit 
= 1.0265, T5% = 4.6131), and M-RRT* (tinit = 0.2852, T5% = 0.8666) are shown. In the cluttered 
environment, loptimal = 114.8326. RRT* required many vertices to explore the state space 
fully, while M-RRT* generated the fewest vertices to converge to the approximate optimal 
solution. 

Figure 11. T5% in the regular environment.



Sensors 2022, 22, 9203 15 of 20

Table 2. tinit and T5% of four algorithms in the regular environment.

Algorithm Mean Median Min Max

RRT*
tinit 0.1273 0.1093 0.031243 0.4374

T5% 2.1116 0.9294 0.031243 13.5426

Informed-RRT*
tinit 0.1385 0.1249 0.031241 0.453

T5% 0.488 0.4061 0.031241 3.1242

Q-RRT*
tinit 0.2739 0.2233 0.0678 0.9514

T5% 1.8275 0.8547 0.0678 14.1172

M-RRT*
tinit 0.0799 0.0624 0.0156 0.2499

T5% 0.3159 0.1952 0.0156 1.2653

4.3. Cluttered Environment

The cluttered environment is shown in Figure 8b. In Figure 12, the paths generated
by RRT* (tinit = 0.337, T5% = 3.1296), Informed-RRT* (tinit = 0.346, T5% = 1.6216), Q-RRT*
(tinit = 1.0265, T5% = 4.6131), and M-RRT* (tinit = 0.2852, T5% = 0.8666) are shown. In the
cluttered environment, loptimal = 114.8326. RRT* required many vertices to explore the state
space fully, while M-RRT* generated the fewest vertices to converge to the approximate
optimal solution.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21 
 

 

  
(a)  (b)  

  
(c)  (d)  

Figure 12. Performance of the four algorithms in the cluttered environment. (a) RRT*. (b) Informed-
RRT*. (c) Q-RRT*. (d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.) 

The 100 simulation results of tinit and T5% are described by boxplots, respectively. Ta-
ble 3 counts the specific numerical values of the simulation results. As shown in Figure 
13, in the cluttered environment, the median of M-RRT* is still the smallest, but the me-
dian of RRT* is larger than that of Informed-RRT*. Therefore, M-RRT* can obtain the ini-
tial solution earlier, while the other two algorithms are not stable. Q-RRT* still takes the 
longest time to find the initial path. As can be seen from Figure 14, although the efficiency 
of Informed-RRT* searching for the optimal solution has been improved compared to 
RRT*, M-RRT* is the most effective algorithm. Q-RRT* can continuously search ancestor 
vertices to optimize paths, but these paths often collide in the cluttered environments. 
Thus, Q-RRT* wastes a lot of time trying to change the structure of the tree instead, and it 
performs the worst in this environment. According to the running results of two perfor-
mance indicators, M-RRT* has an outstanding performance in the cluttered environment. 

 
Figure 13. tinit in the cluttered environment. 

Figure 12. Performance of the four algorithms in the cluttered environment. (a) RRT*. (b) Informed-
RRT*. (c) Q-RRT*. (d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.).

The 100 simulation results of tinit and T5% are described by boxplots, respectively.
Table 3 counts the specific numerical values of the simulation results. As shown in Figure 13,
in the cluttered environment, the median of M-RRT* is still the smallest, but the median
of RRT* is larger than that of Informed-RRT*. Therefore, M-RRT* can obtain the initial
solution earlier, while the other two algorithms are not stable. Q-RRT* still takes the longest
time to find the initial path. As can be seen from Figure 14, although the efficiency of



Sensors 2022, 22, 9203 16 of 20

Informed-RRT* searching for the optimal solution has been improved compared to RRT*,
M-RRT* is the most effective algorithm. Q-RRT* can continuously search ancestor vertices
to optimize paths, but these paths often collide in the cluttered environments. Thus, Q-RRT*
wastes a lot of time trying to change the structure of the tree instead, and it performs the
worst in this environment. According to the running results of two performance indicators,
M-RRT* has an outstanding performance in the cluttered environment.

