
����������
�������

Citation: Alalwany, E.; Mahgoub, I.

Classification of Normal and

Malicious Traffic Based on an

Ensemble of Machine Learning for a

Vehicle CAN-Network. Sensors 2022,

22, 9195. https://doi.org/10.3390/

s22239195

Academic Editor: Carlos Tavares

Calafate

Received: 1 November 2022

Accepted: 23 November 2022

Published: 26 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Classification of Normal and Malicious Traffic Based on an
Ensemble of Machine Learning for a Vehicle CAN-Network
Easa Alalwany 1,2 and Imad Mahgoub 1,*

1 Electrical Engineering & Computer Science, Florida Atlantic University, 777 Glades Road,
Boca Raton, FL 33431, USA

2 College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia
* Correspondence: mahgoubi@fau.edu

Abstract: Connectivity and automation have expanded with the development of autonomous vehicle
technology. One of several automotive serial protocols that can be used in a wide range of vehicles is
the controller area network (CAN). The growing functionality and connectivity of modern vehicles
make them more vulnerable to cyberattacks aimed at vehicular networks. The CAN bus protocol
is vulnerable to numerous attacks, as it is lacking security mechanisms by design. It is crucial to
design intrusion detection systems (IDS) with high accuracy to detect attacks on the CAN bus. In
this paper, we design an effective machine learning-based IDS scheme for binary classification that
utilizes eight supervised ML algorithms, along with ensemble classifiers. The scheme achieved a
higher effectiveness score in detecting normal and abnormal activities when trained with normal
and malicious CAN traffic datasets. Random Forest, Decision Tree, and Xtreme Gradient Boosting
classifiers provided the most accurate results. Then we evaluated three ensemble methods, voting,
stacking, and bagging, for this classification task. The ensemble classifiers achieved better accuracy
than the individual models, since ensemble learning strategies have superior performance through a
combination of multiple learning mechanisms. These mechanisms have a varied range of capabilities
that improve the prediction reliability while lowering the possibility of classification errors. Our
model outperformed the most recent study that used the same dataset, with an accuracy of 0.984.

Keywords: controller area network; ensemble learning; intrusion detection systems; machine learning

1. Introduction

The future of the automotive industry will be controlled by intelligent connected
vehicles (ICV). Crashes, congestion, and greenhouse gas emissions will be reduced as
a result of advanced wireless technology that will allow vehicles to communicate with
each other and others nearby in real-time [1]. Various research fields use vehicle nodes
as communication messengers, such as vehicular ad hoc networks (VANET), the Internet
of Vehicles (IoV), and communications from vehicles to everything else [2–4]. Vehicle
communication protocols include controller area network (CAN), FlexRay, and MOST
(Media-Oriented Systems Transport), all of which are well-established standards.

The wide utilization of the CAN bus in vehicles is done for a diverse range of reasons,
among which are the reduction of costs, the improvement of real-time communication,
and the simplicity of installation. Broadcast data transfer, priority arbitration, and lower
latency are characteristics of the CAN bus. However, these particular characteristics are
the cause of its vulnerabilities [5–7]. Traditional security mechanisms, such as network
segmentation, encryption, and authentication, are incompatible with in-vehicle networks
because of CANs’ lack of support and the possible violation of timing constraints that can
occur in CAN communications [8,9]. Therefore, vehicular networks’ openness to malicious
threats puts the modern IoV in danger of malicious messages. Some vehicle functions,
including acceleration, steering, and braking, might be controlled by an attacker. In [10], a

Sensors 2022, 22, 9195. https://doi.org/10.3390/s22239195 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239195
https://doi.org/10.3390/s22239195
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0948-0069
https://orcid.org/0000-0002-4461-7307
https://doi.org/10.3390/s22239195
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239195?type=check_update&version=2


Sensors 2022, 22, 9195 2 of 15

Jeep Cherokee was hacked, and its functions were controlled. Attacks on vehicles endanger
the lives of drivers, passengers, vulnerable pedestrians, and other vehicles.

Intrusion detection systems (IDSs) have become a proposed solution to detecting
attacks [11]. The primary goal of any IDS is to identify network traffic patterns that
may indicate suspicious activity. Researchers have found the integration of machine
learning (ML) models into IDSs to detect attacks in IoV networks highly effective [12,13].
This research is being conducted using ML classifiers that have been trained to predict
normal and malicious traffic using prebuilt datasets. Security solutions broadly employ
classification algorithms which have proven to be extremely powerful in threat and attack
detection and prevention. If the design of in-vehicle network intrusion detection includes
classification algorithms, it is possible to learn how normal network traffic works and to
identify when CAN buses are acting abnormally [14–16].

The CAN bus protocol is vulnerable to numerous attacks, as it is lacking security
mechanisms by design. It is crucial to design IDSs with high accuracy to detect attacks on
the CAN bus. Refs. [17–19] proved that the use of ensemble methods can enhance accuracy
in intrusion detection more than a single classifier. Ensemble learning aims to achieve
better classification results through the use of different classifiers that are combined into a
single classifier. The strength of the ensemble learning strategy is that it allows learning
mechanisms with varying capabilities to support each other, resulting in a higher prediction
reliability and a low error rate.

