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Abstract: The transmission of satellite payload data is critical for services provided by aerospace
ground networks. To ensure the correctness of data transmission, the TCP data transmission protocol
has been used typically. However, the standard TCP congestion control algorithm is incompatible with
networks with a long time delay and a large bandwidth, resulting in low throughput and resource
waste. This article compares recent studies on TCP-based acceleration algorithms and proposes an
acceleration algorithm based on the learning of historical characteristics, such as end-to-end delay and
its variation characteristics, the arrival interval of feedback packets (ACK) at the receiving end and its
variation characteristics, the degree of data packet reversal and its variation characteristics, delay
and jitter caused by the security equipment’s deep data inspection, and random packet loss caused
by various factors. The proposed algorithm is evaluated and compared with the TCP congestion
control algorithms under both laboratory and ground network conditions. Experimental results
indicate that the proposed acceleration algorithm is efficient and can significantly increase throughput.
Therefore, it has a promising application prospect in high-speed data transmission in aerospace-
ground service networks.

Keywords: network delay; packet loss rate; aerospace-ground service network; BoostTCP acceleration
algorithm; bottleneck bandwidth and round-trip propagation time congestion control algorithm;
cubic congestion control algorithm

1. Introduction

The distance between the sending and receiving ends of an aerospace-ground service
network can exceed several thousand kilometers. Therefore, data transmission between
the sending and receiving ends represents ultra-long-distance optical fiber transmission
through a special line. It should be noted that without using a relay, the maximum effective
transmission distance of an optical fiber is tens of kilometers, as optical signals attenuate to
a certain extent to meet transmission bandwidth requirements. Accordingly, relay stations
must be added to the transmission route to compensate for optical signal attenuation to
realize ultra-long-distance transmission. However, the bit error rate (BER) increases with
the number of used relay stations, which can result in packet loss and cause a packet error
during data transmission. Namely, in ultra-long-distance optical fiber transmission over a
special line, packet loss and an error in data transmission are caused by the attenuation of
optical signals and BER, not by congestion on a physical link. However, in the standard
TCP protocol, packet loss is treated as link congestion, thus reducing the transmission
rate. Furthermore, this processing mechanism contradicts the reality of ultra-long-distance
optical fiber transmission through a dedicated line, which results in bandwidth waste.
The TCP protocol ensures data flow reliability using sequence confirmation and packet
retransmission mechanisms. In addition, it achieves excellent adaptability under various
network conditions and, thus, has significantly contributed to the rapid development and
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popularization of the Internet. However, the TCP protocol was designed more than two
decades ago; consequently, it is unsuitable to model high-bandwidth, long-delay services
in current ground networks. When packets are lost or delayed along the network path,
the throughput of a TCP connection is significantly reduced. As a result, bandwidth is fre-
quently underutilized, causing idle and unexploited bandwidth. Therefore, using the TCP
will significantly increase long-distance data transmission and slow application response
time, and it can even cause failure in data transmission. The literature [1,2] proposed
some quantum logic gates and proved the success of the operations in implementing these
gates. The literature [3–6] proposed a multi-qubit system consisting of two trapped ions
coupled in a laser field. These devices may provide the next-generation design for quantum
computers. To adapt to the current network characteristics of wide bandwidth and long
delay, it is necessary to modify the TCP design to increase the transmission rate.

This article discusses the application of lightweight learning-based congestion control.
The term “lightweight” refers to a type of congestion control algorithm that does not
include deep learning, such as heuristic algorithms, utility functions, or gradient descent.
A lightweight algorithm requires short training time and has a low cost, which makes it
“light.” In addition, it accelerates TCP transmission and improves TCP connection stability
by improving the standard TCP protocol and its handling of congestion, and the algorithm
can detect and compensate for packet loss accurately and in a timely manner.

2. Materials and Methods

The TCP protocol was developed based on the RFC793 standard document published
by the Internet Engineering Task Force (IETF) in 1981. The early development of the TCP
protocol considered the effects of a transmission environment on the transmission rate,
and both sender and receiver employed a sliding window strategy to control the data flow
dynamically. However, as network services became more complex, it has been found that a
simple flow control considers only the receiver’s accepting capacity. Nevertheless, from a
macro perspective, the entire network contains a large number of routers and other network
devices, and their storage and forwarding functions can affect the network’s congestion.
Still, relying only on the receiver’s information cannot mitigate the effect of congestion
by other network devices. This shortcoming caused a TCP collapse in 1986, resulting in a
reduced link throughput between the LBL and UC Berkeley from 32 kbps to 40 kbps. Since
then, researchers have recognized the critical nature of congestion control protocols, and
pertinent research results have rapidly emerged [7,8].

