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Abstract: In this paper, we propose an enhancement of three-dimensional (3D) image visualiza-
tion techniques by using different pickup plane reconstructions. In conventional 3D visualization
techniques, synthetic aperture integral imaging (SAII) and volumetric computational reconstruction
(VCR) can be utilized. However, due to the lack of image information and shifting pixels, it may
be difficult to obtain better lateral and longitudinal resolutions of 3D images. Thus, we propose a
new elemental image acquisition and computational reconstruction to improve both the lateral and
longitudinal resolutions of 3D objects. To prove the feasibility of our proposed method, we present the
performance metrics, such as mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and peak-to-sidelobe ratio (PSR). Therefore, our method can improve both the
lateral and longitudinal resolutions of 3D objects more than the conventional technique.

Keywords: axially distributed sensing; integral imaging; lateral and longitudinal resolution; synthetic
aperture integral imaging; volumetric computational reconstruction

1. Introduction

Three-dimensional (3D) image visualization is a significant issue for many applications,
such as unmanned autonomous vehicles, media content, defense, and so on [1–8]. To
visualize 3D images, various methods can be utilized, such as time of flight, stereoscopic
imaging, holography, and integral imaging [1,9–11]. By utilizing incoherent light with a
general camera, integral imaging [1,9,12–14] can be used. It is a passive multi-perspective
imaging technique that obtains depth information from 2D images, which are called
elemental images. Unlike stereoscopic imaging techniques, such as anaglyphs, shutter
glasses, and film-patterned retarders, integral imaging can visualize 3D images in full
color, full parallax, and with continuous viewing points without special viewing devices.
However, since integral imaging utilizes a lenslet array, the resolution of each elemental
image is limited by the number of lenses and the resolution of the sensor. Thus, integral
imaging by the lenslet array may visualize the 3D image in low resolution with a shallow
depth of focus.

To solve lateral and longitudinal resolutions of 3D images in integral imaging, syn-
thetic aperture integral imaging (SAII) [1,9,13–15] was reported. The elemental image
acquisition obtains different perspectives of elemental images by fixing the distances be-
tween scenes and the pickup plane. It can record elemental images with the same resolution
as the image sensor. After obtaining high-resolution elemental images by SAII, volumetric
computational reconstruction (VCR) [1,14,16–19] can be used for 3D image generation.
It can reconstruct 3D image from elemental images by shifting the pixels. It shifts each
elemental image and superposes them to obtain 3D information. However, 3D images may
be visualized with limited resolutions because of the fixed distance between scenes and the
pickup plane.
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To solve this problem, elemental images captured at different pickup positions at in-
depth directions are required. Thus, in this paper, we merged SAII with axially distributed
sensing (ADS) [2,20–22]. ADS is another 3D image visualization method that records
different perspectives of elemental images by moving the image sensor along the optical
axis. This feature makes ADS have fewer resolution limitations caused by the fixed distance.
In the reconstruction sequence, unlike SAII, ADS utilizes the relative magnification ratio
for each elemental image from different distances. However, ADS may not generate the 3D
images of the center part because of a lack of perspective information. In this paper, our
method uses the advantages of both SAII and ADS. In the image acquisition, we obtain
elemental images by moving the sensor on the pickup plane with different positions of
in-depth direction. The shifting pixel and relative magnification ratio are utilized for the
3D image reconstruction. Therefore, our methods can enhance the lateral and longitudinal
resolutions of 3D images simultaneously.

This paper is organized as follows. In Section 2, we present the basic concept of
integral imaging, SAII, ADS, and our proposed method. Then, in Section 3, we show
the experimental results for supporting the feasibility of our proposed method with the
performance metrics, such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM),
mean squared error (MSE), and peak-to-sidelobe ratio (PSR). Finally, we conclude with our
summary in Section 4.

2. Three-Dimensional Integral Imaging with Multiple Pickup Positions

In this section, we present the basic concepts of integral imaging, synthetic aperture
integral imaging, axially distributed sensing, and our method.

2.1. Integral Imaging

To visualize natural 3D scenes, integral imaging was reported by G. Lippmann in
1908 [23]. Integral imaging provides full color and full parallax 3D images with multi-
perspective elemental images. Figure 1 illustrates an overview of integral imaging. As
shown in Figure 1, integral imaging generates 3D images by two sequences: image acquisi-
tion and reconstruction. Image acquisition provides multi-perspective elemental images
from different locations of the lenslets. In the reconstruction, there is an optical method
(Figure 1b) and a computational method (Figure 2). In the optical method, the 3D image is
displayed by backpropagating the elemental image through the same lenslet array. In the
computational method, as shown in Figure 2, a nonuniform volumetric computational re-
construction (VCR) is utilized. It uses different shifting pixels for elemental images through
various reconstruction depths and superposes them. It can be described as follows [16]