In this study, we propose a solution that aims to build an effective IDS framework by
using well-tuned supervised ML models and ensemble learning methods. We designed an
effective machine learning-based IDS scheme for binary classification that utilizes eight
supervised ML algorithms, along with ensemble classifiers. We combine all supervised
models using three ensemble methods: voting, stacking, and bagging. The advantage
of the ensemble learning strategy is that it enables learning mechanisms with different
capabilities to support one another for this classification task. Our main contributions are
illustrated as follows:

• We build and evaluate eight supervised models with hyper-parameter tuning and
data balancing. These models included a Random Forest (RF), Decision Tree (DT), and
Xtreme Gradient Boosting Classifier (XGBoost). We use three ensemble methods to
combine the eight supervised ML models to increase the attack detection performance
of our scheme. We carry out the performance evaluation in terms of accuracy, precision,
recall, F1-score, and area under curve receiver operator characteristic (ROC-AUC).

• We provide a comparison of our models with recently proposed models that utilized
the same dataset. Our models achieved higher attack detection performance.

The remainder of this study is organized as follows. Section 2 shows the related work.
Section 3 presents the CAN background and its attack types. Section 4 demonstrates the
proposed models. Section 5 presents the results and discussion. Finally, Section 6 concludes
the paper.

2. Related Work

CAN-based in-vehicle network attack detection has been the focus of numerous studies
because researchers have deemed IoV IDS research critical in recent years. Discoveries
made by earlier research have given hints of the possibility that attackers could inject bus
messages into CAN after exploiting discovered attack surfaces, which are categorized as
wireless and physical [20]. During earlier research, these points of entry for attacks into the
CAN bus of a target vehicle were identified. A malicious node can use these points of entry.

Refs. [6,21] are among the recent studies that offer categorization and expansive
CAN bus vulnerability and attack reviews. Their body of work also presents solutions
to the reviewed vulnerabilities and attacks. According to these two research papers,
eavesdropping is possible when traffic is not encrypted; protocol misuse led to denial
of service (DoS) and replay attacks; data insertion attacks are possible when messages
do not have authentication. These are the three significant vulnerabilities and associated



Sensors 2022, 22, 9195 3 of 15

attacks. In [22], an approach is proposed for in-vehicle networks’ CAN intrusions to
identify intrusion classification models using the CAN-Intrusion-Dataset. The authors
implemented K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) algorithms
in their object classification.

The supervised machine learning classifiers RF, KNN, and XGBoost are compared in
classifying attack and non-attack messages using the CAN-Intrusion-Dataset in [23]. Com-
pared with KNN for intrusion detection, RF and XGBoost showed better precision, recall,
and F-score values. However, an unbalanced dataset was used, and further improvements
are needed.

The authors of [24] have proposed ensemble learning methods combined with Decision
Trees to classify normal and malicious traffic. The detection rate for both the Decision Tree
and bagging was 0.97. However, using AdaBoost, Naïve Bayes, Logistic Regression, and a
Neural Network (NN) has not shown further improvement. Moreover, the model is trained
with the default parameters.

The authors of [25] have proposed Deep Convolutional Neural Network (DCNN)
and SVM models for the detection of normal and malicious traffic. The performances of
the detection models are improved using the hint data that are proposed. The detection
performances of the models for attack types known via hints improved when using hint
data to train the model. Further improvements are needed to reach the accuracy required
for use in the real world, since the models used in the paper had a maximum accuracy
of 0.95.

In [26], optimal performance is achieved using traditional ML algorithms. The DT
algorithm achieved the highest accuracy of itself, SVM, KNN, and RF. The DT algorithm
scored 0.9532 in the correct classification of individual scenarios as normal or attack.
However, the model’s detection performance needs to be improved further.

In this study, we propose a solution that aims to build an effective IDS framework by
using well-tuned supervised ML models and ensemble learning approaches. Table 1 shows
our scheme compared to recently proposed approaches in terms of ensemble learning, data
balancing, and hyperparameter tuning.

Table 1. Comparison of our scheme with recently proposed models.

Citation Year Machine Learning
Models Data Balancing Hyperparameter

Tuning Ensemble Classifiers

[24] 2020 + — — + (Bagging)
[25] 2021 + Not Reported — —
[26] 2021 + Not Reported + —

Ours 2022 + + + + (Stacking, Voting, and Bagging)

In Table 1, "+" means the method is used and is considered as a strength, "—: means
the method is not used and is considered as a weakness.

3. Background and Attack Types
3.1. Overview of CAN Bus

The CAN was introduced for vehicles in 1986 by Robert Bosh GmbH [27]. The actuator,
sensor, controller, and other nodes from real-time applications are the main components
that communicate with one another [28]. The CAN bus protocol involves the use of a
broadcast mechanism that sends data/messages to all nodes of the network. Multiple CAN
buses can be found in modern vehicles. Each bus can perform a variety of functions, such
as engine control and brake control [29]. One of the primary benefits of the CAN system is
the ability to add nodes without requiring complex programming. This has facilitated the
process of integrating external systems with it, and it will continue to function normally, as
before integration. Another benefit of the CAN system is fault detection that can be done
with extreme precision. It also has a fault confinement feature that allows it to shut down



Sensors 2022, 22, 9195 4 of 15

automatically if severe errors occur. If one node fails, the others will continue to function
normally [30].