Table 3. tinit and T5% of four algorithms in the cluttered environment.

Algorithm Mean Median Min Max

RRT*
tinit 0.3999 0.3514 0.1405 1.1716

T5% 2.5054 2.1088 0.1874 11.1693

Informed-RRT*
tinit 0.3716 0.3124 0.1093497 1.3278

T5% 1.6417 1.6089 0.1562 4.9363

Q-RRT*
tinit 1.0989 0.9808 0.3127 2.3687

T5% 4.0272 3.7631 0.3127 11.7356

M-RRT*
tinit 0.3002 0.2811 0.1093492 0.8123

T5% 1.1838 1.0075 0.1093492 4.7174

Sensors 2022, 22, x FOR PEER REVIEW 16 of 21 
 

 

  
(a)  (b)  

  
(c)  (d)  

Figure 12. Performance of the four algorithms in the cluttered environment. (a) RRT*. (b) Informed-
RRT*. (c) Q-RRT*. (d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.) 

The 100 simulation results of tinit and T5% are described by boxplots, respectively. Ta-
ble 3 counts the specific numerical values of the simulation results. As shown in Figure 
13, in the cluttered environment, the median of M-RRT* is still the smallest, but the me-
dian of RRT* is larger than that of Informed-RRT*. Therefore, M-RRT* can obtain the ini-
tial solution earlier, while the other two algorithms are not stable. Q-RRT* still takes the 
longest time to find the initial path. As can be seen from Figure 14, although the efficiency 
of Informed-RRT* searching for the optimal solution has been improved compared to 
RRT*, M-RRT* is the most effective algorithm. Q-RRT* can continuously search ancestor 
vertices to optimize paths, but these paths often collide in the cluttered environments. 
Thus, Q-RRT* wastes a lot of time trying to change the structure of the tree instead, and it 
performs the worst in this environment. According to the running results of two perfor-
mance indicators, M-RRT* has an outstanding performance in the cluttered environment. 

 
Figure 13. tinit in the cluttered environment. Figure 13. tinit in the cluttered environment.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 14. T5% in the cluttered environment. 

Table 3. tinit and T5% of four algorithms in the cluttered environment. 

Algorithm  Mean Median Min Max 

RRT* 
tinit 0.3999 0.3514 0.1405 1.1716 
T5% 2.5054 2.1088 0.1874 11.1693 

Informed-RRT* 
tinit 0.3716 0.3124 0.1093497 1.3278 
T5% 1.6417 1.6089 0.1562 4.9363 

Q-RRT* 
tinit 1.0989 0.9808 0.3127 2.3687 
T5% 4.0272 3.7631 0.3127 11.7356 

M-RRT* 
tinit 0.3002 0.2811 0.1093492 0.8123 
T5% 1.1838 1.0075 0.1093492 4.7174 

4.4. Maze 
The maze is shown in Figure 8c. In Figure 15, the paths generated by RRT* (tinit = 

0.2163, T5% = 4.1688), Informed-RRT* (tinit = 0.375, T5% = 14.4523), Q-RRT* (tinit = 0.8908, T5% 
= 1.5375), and M-RRT* (tinit = 0.0647, T5% = 1.3433) are shown. In the maze, loptimal = 138.6089. 
It can be seen that Informed-RRT* always performed global sampling like RRT*. Thus, 
Informed-RRT* has no advantage in this environment. Q-RRT* optimized paths more ef-
ficiently in the maze. On the contrary, due to the two vertex acceptance criteria proposed 
in this paper, M-RRT* rejected a lot of inferior vertices and obtained the solution with 
fewer vertices. 

 

 

 

 

Figure 14. T5% in the cluttered environment.