∆xs =
Nx × px × f

sx × zd
, ∆ys =

Ny × py × f
sy × zd

(1)

∆xk = b(k× ∆xs)e, for k = 0, 1, 2, . . . , K− 1 (2)

∆yl = b(l × ∆ys)e, for l = 0, 1, 2, . . . , L− 1 (3)

I(x, y, zd)VCR =
1

O(x, y, zd)VCR

K−1

∑
k=0

L−1

∑
l=0

Ekl(x + ∆xk, y + ∆yl) (4)

where ∆xs, ∆ys are the actual shifting pixels in a real number, Nx, Ny are the number of
pixels for each elemental image in x and y directions, px, py are the pitches for the elemental
images, f is the focal length of the camera, sx, sy are the sensor sizes of the camera, zd is
the reconstruction depth, ∆xk, ∆yl are the shifting pixels assigned to the kth row and lth
column elemental images, K, L are the number of row and column elemental images, b·e
is the round operator, O(x, y, zd)VCR is the overlapping matrix for nonuniform VCR, Ekl
is the kth row, lth is the column elemental image, and I(x, y, zd)VCR is the 3D image by
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the nonuniform VCR. However, since the resolutions of elemental images are limited by
the number of lenses and the resolution of the sensor, the resolutions of 3D images may
be degraded. To solve this problem, high-resolution elemental images are required in
integral imaging.

Figure 1. Overview of integral imaging; (a) is the acquisition technique and (b) is the reconstruc-
tion technique.

Figure 2. Overview of nonuniform volumetric computational reconstruction (VCR).

2.2. Synthetic Aperture Integral Imaging

Synthetic aperture integral imaging (SAII) is an elemental image acquisition technique.
Unlike lenslet array-based integral imaging, SAII utilizes a full sensor for capturing each
elemental image. Therefore, 3D images by SAII can have high resolutions. Figure 3
illustrates the SAII. As shown in Figure 3, it fixes the distance between the 3D object and
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the pickup plane and generates the elemental images by moving the image sensor on
the pickup plane with the same pitch. However, 3D objects by using elemental images
with single distances may not be visualized well due to the limited resolutions. Figure 4
illustrates the resolution problems of 3D image visualizations. In Figure 4, Ps is the pixel
size, f is the focal length, Zn is the distance between the sensor and 3D scenes, L is the
distance between the center of the sensor and pixel, θr, θg are the angles of the red and
green rays, and dn is the distance where we recognize a pixel as single information. It can
be described as follows:

Figure 3. Illustrations of synthetic aperture integral imaging (SAII).

Figure 4. Illustration of the resolution problem.

θr = tan−1(
L− ( Ps

2 )

f
), θg = tan−1(

L + ( Ps
2 )

f
) (5)
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dn = (tan(θg)− tan(θr))
N

∑
n=1

Zn (6)

As shown in Figure 4 and Equations (5) and (6), the distance between the sensor and
the scene (∑N

n=1(Zn)) is the main factor for calculating the distances (dn). In short, as the
distance between the 3D object and the pickup plane decrease, the acquisition area per
pixel becomes smaller. Therefore, it can obtain more precise information.

2.3. Axially Distributed Sensing

Axially distributed sensing obtains different perspectives of the images by changing
the distance between the pickup and reconstruction plane. Then, it can reconstruct the
3D image by using a relative magnification ratio for each elemental image. Figure 5
illustrates image acquisition in ADS. As shown in Figure 5, the image sensor is aligned on
the optical axis with different depths. These depth differences lead to ADS having fewer
resolution limitations, which are caused by the distance between the 3D object and the
pickup plane. Elemental images by ADS contain different pickup areas per pixel. Therefore,
in ADS reconstruction, a relative magnification ratio can be utilized. It can be described as
follows [2,9,20,21]

Figure 5. Image acquisition in axially distributed sensing (ADS).

Mk =
zk
zo

(7)

O(x, y, zd)ADS =
K−1

∑
k=0

1

(
x

Mk
,

y
Mk

)
(8)

I(x, y, zd)ADS =
1

O(x, y, zd) ADS

K−1

∑
k=0

Ek

(
x

Mk
,

y
Mk

)
(9)

where zo is the nearest distance between the pickup position and the reconstruction plane,
zk is the distance between the kth pickup position and the reconstruction plane, Mk is the
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relative magnification ratio between zk and zo, 1 is the matrix, O(x, y, zd)ADS is the overlap-
ping matrix for ADS, Ek is the elemental image at the kth pickup position, I(x, y, zd)ADS
is the 3D image by ADS. However, since the center parts of elemental images have no
perspectives, ADS may not reconstruct the center part of a 3D scene.