The transmission of CAN packets or messages usually takes place over the CAN bus
data frame. The ranking of different CAN packets by their importance gives the data frame
the highest scores amongst all the available CAN packets. The transmission of user data
takes place in the data field [16]. The CAN packet structure is made up of seven fields:
start of the frame, arbitration field, control field, data field, cyclic redundancy check field,
acknowledge field, and end of the frame. Figure 1 illustrates the structure of the CAN
bus frame.

Start of The Frame (1 bit): It utilizes one bit to inform all nodes about the beginning of
CAN message transmission.

Arbitration Field (12 bits): It is known as CAN ID; it identifies the priority of received
message. A lower value for the CAN ID message means it has high priority.

Control Field (6 bits): It includes Data Length Code (DLC), which indicates the byte
length of the data field.

Data Field (0 to 8 bits): It is responsible for actual data transmission.
Cyclic Redundancy Check (CRC) Field(16 bits): It is used to detect the validity of packets.
Acknowledge (ACK) Field (2 bits): It confirms that the CAN packets are received success-

fully by the receiver nodes.
End of The Frame (7 bits): It indicates that the CAN message has been completed.

Figure 1. The structure of the CAN bus frame.

3.2. CAN Bus Attacks

The lack of suitable security support in the CAN protocol itself resulted in a limitation
on the mechanisms to secure the communications between vehicles. Researchers have
extensively investigated the security limitations of the CAN bus in real vehicles and
in laboratories. Cost reduction, enhancing real-time communication, and installation
simplification were among the reasons for using the in-vehicle CAN bus. The use of
the CAN bus in vehicles introduces several security vulnerabilities [7,9,16]. The three
characteristics of the CAN bus that cause vulnerabilities are broadcast data transfer, priority
arbitration, and low latency. Consequently, traditional security mechanisms, including
cryptography techniques, authentication, and integrity, are incompatible with in-vehicle
networks because the CAN bus does not support them [31,32]. Bus injection and CAN bus
DoS attacks have become increasingly common [33]. Attacks in various environments show
that attackers can take control of various vehicle parts, such as the brakes and steering [7].
The points of entry attacks into the CAN bus can be wireless or physical. With more
connections and interfaces to the outside, the CAN bus network becomes easier to hack [15].
The main type of inter-vehicle attack is a message injection attack, such as a DoS, spoofing,
replay, or fuzzing attack [11]. Flooding (DoS): This involves congesting the network bus
by sending the CAN bus segment multitudes of traffic messages, making it difficult for
legitimate service traffic to go through the bus because it will always be fully utilized. The
CAN bus’s lack of authentication mechanisms makes DoS and message poisoning attacks
prevalent and unmitigated. Arbitration schemes such as message-ID-priority schemes help
mitigate DOS attacks on other connected ECUs. Spoofing: Spoofing of the source-destination
enables the attacker to inject into the CAN bus messages which can enable the attacker to
take control of a specific set of the attacker’s desired functions. The broadcast mechanism
the CAN bus employs makes it possible for any of the bus-connected electronic control



Sensors 2022, 22, 9195 5 of 15

units (ECUs) to sniff CAN frames because there is no encryption mechanism for the data
traffic on the CAN bus. Replay: This type of attack involves replaying or injecting previously
extracted normal traffic into the compromised CAN bus at a specific time. This attack is
possible because of the CAN frames’ lack of authentication and integrity. Fuzzing: The
attacker makes a vehicle’s behavior unexpected due to the injection of random messages.

4. Materials and Methods
4.1. Supervised ML

We propose binary classification of normal and abnormal traffic for CAN bus messages.
This proposed solution aims to build an effective IDS framework by using supervised ML
models. We used supervised ML models. These models were Random Forest, Decision Tree,
Gaussian Naïve Bayes, Logistic Regression, AdaBoost, K-Nearest Neighbor, and Gradient
Boosting. The models were evaluated by using well-known evaluation metrics. These
metrics were accuracy, precision, recall, F1-score, and ROC.

4.1.1. Dataset Description

We used the CAN intrusion dataset provided by The IEEE DataPort [34].The dataset
is chosen because it has been recently collected in 2020. Moreover, the dataset is completely
labeled, which is needed to support our proposed supervised learning models. The authors
of the dataset collected have millions of CAN bus messages from the real data of a vehicle,
and then cybersecurity attacks are launched. The features utilized in the dataset are
described in Table 2. Table 3 depicts the distribution of malicious messages based on the
type of attack and the number of normal messages sent.

Table 2. The features and descriptions of the dataset.

Features Descriptions

Timestamp Record time
Arbitration-ID CAN message identifier

DLC Data Length Code
Data CAN data field

Target Determine the type of message (normal and malicious)

Table 3. The distribution of malicious messages and the normal messages.

Message Type Count Percentage (%)

Normal 3,372,743 91.846523
Flooding 154,180 4.198629
Fuzzing 89,879 2.447585
Replay 47,593 1.296052

Spoofing 7756 0.211211
TOTAL 3,672,151 100

4.1.2. Workflow of Supervised Models

The workflow is illustrated in Figure 2. First, we merged the malicious and benign
messages into a single dataset. The data were then cleaned and preprocessed, including
oversampling for data balancing. Then, a variety of ML classification models were utilized.
Finally, the classification models were evaluated by using well-known evaluation metrics.



Sensors 2022, 22, 9195 6 of 15

Figure 2. The overview of the workflow with the supervised models.