4.4. Maze

The maze is shown in Figure 8c. In Figure 15, the paths generated by RRT* (tinit = 0.2163,
T5% = 4.1688), Informed-RRT* (tinit = 0.375, T5% = 14.4523), Q-RRT* (tinit = 0.8908, T5% = 1.5375),
and M-RRT* (tinit = 0.0647, T5% = 1.3433) are shown. In the maze, loptimal = 138.6089. It can be



Sensors 2022, 22, 9203 17 of 20

seen that Informed-RRT* always performed global sampling like RRT*. Thus, Informed-RRT*
has no advantage in this environment. Q-RRT* optimized paths more efficiently in the maze.
On the contrary, due to the two vertex acceptance criteria proposed in this paper, M-RRT*
rejected a lot of inferior vertices and obtained the solution with fewer vertices.

Sensors 2022, 22, x FOR PEER REVIEW 18 of 21 
 

 

  
(a)  (b)  

  
(c)  (d)  

Figure 15. Performance of the four algorithms in the Maze. (a) RRT*. (b) Informed-RRT*. (c) Q-RRT*. 
(d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.) 

Figures 16 and 17 show 100 simulation results of tinit and T5%. Table 4 counts the spe-
cific numerical values of the simulation results. Since maze-type environments tend to 
trap the algorithm in a local optimum, M-RRT* requires more extensive sampling when 
estimating the initial solution. It can be seen from Figure 16 that Q-RRT* takes the longest 
time, and although the medians of the other three algorithms are relatively close, the time 
needed for M-RRT* to obtain the initial solution is slightly less. As shown in Figure 17, M-
RRT* obviously has the fastest convergence rate, while Informed-RRT* has the worst per-
formance. The region of the hyper-ellipsoid set by Informed-RRT* in searching for the 
optimal solution in this environment is larger than the state space, which causes it to con-
verge even slower than RRT*. The convergence speed of Q-RRT* is also very fast, so this 
paper indirectly proves that when Q-RRT* has enough space to search for ancestor verti-
ces without collision, its efficiency will be greatly improved. Although RRT* performs 
worse, the minimum values of its two indicators are the lowest. This is because, in one of 
the experiments on RRT*, the random vertices of the algorithm found the path very 
quickly, which is accidental. By combining Figures 16 and 17 and Table 4, it can be seen 
that M-RRT* performs significantly better in the maze. 

Figure 15. Performance of the four algorithms in the Maze. (a) RRT*. (b) Informed-RRT*. (c) Q-RRT*.
(d) M-RRT*. (Red line: approximate optimal path, green circle: goal region.).

Figures 16 and 17 show 100 simulation results of tinit and T5%. Table 4 counts the
specific numerical values of the simulation results. Since maze-type environments tend to
trap the algorithm in a local optimum, M-RRT* requires more extensive sampling when
estimating the initial solution. It can be seen from Figure 16 that Q-RRT* takes the longest
time, and although the medians of the other three algorithms are relatively close, the time
needed for M-RRT* to obtain the initial solution is slightly less. As shown in Figure 17,
M-RRT* obviously has the fastest convergence rate, while Informed-RRT* has the worst
performance. The region of the hyper-ellipsoid set by Informed-RRT* in searching for
the optimal solution in this environment is larger than the state space, which causes it to
converge even slower than RRT*. The convergence speed of Q-RRT* is also very fast, so
this paper indirectly proves that when Q-RRT* has enough space to search for ancestor
vertices without collision, its efficiency will be greatly improved. Although RRT* performs
worse, the minimum values of its two indicators are the lowest. This is because, in one of
the experiments on RRT*, the random vertices of the algorithm found the path very quickly,
which is accidental. By combining Figures 16 and 17 and Table 4, it can be seen that M-RRT*
performs significantly better in the maze.



Sensors 2022, 22, 9203 18 of 20Sensors 2022, 22, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure 16. tinit in the Maze. 

 
Figure 17. T5% in the Maze. 

Table 4. tinit and T5% of four algorithms in the Maze. 