2.4. Our Method

To visualize 3D images with enhanced lateral and longitudinal resolutions, we merged
the SAII, ADS, and VCR techniques in this paper. In elemental image acquisition, we set
the camera arrays at different pickup planes with different lateral perspectives. Figure 6
illustrates the alignment of the camera array in our method. As shown in Figure 6, elemental
images with different perspectives are recorded per pickup plane. On each pickup plane,
different pitches among cameras are considered. In Equation (1), the shifting pixels of each
elemental image can be decided by the number of pixels (Nx), pitch (px), focal length ( f ),
sensor size (sx), and depth between the pickup and reconstruction plane (zd). However, the
number of pixels, focal lengths, and sensor sizes are constant values when the camera and
lens are chosen. Thus, in this case, the shifting pixel can be described as follows

∆xs ∝ k
px

zd
(10)

k is the merged constant value of Nx, sx, and f . In Equation (10), shifting pixels (∆xs)
are considered by pitch (px) and depth (zd). Figure 7 illustrates the relationship between
the shifting pixel, pitch, and depth. As shown in Figure 7, the number of shifting pixels
gradually decreases as the depth increases. However, in Figure 7, the shifting pixel can
be compensated by using a higher pitch. Therefore, a higher pitch is used for the longest
pickup plane to compensate for the lack of shifting pixels. Then we reconstruct the elemen-
tal images by considering various shifting pixels and the relative magnification ratio. It is
described as follows:

Nm
x = N0

x ×
zm

z0
, for m = 0, 1, 2, . . . , M− 1 (11)

Nm
y = N0

y ×
zm

z0
, for m = 0, 1, 2, . . . , M− 1 (12)

∆xs
m =

Nm
x × f × pm

sx × zm
d

, for m = 0, 1, 2, . . . , M− 1 (13)

∆ys
m =

Nm
y × f × pm

sy × zm
d

, for m = 0, 1, 2, . . . , M− 1 (14)

∆xs
km = b(k× xs

m)e, for k, m = 0, 1, 2, . . . , K− 1, M− 1 (15)

∆ys
lm = b(l × ys

m)e, for l, m = 0, 1, 2, . . . , L− 1, M− 1 (16)

Eklm = β
(

Nm
x , Nm

y

)
, for k, l, m = 0, 1, 2, . . . , K− 1, L− 1, M− 1 (17)

Ep
klm = Θ

(
Eklm, NM−1

x , NM−1
y )

)
, for k, l, m = 0, 1, 2, . . . , K− 1, L− 1, M− 1 (18)

Op
klm = Θ

(
1(Eklm), NM−1

x , NM−1
y )

)
, for k, l, m = 0, 1, 2, . . . , K− 1, L− 1, M− 1 (19)

O(x, y, z) =
M−1

∑
m=0

K−1

∑
k=0

L−1

∑
l=0

Op
klm(x + ∆xs

km, y + ∆ys
lm, zm) (20)
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I(x, y, z) =
1

O(x, y, z)

M−1

∑
m=0

K−1

∑
k=0

L−1

∑
l=0

Ep
klm(x + ∆xs

km, y + ∆ys
lm, zm) (21)

where z0 is the nearest distance between the pickup and reconstruction plane, M is the
number of pickup planes, and zm is the distance between the mth pickup and reconstruction
plane. N0

x , N0
y are the number of pixels for the elemental image located at the nearest

distance between the pickup and the reconstruction plane, Nm
x , Nm

y are the number of pixels
for the elemental image located at the distance between the mth pickup and reconstruction
plane, ∆xs

m, ∆ys
m are the actual shifting pixels for the mth pickup plane, f is the focal length

of the camera lens, pm is the pitch among cameras at the mth pickup plane, zm
d is the

depth between the mth pickup and the reconstruction plane, ∆xs
km, ∆ys

lm are the shifting
pixels for the kth row and lth column elemental image on the mth pickup plane, Eklm is
the kth row, lth column, and mth pickup plane elemental image with Nm

x × Nm
y pixels,

β is the magnification function that magnifies the elemental image by using the bicubic
interpolation method with Nm

x × Nm
y pixels, Θ is the zero padding function, Ep

klm is the
expanded elemental image for reconstruction by our method, Op

klm is the one matrix with
zero padding, O(x, y, z) is the overlapping matrix for the reconstruction by our method,
and I(x, y, z) is the reconstructed 3D image by our method.

Figure 6. Sensor alignment in our method.

Figure 8 illustrates the procedure of our computational reconstruction. In the proce-
dure, we needed to calculate the relative magnification ratio for every elemental image
and resize all elemental images considering this magnification ratio ( zm

z0
). Then, we cal-

culated the shifting pixels (∆xs
km, ∆ys

lm) and assigned them to every elemental image. For
convenience, in the reconstruction sequence, we applied zero padding with (NM−1

x , NM−1
y )

sizes to every elemental image. Finally, 3D images with enhanced lateral and longitudinal
resolutions can be reconstructed.
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Figure 7. Relationship between shifting pixel and depth.