4.1.3. Environment Tools

The development environment for this scheme was a Jupyter Notebook. This is one
of the applications offered by Anaconda. The scheme was implemented using the Python
programming language. Python was chosen because of its effectiveness, scalability, and
stability; it also offers a variety of evaluation metrics, which were useful for this work.

4.1.4. Data Cleaning

Since the raw dataset has not processed, several methods were used, such as cleaning,
removing duplicates, and removing null values. The mean, median method was used for
filling null values.

4.1.5. Data Preprocessing

Data mining utilizes this technique to turn unstructured data into an understandable
format. In the real world, data are frequently incomplete and mismatched. There are many
different approaches to preprocessing the data that can be used. During the preprocessing
phase of the data, label encoding was utilized. Label encoding is the process of assigning
appropriate integer values to each element of a dataset. This procedure involves preparing
the data so they can be used by models. Specifically, the data are separated into training
and test sets. With this method, 80% of the data were used as the training set and 20% as
the test set. We utilized oversampling. Oversampling can help fix the class unbalance issue
of data. Attack samples usually make up a considerably smaller percentage compared
to normal samples for network data obtained from the real world, so real-life scenarios
yield low detection rates and biased models. Using resampling methods such as synthetic
minority oversampling techniques (SMOTE) and random sampling, on the other hand,
can solve the problems of class unbalance by creating minority classes in some new cases
and balancing the dataset [35]. Increasing the classification accuracy of the models is
the primary goal of using balanced data for model training to improve performance [36].
In [37,38], oversampling was introduced into IDS. Oversampling is a useful technique for
enhancing the performance of a classifier [39].



Sensors 2022, 22, 9195 7 of 15

4.1.6. Classification Models

Using the dataset, eight effective classifiers were utilized to predict malicious and
normal messages. We used the most popular single ML models: Logistic Regression (LR),
Gaussian Naive Bayes (GaussianNB), k-NN, RF, Gradient Boosting, AdaBoost, DT, and
XGBoost. We used timestamp, arbitration-ID, DLC, and data as inputs; and the target of
the output was to predict malicious and normal messages, where 0 represents normal and
1 represents malicious.

4.2. Ensemble Classifiers’ Learning

We proposed an effective intrusion detection system that is based on machine learning
and uses classification-algorithm-based ensemble classifiers to improve the IDS detection
ability. We choose three ensemble methods, stacking, bagging, and voting, because predic-
tions are weighted according to the significance of the single classifiers and combined to
generate the sum of the weighted probabilities. Vehicle networks receive a significant boost
in the protection of their safety with ML classification. The performance demonstrated
by single-model learning is considerably inferior to that of ensemble learning. Ensemble
learning strategies’ superior performance compared to the single learning results. The
combination of multiple learning mechanisms, which have a varied range of capabilities,
improves prediction reliability while lowering classification errors. Ensemble learning is
more effective at improving the classification accuracy of the entire system. We used the
following ensemble methods.

Stacking ensemble learning is a common way to combine the results of multiple basic
classifiers through a meta-model. It attempts to improve the ensemble’s performance
by fixing errors. The main idea is to apply a different classifier to fix the weaknesses in
the prior classifiers [40]. Stacking consists of two phases. In the first phase, there are
eight-model base learners (Gradient Boosting, GaussianNB, k-NN, LR, RF, AdaBoost, DT,
and the XGBoost classifier). The second phase consists of a meta-learner with one model
(Logistic Regression). Stacking uses these two phases to identify how to efficiently combine
the single models in the base learners with the meta-learner.

A voting classifier is a model that can select the most desirable option from its ML
models using a voting mechanism. The types of voting are soft and hard voting. We
used soft voting because it gives the highest weights to votes with the most confidence,
considering how important each classifier is in the final decision [41]. After aggregating the
results of each classifier, voting is utilized to predict the final result based on the maximum
vote majority. We used eight supervised models and let the voting ensemble predict the
final one.

Bagging has bags of similar or dissimilar types of base classifiers. The classifier helps
to minimize the variance of the base classifier to increase the performance. It essentially
aims to improve the precision and stability of supervised models [42,43]. The purpose
of the ensembles classifiers is to improve the performance of individual ML models. We
used the bagging classifier with the Decision Tree model to minimize variation and prevent
overfitting. Figure 3 shows our proposed IDS scheme development and evaluation steps.



Sensors 2022, 22, 9195 8 of 15

Figure 3. Our proposed IDS scheme development and evaluation steps.

Workflow of Ensemble Classifiers

We used the supervised models’ preprocessed dataset (Section 4.1). As seen in Figure 4,
we also implemented three ensemble classifiers: voting, bagging, and stacking. Accuracy
can be improved through implementing processes that enable the working together of
multiple ML algorithms on a single ensemble classifier prediction. The single-ensemble-
platform integration of a diversified set of the classifiers used in (Section 4.1) can help
enhance the system’s overall classification accuracy.

Figure 4. The overview of workflow of ensemble classifiers.



Sensors 2022, 22, 9195 9 of 15

5. Results
5.1. Metrics for Evaluation

To evaluate our scheme, we used the evaluation metrics of accuracy, recall, precision,
receiver operator characteristic (ROC), and F1-score, as defined below in terms of true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN).

Accuracy is defined as the ratio of correctly predicted samples to total samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is defined as the ratio of correctly identified positive samples (TP) over the
total number of accurately and erroneously classified positive samples.