Algorithm  Mean Median Min Max 

RRT* 
tinit 0.2365 0.2186 0.0468 0.7966 
T5% 9.445 5.8267 0.1874 55.2755 

Informed-RRT* 
tinit 0.2375 0.2030 0.06248 0.753 
T5% 17.0028 11.0589 0.406157 172.453 

Q-RRT* 
tinit 0.4876 0.4523 0.1894 1.206 
T5% 4.5829 2.7853 0.2269 27.4085 

M-RRT* 
tinit 0.2062 0.1921 0.06247 0.6092 
T5% 5.091 2.7571 0.406155 28.0715 

5. Conclusions 
There has been an increase in research on sampling-based motion planning algo-

rithms in recent years. RRT* is a commonly used optimal algorithm, but this method has 
the problems of a low search efficiency and a slow convergence speed. M-RRT* is pro-
posed to solve the motion planning problem of mobile robots. First, this research proposes 
an asymptotic vertex acceptance criterion in the initial path estimation phase of M-RRT*, 
which can effectively reduce the time of finding the initial path and make the algorithm 
start searching for the optimal path earlier. Secondly, this research proposes a nonlinear 
dynamic vertices acceptance criterion in the optimal path search phase of M-RRT*. This 

Figure 16. tinit in the Maze.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 21 
 

 

 
Figure 16. tinit in the Maze. 

 
Figure 17. T5% in the Maze. 

Table 4. tinit and T5% of four algorithms in the Maze. 

Algorithm  Mean Median Min Max 

RRT* 
tinit 0.2365 0.2186 0.0468 0.7966 
T5% 9.445 5.8267 0.1874 55.2755 

Informed-RRT* 
tinit 0.2375 0.2030 0.06248 0.753 
T5% 17.0028 11.0589 0.406157 172.453 

Q-RRT* 
tinit 0.4876 0.4523 0.1894 1.206 
T5% 4.5829 2.7853 0.2269 27.4085 

M-RRT* 
tinit 0.2062 0.1921 0.06247 0.6092 
T5% 5.091 2.7571 0.406155 28.0715 

5. Conclusions 
There has been an increase in research on sampling-based motion planning algo-

rithms in recent years. RRT* is a commonly used optimal algorithm, but this method has 
the problems of a low search efficiency and a slow convergence speed. M-RRT* is pro-
posed to solve the motion planning problem of mobile robots. First, this research proposes 
an asymptotic vertex acceptance criterion in the initial path estimation phase of M-RRT*, 
which can effectively reduce the time of finding the initial path and make the algorithm 
start searching for the optimal path earlier. Secondly, this research proposes a nonlinear 
dynamic vertices acceptance criterion in the optimal path search phase of M-RRT*. This 

Figure 17. T5% in the Maze.

Table 4. tinit and T5% of four algorithms in the Maze.

Algorithm Mean Median Min Max

RRT*
tinit 0.2365 0.2186 0.0468 0.7966

T5% 9.445 5.8267 0.1874 55.2755

Informed-
RRT*

tinit 0.2375 0.2030 0.06248 0.753

T5% 17.0028 11.0589 0.406157 172.453

Q-RRT*
tinit 0.4876 0.4523 0.1894 1.206

T5% 4.5829 2.7853 0.2269 27.4085

M-RRT*
tinit 0.2062 0.1921 0.06247 0.6092

T5% 5.091 2.7571 0.406155 28.0715

5. Conclusions

There has been an increase in research on sampling-based motion planning algorithms
in recent years. RRT* is a commonly used optimal algorithm, but this method has the
problems of a low search efficiency and a slow convergence speed. M-RRT* is proposed
to solve the motion planning problem of mobile robots. First, this research proposes an
asymptotic vertex acceptance criterion in the initial path estimation phase of M-RRT*,
which can effectively reduce the time of finding the initial path and make the algorithm
start searching for the optimal path earlier. Secondly, this research proposes a nonlinear
dynamic vertices acceptance criterion in the optimal path search phase of M-RRT*. This
criterion preferentially accepts vertices that may improve the current path so as to rapidly
converge to the optimal path.