The first congestion control algorithm was proposed by Van Jacobson et al. [9,10],
which introduced mechanisms, such as slow start and congestion avoidance, for the first
time. However, this type of algorithm immediately executes the slow-start strategy after
judging the link as congested. This is because the link frequently reduces the size of the
windows sent, impacting bandwidth utilization. In [11,12], a TCP-Reno algorithm was
proposed to solve the bandwidth utilization problem by adding a fast recovery mechanism
based on TCP Tahoe. Since the Reno algorithm can ensure network stability but not optimal
resource utilization [13], in [14], a BIC algorithm, which consists of the binary searching
and linear growth stages, was proposed. The Reno algorithm was modified in [15], and a
modified TCP-Reno algorithm was developed. Further, in [16], the TCP-BIC algorithm was
enhanced, and the TCP cubic algorithm, which improves the TCP-BIC algorithm’s window
adjustment method, was developed. The TCP cubic algorithm is a default congestion
control algorithm of the current Linux and Android kernels.

The conventional TCP protocol is incapable of correctly distinguishing the causes of
packet loss, and it performs only indiscriminate window-reduction operations, thus limiting
future network transmission efficiency enhancements [17–19]. In [20], a performance-
based congestion control (PCC) protocol and a rate control mechanism were proposed to
address the two mentioned issues. The proposed algorithm could increase the network’s
transmission bandwidth, but the convergence rate was extremely slow. However, research
on the PCC algorithm provided a large amount of information for subsequent analyses.
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Further, Google proposed an innovative congestion control scheme in 2016 named the
dubbed BBR (Bottleneck Bandwidth and Round-trip propagation time) [21,22]. Certain
concepts in the BBR are consistent with the PCC algorithm. Nonetheless, in [21,22], it was
demonstrated that the BBR algorithm performed excellently in environments with a high
bandwidth, long delay, and high packet loss rate.

Unlike traditional congestion control algorithms, the BBR algorithm uses the bandwidth-
delay product (BDP) [12] as an identification indicator rather than the packet loss or
long transmission delay to identify network congestion. When the total number of data
packets in the network exceeds the BDP value, the BBR algorithm considers the network
congested. Therefore, the BBR algorithm can be referred to as a congestion-based control
algorithm. It should be noted that it is impossible for network data flow to achieve both an
enormous link bandwidth and a very small network delay simultaneously. Accordingly,
the BBR algorithm detects network capacity regularly, measures maximum link bandwidth
and minimum network delay alternately, and then uses their product to determine the
congestion window size. The congestion window can be used to characterize network
capacity, providing a more accurate identification of congestion. Because of the BBR
algorithm’s unique mechanism for measuring congestion window size, it neither increases
the number of congestion windows indefinitely like ordinary congestion control algorithms
nor uses the buffer of the switch node, thus avoiding the emergence of buffer bloat (buffer
overflow) [13], which shortens the transmission delay significantly. Another advantage of
the BBR algorithm is that it measures network capacity actively, adjusting the congestion
window. In addition, the autonomous adjustment mechanism enables the BBR algorithm to
control the data flow sending rate independently. In contrast, ordinary congestion control
algorithms only calculate the congestion window, whereas the TCP protocol completely
determines the data flow sending rate. As a result, when the data flow sending rate is close
to the link’s bottleneck bandwidth, there is data packet queuing or data packet loss due to
the rapid increase in the sending rate.

Initially, the BBR drew great attention from researchers and was considered a paradigm-
shifting achievement in the field of congestion control. However, with research progress,
it has been discovered that the BBR protocol has several shortcomings, including a slow
convergence speed in the bandwidth detection stage, a low sensitivity, and a lack of consid-
eration for delay and jitter.

3. Transmission Acceleration Using BoostTCP

This paper proposes the BoostTCP, which represents a learning-based TCP trans-
mission acceleration method based on transmission history learning. By improving the
judgment and handling of congestion, the BoostTCP can judge and recover packet loss
more accurately and rapidly, thus accelerating TCP transmission and increasing TCP
connection stability.

3.1. Improved Congestion Judging and Handling Mechanism

Many congestion estimation and recovery strategies were developed for standard
TCP over the last two decades to meet network requirements under different conditions.
The fundamental premise was that a packet loss represented a result of congestion. How-
ever, this assumption does not hold for a transmission network with ultra-long-distance
special-line optical fiber. In such a network, packet loss is typically caused by the BER of
long-distance transmission, not by congestion-related factors. Therefore, standard TCP
can frequently enter an excessively conservative transmission state. Meanwhile, when
a network path contains deep-queue network devices, packet loss does not occur for a
long period after the congestion occurs. The standard TCP is insensitive to congestion,
resulting in excessive transmission, which not only affects network congestion but can
also cause significant packet losses. As a result, the TCP enters a lengthy recovery phase
for packet loss, resulting in transmission stagnation. All of these factors contribute to the
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poor performance of the standard TCP protocol for an ultra-long-distance optical fiber
transmission network with a special line.