Precision =
TP

TP + FP
(2)

Recall is defined as the ratio of the number of positively identified samples (TP) to the
total number of samples predicted to be positive.

Recall =
TP

TP + FN
(3)

F1-score: The range of the F-1 score, which enables the computing of precision and
the recall harmonic mean, is usually between 1.0 and 0.0. A higher value of the F-1 score
indicates a higher degree of perfectness in precision and recall.

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

Receiver Operator Characteristic: ROC AUC is one of the most important indicators. It
shows where to attack, and normal-scenario classifications were made more accurately
when the proposed model was used. A high ROC value indicates an effective classification
model. Specificity (true positive rate, or TPR) and sensitivity (true negative rate, or TNR)
are also taken into account; sensitivity is equal to recall.

Speci f icity =
TN

FP + TN
(5)

5.2. Results and Discussion

We aimed to create a balanced dataset in order to avoid any potential bias issues
that could affect the accuracy of the classification models. We oversampled the dataset to
have an equal number of malicious and benign messages. We performed tuning for the
models. Model tuning is responsible for improving the performance of a ML algorithm.
Hyperparameter tuning involves special values or weights that affect the learning process
of an algorithm in order to improve prediction accuracy. We used the random search
for the optimal set of hyperparameters. The hyperparameters of the models that were
employed are shown in Table 4. Each model was evaluated and assessed based on accuracy,
precision, recall, F1-score, and ROC. The proposed solution aims to build a more effective
IDS framework by using well-tuned and balanced supervised ML models.



Sensors 2022, 22, 9195 10 of 15

Table 4. Hyperparameter tunings for the supervised models.

Algorithm Hyperparameter

RF Estimators = 20
DT Criterion = ’entropy’, Splitter = ’best’

KNN Metric = ’minkowski’, Weights = ’uniform’
Gradient Boosting Eestimators = 20, Maximum Depth = 3

Ada Boost Estimators = 1000

As shown in Table 5, the RF and DT models had the highest accuracy of 98.3%,
followed by the XGBoost model, which had an accuracy of 97.0%. The GaussianNB and
LR models were the least accurate, at 57.3% and 56.8%, respectively. KNN, AdaBoost,
and Gradient Boost provided good accuracy: 93.4%, 93.3% and 82.6%, respectively. After
applying correlation feature selection, we found that the majority of input features had a low
correlation with the target variable. The Logistic Regression model achieved low accuracy.
On the other hand, the Random Forest model achieved high accuracy because it has its
own feature selection. Figure 5 shows the ROC results of the developed supervised models.

Table 5. Evaluation results for the supervised models.

Models Accuracy Precision Recall F1-Score ROC

RF 0.983 0.979 0.988 0.984 0.996
DT 0.983 0.987 0.988 0.983 0.983

XGBoost 0.970 0.980 0.960 0.970 0.998
GaussianNB 0.573 0.573 0.574 0.573 0.644

KNN 0.934 0.926 0.944 0.935 0.976
LR 0.568 0.588 0.458 0.515 0.598

Gradient Boosting 0.826 0.756 0.964 0.847 0.911
Adaboost 0.933 0.941 0.924 0.932 0.986

Figure 5. The ROC results for supervised models.

The main aim of this research was to design an effective machine learning-based
IDS scheme for binary classification that utilizes eight supervised ML models, along with



Sensors 2022, 22, 9195 11 of 15

ensemble classifiers. The developed supervised ML models were Gradient Boosting,
GaussianNB, k-NN, LR, RF, AdaBoost, DT, and XGBoost. These models were fine-tuned
and data-balanced. The most accurate models were the Random Forest, Decision Tree, and
Xtreme Gradient Boosting Classifier. The ensemble learning strategy is superior because
it allows learning mechanisms with varying capabilities to support each other. Table 6
shows a summary of the quantitative performances of the three ensemble classifier models.
These were stacking, bagging, and voting classifiers. Compared to the single models,
the proposed ensemble classifier models improved the performance. Stacking showed
effective performance through scores of 0.984 for accuracy, 0.980 for precision, 0.989 for
recall, and 0.984 for F1. Stacking is a two-stage procedure. In the first stage, it has eight
model-based learners (Gradient Boosting, GaussianNB, k-NN, LR, RF, AdaBoost, DT, and
the XGBoost classifier). The second stage is a meta-learner with one model (Logistic
Regression). Stacking utilizes these two stages to learn and discover how to best combine
the single models in the base learners with the meta learners. When compared to bagging,
stacking showed high scores for precision, recall, and ROC. When compared to voting,
stacking showed a high score for recall. The ROC curve was plotted, and the area under the
curve (AUC) was calculated to evaluate the intrusion detection performance. The ROC is a
graph that compares the true positive rate to the false positive rate at varying thresholds
and is used to illustrate a binary classifier’s ability to differentiate between two classes
(normal and malicious messages). Figure 6 depicts a high ROC value, which indicates that
the ensemble classifiers are effective at solving the CAN bus intrusion detection problem.

Table 6. Evaluation results for the ensemble classifiers.

Models Accuracy Precision Recall F1-Score ROC

Bagging 0.984 0.979 0.988 0.984 0.995
Stacking 0.984 0.980 0.989 0.984 0.999
Voting 0.984 0.980 0.988 0.984 0.999

Figure 6. The ROC results for the ensemble classifier models.