Sensors 2022, 22, 9203 19 of 20

Although M-RRT* is a promising algorithm, it can only rely on global sampling to
jump out of the local optimum when finding initial solutions in some special environments.
Moreover, this paper mainly studies static motion planning, but the actual environment
is dynamic, so we should take into account the real-time nature of motion planning in a
further work. Since the motion planning of the manipulators has complex constraints, a
small number of path points can reduce its calculation. We apply the algorithm proposed
in this paper to the motion planning of the manipulator as the next research content.

Author Contributions: Conceptualization, Y.L. and Y.Z.; methodology, Y.Z.; software, Y.Z.; validation,
Y.L. and Y.Z.; formal analysis, Y.L.; investigation, Y.Z.; resources, Y.L.; data curation, S.Y. and
F.L.; writing—original draft preparation, Y.Z.; writing—review and editing, Y.Z., C.S. and Y.L.;
visualization, Y.Z. and S.Y.; supervision, C.S., S.Y. and F.L; project administration, Y.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key R&D Program of China (Grant 2021YFB3301400),
the LiaoNing Revitalization Talents Program (Grant XLYC1907057), the Nature Science Foundation
of Liaoning province (Grant 2021-MS-030), and the State Key Laboratory of Robotics [2022-Z03].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fang, T.; Ding, Y. A sampling-based motion planning method for active visual measurement with an industrial robot. Robot.

Comput.-Integr. Manuf. 2022, 76, 102322. [CrossRef]
2. Lu, Y.; Tang, K.; Wang, C. Collision-free and smooth joint motion planning for six-axis industrial robots by redundancy

optimization. Robot. Comput-Integr. Manuf. 2021, 68, 102091. [CrossRef]
3. Zhang, H.; Zhu, Z.; Yuan, J. Non-inverse kinematics of free-floating space robot based on motion planning of sampling.

J. Northwest. Polytech. Univ. 2021, 39, 1005–1011. [CrossRef]
4. Deng, H.; Xin, G.; Zhong, G.; Mistry, M. Gait and trajectory rolling planning and control of hexapod robots for disaster rescue

applications. Robot. Auton. Syst. 2017, 95, 13–24. [CrossRef]
5. Niu, G.; Pan, B.; Fu, Y.; Qu, C. Development of a New Medical Robot System for Minimally Invasive Surgery. IEEE Access 2020, 8,

144136–144155. [CrossRef]
6. Wang, N.; Zhang, C.; Vahidi, A. Probabilistic anticipation and control in autonomous car following. IEEE Trans. Control Syst.

Technol. 2017, 27, 30–38.
7. Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ-RRT*: An improved path planning algorithm for mobile robots. Expert Syst. Appl.

2020, 152, 113425. [CrossRef]
8. Dorigo, M.; Caro, G.D.; Gambardella, L.M. Ant algorithms for discrete optimization. Artif. Life 1999, 5, 137–172. [CrossRef]
9. Wang, Y.; Han, T.; Jiang, X.; Yan, Y.; Liu, H. Path Planning of Pattern Transfer Based on Dual-Operator and a Dual-Population Ant

Colony Algorithm for Digital Mask Projection Lithography. Entropy 2020, 22, 295. [CrossRef]
10. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98. [CrossRef]
11. Koren, Y.; Borenstein, J. Potential field methods and their inherent limitations for mobile robot navigation. In Proceedings of the

IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 9–11 April 1991.
12. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.

Cybern. 1968, 4, 100–107. [CrossRef]
13. Koenig, S.; Likhachev, M.; Furcy, D. Lifelong planning A*. Artif. Intell. 2004, 155, 93–146. [CrossRef]
14. LaValle, S.M.; Kuffner, J.J. Randomized kinodynamic planning. Int. J. Robot. Res. 2001, 20, 378–400. [CrossRef]
15. Kavraki, L.E.; Svestka, P.; Latombe, J.C.; Overmars, M.H. Probabilistic roadmaps for path planning in high-dimensional

configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566–580. [CrossRef]
16. Wei, K.; Ren, B. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an