Figure 8. Procedure of our computational reconstruction.

3. Results of the Simulation
3.1. The First Simulation Setup

To prove the feasibility of our method, we implemented a simulation using ‘Blender’.
Figure 9 illustrates the simulation setup and 3D scenes, where 5(H) × 5(V) camera arrays
for each (different) depth are used, the focal length is f = 50 mm, the pitches of the camera
arrays are 6, 4, and 2 mm, to set the same pitch for each pickup plane (Figure 7), the sensors
size is 36(H)× 36(V) mm, and 1000(H)× 1000(V) is the number of pixels used for recording
each elemental image. The conventional method only used the elemental images at the
furthest pickup plane to reconstruct the 3D images. We used a resolution chart [24] as the
object to prove the feasibility of our method.
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Figure 9. (a) Simulation setup and (b) 3D scene for each depth.

3.2. The First Simulation Result

Figure 10 shows the simulation results reconstructed at 150 mm. As shown in Figure 10,
both conventional and proposed methods visualize 3D images correctly. However, our
method has better visual quality than the conventional method. To show the feasibility of
visual quality enhancement, we calculated the performance metrics, such as peak signal-to-
noise ratio (PSNR), mean squared error (MSE), and structural similarity (SSIM) by using
the cropped image in Figure 10. Table 1 shows the performance metric results. As shown
in Table 1, sample images reconstructed by our methods have lower MSE and higher SSIM
and PSNR values than the conventional method. Moreover, when we reconstruct the
3D sample images via various depths, the proposed method has better depth resolution
than the conventional method. Figure 11 shows the 3D sample images reconstructed via
various depths. As shown in Figure 11, it is difficult to find the correct depth (150 mm)
in the conventional method. In contrast, the correct depth can be found easily in our
proposed method.
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Figure 10. Reconstructed 3D images at 150 mm by (a) the conventional method and (b) the pro-
posed method.

Table 1. Performance metrics of the first simulation results.

Image Method MSE PSNR SSIM

Line
Proposed
method 141.175 26.6167 0.912548

Conventional 412.612 21.9755 0.735038

Diagonal line
Proposed
method 70.2242 29.6659 0.934659

Conventional 191.215 25.3156 0.822554

Circle
Proposed
method 120.501 27.3209 0.928587

Conventional 362.636 22.5361 0.775436

Figure 11. 3D sample images via various depths.

3.3. The Second Simulation Setup

However, the first simulation was unfair, because the proposed method used three
times the elemental images than the conventional method. Thus, in the second simulation,
we used fewer elemental images for the proposed method than the conventional method.
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Figure 12 shows the elemental images used in the second simulation. As shown in Figure 12,
we extracted eight elemental images on every pickup plane.

Figure 12. Elemental images of the second simulation.

3.4. Simulation Result

Figure 13 and Table 2 show the result of the second simulation. As shown in Figure 13
and Table 2, our proposed method has better visual quality than the conventional method.
Finally, we calculated the peak-to-sidelobe ratio (PSR) value to show the enhancement of
the depth resolution as shown in Figure 14. Each plot used a different sample (in the exact
same locations as Figure 13) from the original image. As shown in Figure 14, our method
provides a higher peak on the correct depth compared to the conventional method.

Figure 13. Reconstructed 3D images in the second simulation by (a) the conventional method and
(b) proposed method.
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Table 2. Performance metrics of the second simulation results.

Image Method MSE PSNR SSIM

Line
Proposed
method 150.162 26.3652 0.907574

Conventional 412.612 21.9755 0.735038

Diagonal line
Proposed
method 71.6068 29.5813 0.934551

Conventional 191.215 25.3156 0.822554

Circle
Proposed
method 128.099 27.0554 0.925271

Conventional 362.636 22.5361 0.775436

Figure 14. PSR values for (a) circle sample, (b) line sample, and (c) diagonal sample.

4. Conclusions

In this paper, we propose a 3D visualization method with an enhanced 3D resolution
by merging SAII, VCR, and ADS. It may improve the lateral and longitudinal resolutions
of 3D images by acquiring elemental images from different depths. Considering PSNR,
MSE, SSIM, and PSR values as performance metrics, we prove that our method has better
results than the conventional method. We believe that our method can be applied to many
industries, such as unmanned autonomous vehicles, media content, and defense. However,
it has some drawbacks. First, it requires great effort to implement real optical experiments
due to lens aberration and alignment problems. Thus, we need more research and accurate
optical components to apply our method in real optical experiments. Second, its processing
speed is slower than the conventional method because it requires more processing steps to
use the relative magnification ratio. Therefore, we will investigate the solutions to these
drawbacks in future work.
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