Figure 7 illustrates the confusion metrics of the three ensemble learning models. In the
proposed system, the confusion metrics of TP, FP, TN, and FN are important to evaluate
and classify CAN messages as normal or attack messages.



Sensors 2022, 22, 9195 12 of 15

Figure 7. (a) The confusion matrix of the stacking. (b) The confusion matrix of the voting. (c) The
confusion matrix of the bagging.

As seen in Figure 8, compared to the eight supervised models, the three ensemble
learning strategies performed better. In terms of the five metrics, the Gaussian Naive
Bayes and Logistic Regression models did not achieve acceptable results in the supervised
models or ensemble learning. However, stacking outperformed both ensemble learning
and supervised models.

Figure 8. The performance of ensemble classifiers compared to supervised models.

The stacking and voting methods’ run-times were in the tens of seconds; however,
it was well worth it in order to achieve better accuracy. Stacking is a method that needs



Sensors 2022, 22, 9195 13 of 15

two different training phases, consisting of nine training processes, eight base classifiers,
and a final classifier on the meta-learner. Voting used the eight supervised models to
predict the result. However, bagging took less time, since it used the Decision Tree model.
Consequently, time performance is dependent on computing power.

Table 7 displays the proposed method compared to recently proposed, promising
approaches in [24–26]. In terms of evaluation metrics for the same dataset, the performance
of our model is encouraging. Consequently, the experimental results show that the pro-
posed IDS can successfully detect benign and malicious network traffic data and identify
attacks on in-vehicle networks. IDS-based ensemble methods enhance the performance of
the detection of malicious network traffic. The ensemble classifiers were developed using
the bagging, voting, and stacking models. Evaluation results showed that the proposed
ensemble models achieved the highest binary classification performance.

Table 7. Our proposed method compared to recently proposed promising approaches that used the
same dataset.

Citation Year Models Accuracy Precision Recall F1-Score

[24] 2020

Random Forest 0.97 0.90 0.99 0.94
Bagging 0.97 0.90 0.99 0.94

Naïve Bayes 0.96 0.90 0.94 0.92
Ada Boosting 0.81 0.41 0.53 0.46

Logistic Regression 0.96 0.79 0.76 0.77
Neural network 0.96 0.78 0.78 0.78

[25] 2021
DCNN 0.9537 0.9671 0.9262 0.9451
SVM 0.8448 0.9571 0.6545 0.7517

[26] 2021

Decision Tree 0.9532 0.9463 0.9558 0.9608
KNN 0.9248 0.9141 0.9390 0.9215

Random Forest 0.9448 0.9448 0.9245 0.9216
SVM 0.9440 0.8854 0.9542 0.9512

Ours 2022
Voting classifier 0.9845 0.9804 0.9887 0.9846

Stacking 0.9847 0.9804 0.9891 0.9847
Bagging 0.9840 0.9793 0.9889 0.9841

6. Conclusions

In this paper, we proposed an ML-based IDS scheme for detecting intrusion attacks on
the CAN bus with the goal of improving attack detection accuracy. We developed and tested
the results of eight supervised machine learning models—Random Forest, Decision Tree,
Gaussian Naïve Bayes, Logistic Regression, AdaBoost, K-Nearest Neighbor, and Gradient
Boosting—in identifying normal and malicious CAN traffic messages. The results of these
models showed that the Random Forest, Decision Tree, and Xtreme Gradient Boosting
classifiers are the most accurate. Then, we combined all supervised models using three
ensemble methods: voting, stacking, and bagging. The advantage of the ensemble learning
strategy is that it enables learning mechanisms with different capabilities to support one
another for this classification task. The ensemble classifiers outperformed the supervised
classifiers and improved the effectiveness of the supervised ML models. However, the
ensemble classifiers required longer run-times, particularly Stacking and voting—in the
tens of seconds. Compared to bagging, Stacking showed higher precision, recall, and ROC
scores. Compared to voting, Stacking showed a higher recall score. The stacking model had
an accuracy score of 0.984, a precision score of 0.980, a recall score of 0.989, an F1-score of
0.984, and an ROC score of 0.99. These are noticeable improvements over the other models.
In addition, stacking outperformed the models in [24–26] in terms of accuracy, precision,
and F1-score, as shown in Table 7. In our future work, we will develop a multi-classification
scheme to detect and classify attacks on the CAN bus system.



Sensors 2022, 22, 9195 14 of 15

Author Contributions: Conceptualization, E.A. and I.M.; methodology, E.A.; software, E.A.; vali-
dation, E.A. and I.M.; formal analysis, E.A. and I.M.; investigation, E.A. and I.M.; writing—original
draft preparation, E.A.; writing—review and editing, I.M.; visualization, E.A.; supervision, I.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available upon request.

Acknowledgments: This work is part of the Smart Drive initiative at Tecore Networks Lab at Florida
Atlantic University.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Coppola, R.; Morisio, M. Connected car: Technologies, issues, future trends. ACM Comput. Surv. CSUR 2016, 49, 1–36. [CrossRef]
2. Lu, Z.; Qu, G.; Liu, Z. A survey on recent advances in vehicular network security, trust, and privacy. IEEE Trans. Intell. Transp.

Syst. 2018, 20, 760–776. [CrossRef]
3. Hasrouny, H.; Samhat, A.E.; Bassil, C.; Laouiti, A. VANet security challenges and solutions: A survey. Veh. Commun. 2017, 7, 7–20.