Improved RRT Algorithm. Sensors 2018, 18, 71. [CrossRef]
17. Chiang, H.T.L.; Tapia, L. COLREG-RRT: An RRT-based COLREGS-compliant motion planner for surface vehicle navigation. IEEE

Robot. Autom. Lett. 2018, 3, 2024–2031. [CrossRef]
18. Tang, X.; Chen, F. Robot path planning algorithm based on Bi-RRT and potential field. In Proceedings of the IEEE International

Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020.

http://doi.org/10.1016/j.rcim.2022.102322
http://doi.org/10.1016/j.rcim.2020.102091
http://doi.org/10.1051/jnwpu/20203951005
http://doi.org/10.1016/j.robot.2017.05.007
http://doi.org/10.1109/ACCESS.2020.3014532
http://doi.org/10.1016/j.eswa.2020.113425
http://doi.org/10.1162/106454699568728
http://doi.org/10.3390/e22030295
http://doi.org/10.1177/027836498600500106
http://doi.org/10.1109/TSSC.1968.300136
http://doi.org/10.1016/j.artint.2003.12.001
http://doi.org/10.1177/02783640122067453
http://doi.org/10.1109/70.508439
http://doi.org/10.3390/s18020571
http://doi.org/10.1109/LRA.2018.2801881


Sensors 2022, 22, 9203 20 of 20

19. Kuffner, J.J.; LaValle, S.M. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No. 00CH37065), San Francisco, CA, USA, 24–28 April 2000.

20. Kang, J.G.; Lim, D.W.; Choi, Y.S.; Jang, W.J.; Jung, J.W. Improved RRT-Connect Algorithm Based on Triangular Inequality for
Robot Path Planning. Sensors 2021, 21, 333. [CrossRef]

21. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
22. Xu, J.; Song, K.; Dong, H.; Yan, Y. A batch informed sampling-based algorithm for fast anytime asymptotically-optimal motion

planning in cluttered environments. Expert Syst. Appl. 2020, 144, 113124. [CrossRef]
23. Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal sampling-based path planning focused via direct sampling

of an admissible ellipsoidal heuristic. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Chicago, IL, USA, 14–18 September 2014.

24. Jeong, I.B.; Lee, S.J.; Kim, J.H. Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution
and convergence rate. Expert Syst. Appl. 2019, 123, 82–90. [CrossRef]

25. Qi, J.; Yang, H.; Sun, H. MOD-RRT*: A Sampling-Based Algorithm for Robot Path Planning in Dynamic Environment. IEEE Trans.
Ind. Electron. 2021, 68, 7244–7251. [CrossRef]

26. Wang, J.; Li, T.; Li, B.; Meng, M.Q.-H. GMR-RRT*: Sampling-Based Path Planning Using Gaussian Mixture Regression. IEEE
Trans. Intell. Veh. 2022, 7, 690–700. [CrossRef]

27. Guo, J.; Xia, W.; Hu, X.; Ma, H. Feedback RRT* algorithm for UAV path planning in a hostile environment. Comput. Ind. Eng.
2022, 174, 108771. [CrossRef]

http://doi.org/10.3390/s21020333
http://doi.org/10.1177/0278364911406761
http://doi.org/10.1016/j.eswa.2019.113124
http://doi.org/10.1016/j.eswa.2019.01.032
http://doi.org/10.1109/TIE.2020.2998740
http://doi.org/10.1109/TIV.2022.3150748
http://doi.org/10.1016/j.cie.2022.108771

	Introduction 
	Problem Definition and Related Work 
	Problem Definition 
	RRT* 
	Informed-RRT* 
	Q-RRT* 

	Methods 
	Metropolis Acceptance Criterion 
	Asymptotic Vertex Acceptance Criterion 
	Nonlinear Dynamic Vertex Acceptance Criterion 
	M-RRT* 

	Simulations 
	Environment Configuration and Indicator Description 
	Regular Environment 
	Cluttered Environment 
	Maze 

	Conclusions 
	References