[CrossRef]
4. Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of internet of vehicles. China Commun. 2014, 11, 1–15. [CrossRef]
5. Pan, L.; Zheng, X.; Chen, H.; Luan, T.; Bootwala, H.; Batten, L. Cyber security attacks to modern vehicular systems. J. Inf. Secur.

Appl. 2017, 36, 90–100. [CrossRef]
6. Avatefipour, O.; Malik, H. State-of-the-art survey on in-vehicle network communication (CAN-Bus) security and vulnerabilities.

arXiv 2018, arXiv:1802.01725.
7. Aliwa, E.; Rana, O.; Perera, C.; Burnap, P. Cyberattacks and countermeasures for in-vehicle networks. ACM Comput. Surv. CSUR

2021, 54, 1–37. [CrossRef]
8. Wang, Q.; Qian, Y.; Lu, Z.; Shoukry, Y.; Qu, G. A delay based plug-in-monitor for intrusion detection in controller area

network. In Proceedings of the 2018 Asian Hardware Oriented Security and Trust Symposium (AsianHOST), Hong Kong, China,
17–18 December 2018; pp. 86–91.

9. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of can bus security challenges. Sensors 2020, 20, 2364. [CrossRef]
10. Miller, C.; Valasek, C. Remote exploitation of an unaltered passenger vehicle. Black Hat USA 2015, 2015.
11. Seo, E.; Song, H.M.; Kim, H.K. GIDS: GAN based intrusion detection system for in-vehicle network. In Proceedings of the 2018

16th Annual Conference on Privacy, Security and Trust (PST), Belfast, Ireland, 28–30 August 2018; pp. 1–6.
12. Injadat, M.; Moubayed, A.; Nassif, A.B.; Shami, A. Machine learning towards intelligent systems: applications, challenges, and

opportunities. Artif. Intell. Rev. 2021, 54, 3299–3348. [CrossRef]
13. Tong, W.; Hussain, A.; Bo, W.X.; Maharjan, S. Artificial intelligence for vehicle-to-everything: A survey. IEEE Access 2019,

7, 10823–10843. [CrossRef]
14. Avatefipour, O.; Al-Sumaiti, A.S.; El-Sherbeeny, A.M.; Awwad, E.M.; Elmeligy, M.A.; Mohamed, M.A.; Malik, H. An intelligent

secured framework for cyberattack detection in electric vehicles’ CAN bus using machine learning. IEEE Access 2019, 7,
127580–127592. [CrossRef]

15. Wu, W.; Li, R.; Xie, G.; An, J.; Bai, Y.; Zhou, J.; Li, K. A survey of intrusion detection for in-vehicle networks. IEEE Trans. Intell.
Transp. Syst. 2019, 21, 919–933. [CrossRef]

16. Lokman, S.F.; Othman, A.T.; Abu-Bakar, M.H. Intrusion detection system for automotive Controller Area Network (CAN) bus
system: a review. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 1–17. [CrossRef]

17. Alhowaide, A.; Alsmadi, I.; Tang, J. Ensemble detection model for IoT IDS. Internet Things 2021, 16, 100435. [CrossRef]
18. Salih, A.A.; Abdulazeez, A.M. Evaluation of classification algorithms for intrusion detection system: A review. J. Soft Comput.

Data Min. 2021, 2, 31–40. [CrossRef]
19. Pham, N.T.; Foo, E.; Suriadi, S.; Jeffrey, H.; Lahza, H.F.M. Improving performance of intrusion detection system using ensemble

methods and feature selection. In Proceedings of the Australasian Computer Science Week Multiconference, Brisbane, QLD,
Australia, 29 January–2 February 2018; pp. 1–6.

20. Checkoway, S.; McCoy, D.; Kantor, B.; Anderson, D.; Shacham, H.; Savage, S.; Koscher, K.; Czeskis, A.; Roesner, F.; Kohno, T.
Comprehensive experimental analyses of automotive attack surfaces. In Proceedings of the 20th USENIX Security Symposium
(USENIX Security 11), San Francisco, CA, USA, 30 November 2011.

21. Bozdal, M.; Samie, M.; Jennions, I. A survey on can bus protocol: Attacks, challenges, and potential solutions. In Proceedings
of the 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE), Southend, UK,
19–20 August 2018; pp. 201–205.

http://doi.org/10.1145/2971482
http://dx.doi.org/10.1109/TITS.2018.2818888
http://dx.doi.org/10.1016/j.vehcom.2017.01.002
http://dx.doi.org/10.1109/CC.2014.6969789
http://dx.doi.org/10.1016/j.jisa.2017.08.005
http://dx.doi.org/10.1145/3431233
http://dx.doi.org/10.3390/s20082364
http://dx.doi.org/10.1007/s10462-020-09948-w
http://dx.doi.org/10.1109/ACCESS.2019.2891073
http://dx.doi.org/10.1109/ACCESS.2019.2937576
http://dx.doi.org/10.1109/TITS.2019.2908074
http://dx.doi.org/10.1186/s13638-019-1484-3
http://dx.doi.org/10.1016/j.iot.2021.100435
http://dx.doi.org/10.30880/jscdm.2021.02.01.004


Sensors 2022, 22, 9195 15 of 15

22. Alshammari, A.; Zohdy, M.A.; Debnath, D.; Corser, G. Classification approach for intrusion detection in vehicle systems. Wirel.
Eng. Technol. 2018, 9, 79–94. [CrossRef]

23. Gundu, R.; Maleki, M. Securing CAN Bus in Connected and Autonomous Vehicles Using Supervised Machine Learning
Approaches. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN,
USA, 19–21 May 2022; pp. 042–046.

24. Kalkan, S.C.; Sahingoz, O.K. In-vehicle intrusion detection system on controller area network with machine learning models. In
Proceedings of the 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT),
Kharagpur, India, 1–3 July 2020; pp. 1–6.

25. Song, H.M.; Kim, H.K. Self-supervised anomaly detection for in-vehicle network using noised pseudo normal data. IEEE Trans.
Veh. Technol. 2021, 70, 1098–1108. [CrossRef]

26. Mehedi, S.T.; Anwar, A.; Rahman, Z.; Ahmed, K. Deep transfer learning based intrusion detection system for electric vehicular
networks. Sensors 2021, 21, 4736. [CrossRef]

27. Bosch, R. CAN Specification Version 2.0; Rober Bousch GmbH, Postfach: Postfach, Germany, 1991; Volume 300240, p. 72.
28. Johansson, K.H.; Törngren, M.; Nielsen, L. Vehicle applications of controller area network. In Handbook of Networked and Embedded

Control Systems; Springer: Berlin/Heidelberg, Germany, 2005; pp. 741–765.
29. Takefuji, Y. Connected vehicle security vulnerabilities [commentary]. IEEE Technol. Soc. Mag. 2018, 37, 15–18. [CrossRef]
30. Silic, M.; Back, A. Information security: Critical review and future directions for research. Inf. Manag. Comput. Secur. 2014, 22,

279–308. [CrossRef]
31. Nowdehi, N.; Lautenbach, A.; Olovsson, T. In-vehicle CAN message authentication: An evaluation based on industrial criteria.

In Proceedings of the 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, 24–27 September 2017;
pp. 1–7.

32. Zhang, H.; Meng, X.; Zhang, X.; Liu, Z. CANsec: A practical in-vehicle controller area network security evaluation tool. Sensors
2020, 20, 4900. [CrossRef] [PubMed]

33. Deng, J.; Yu, L.; Fu, Y.; Hambolu, O.; Brooks, R.R. Security and data privacy of modern automobiles. In Data Analytics for
Intelligent Transportation Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 131–163.

34. Kang, H.; Kwak, B.; Lee, Y.; Lee, H.; Lee, H.; Kim, H. Car Hacking: Attack and Defense Challenge 2020 Dataset. In IEEE Dataport;
IEEE: Piscataway, NJ, USA, 2021.

35. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: progress and challenges, marking
the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]

36. Ebenuwa, S.H.; Sharif, M.S.; Alazab, M.; Al-Nemrat, A. Variance ranking attributes selection techniques for binary classification
problem in imbalance data. IEEE Access 2019, 7, 24649–24666. [CrossRef]

37. Alfrhan, A.A.; Alhusain, R.H.; Khan, R.U. SMOTE: Class imbalance problem in intrusion detection system. In Proceedings of the
2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 9–10 September
2020; pp. 1–5.

38. Tan, X.; Su, S.; Huang, Z.; Guo, X.; Zuo, Z.; Sun, X.; Li, L. Wireless sensor networks intrusion detection based on SMOTE and the
random forest algorithm. Sensors 2019, 19, 203. [CrossRef] [PubMed]

39. Kaur, H.; Pannu, H.S.; Malhi, A.K. A systematic review on imbalanced data challenges in machine learning: Applications and
solutions. ACM Comput. Surv. (CSUR) 2019, 52, 1–36. [CrossRef]

40. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
41. Dietterich, T.G. Ensemble learning. Handb. Brain Theory Neural Netw. 2002, 2, 110–125.
42. Quinlan, J.R. Bagging, boosting, and C4. 5. In Proceedings of the AAAI/IAAI, Portland, OR, USA, 4–8 August 1996; Volume 1,

pp. 725–730.
43. Hothorn, T.; Lausen, B. Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognit. 2003, 36, 1303–1309.

[CrossRef]

http://dx.doi.org/10.4236/wet.2018.94007
http://dx.doi.org/10.1109/TVT.2021.3051026
http://dx.doi.org/10.3390/s21144736
http://dx.doi.org/10.1109/MTS.2018.2795093
http://dx.doi.org/10.1108/IMCS-05-2013-0041
http://dx.doi.org/10.3390/s20174900
http://www.ncbi.nlm.nih.gov/pubmed/32872600
http://dx.doi.org/10.1613/jair.1.11192
http://dx.doi.org/10.1109/ACCESS.2019.2899578
http://dx.doi.org/10.3390/s19010203
http://www.ncbi.nlm.nih.gov/pubmed/30626020
http://dx.doi.org/10.1145/3343440
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/S0031-3203(02)00169-3

	Introduction
	Related Work
	Background and Attack Types
	Overview of CAN Bus
	CAN Bus Attacks 

	Materials and Methods
	Supervised ML
	Dataset Description
	Workflow of Supervised Models
	Environment Tools 
	Data Cleaning 
	Data Preprocessing
	Classification Models 

	Ensemble Classifiers' Learning 

	Results
	Metrics for Evaluation
	Results and Discussion

	Conclusions
	References