Considering both packet loss and delay variation, the proposed BoostTCP algorithm
can dynamically learn the network path characteristics of each specific connection during
data transmission, including end-to-end delay and its variation characteristics, the arrival
interval of feedback packets (ACK) at the receiving end and its variation characteristics, the
degree of data packet reversal and its variation characteristics, delay and jitter caused by
the security equipment’s deep data inspection, and random packet loss caused by various
factors. These characteristics are monitored in real time and analyzed holistically to derive
precursor signals and available bandwidth that reflect congestion and packet loss along
the TCP connection network path. They also determine the degree of congestion and the
transmission rate, and show whether the congestion recovery mechanism is compatible
with the available bandwidth on the current path and can achieve accurate and timely
packet loss judgment and recovery.

Based on network characteristics, the congestion degree and available bandwidth can
be estimated accurately and in a timely manner. When congestion occurs, the transmission
is realized based on the mentioned result. The unnecessarily slow data transmission rates
caused by BER-induced packets can be avoided in an ultra-long-distance optical fiber
transmission network with a special line. Specifically, the advanced congestion judgment
and control algorithm of BoostTCP mainly uses the two following mechanisms: Prevent
excessive conservative transmission and Prevent congestion deterioration.

3.1.1. Prevent Excessive Conservative Transmission

Because the current TCP protocol stack has difficulty determining the cause of a packet
loss (caused by network congestion) and the actual bandwidth available on the connection
path following the packet loss, restoration has been typically performed to reduce the
transmission rate significantly. This mechanism results in an idle path bandwidth, which is
one of the primary reasons for TCP’s inefficient transmission performance.

The ultra-long-distance optical fiber transmission network with a special line often
has sufficient bandwidth but a relatively long delay. In such a case, both the initial sending
window and the current TCP protocol stack’s sending window increase at a relatively
conservative rate. BoostTCP begins sending data with a large initial sending window and
rapidly increases the sending window size to reach the upper limit of available bandwidth
in the shortest time.

In an ultra-long-distance optical fiber transmission network with a special line, the
BoostTCP congestion judge algorithm considers network characteristics, determining
whether packet loss results from network congestion or not. As packet loss occurs as a
result of random errors in an optical fiber network, and the transmission rate increases
and is maintained at a higher rate, the rate is adjusted instantly when real congestion
occurs. Namely, the bandwidth closest to the available bandwidth on the current path is
used to perform transmission, and a slightly lower transmission rate is used to clear the
queue on the path, which contributes to the recovery of nodes in a congested network.
Moreover, transmission behavior is maintained to be consistent with and related to the
network state. The judge algorithm eliminates idle bandwidth, resulting in a faster, more
consistent transmission rate.

3.1.2. Prevent Congestion Deterioration

Congestion may also occur in an ultra-long-distance special-line optical fiber trans-
mission network due to a large number of networks and relays. In addition, congestion
may worsen if not handled properly, causing two problems. First, the time required for
retransmission and hole filling will be extremely long due to the high packet loss rate, and
as a result, the TCP transmission window will become stuck for an extended period, and
transmission will become slower or even fail. Second, retransmission is required due to
increased packet loss; the retransmission rate increases while the effective data rate declines.
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Therefore, users will notice that although online traffic increases, the actual application rate
does not change.

BoostTCP determines the congestion degree in real time and slows it down to prevent
congestion from deterioration and reduce the number of lost packets, resulting in faster
and smoother transmissions with an effective data rate.

In summary, the BoostTCP congestion judgment algorithm is an automatic state
machine that considers various network characteristics along the transmission path. Its
function is to learn and improve congestion judgment skills intelligently in a connection-by-
connection manner. Since learning the network characteristics requires data accumulation,
and the BoostTCP algorithm allocates resources to each TCP connection, the optimal
application scenario for the BoostTCP algorithm is a long-connection scenario rather than a
high-concurrency scenario, which is satellite payload data in this article.

3.2. Fast Prediction-Based Packet Loss Judgment and Recovery Mechanism

The standard TCP protocol stack determines packet loss in two ways, based on the
number of Dup-ACKs received at the receiving end and based on the ACK timeout. When
a large number of packets are lost, the ACK timeout has been frequently used to determine
the timeout condition and initiate a retransmission. It should be noted that packet loss is
frequently sporadic in modern networks, and it is not uncommon for multiple data packets
to be lost concurrently on a connection. As a result, the standard TCP protocol frequently
relies on timeouts to retransmit data to fill gaps, resulting in a waiting state of several
seconds, which can even last up to ten seconds. As a result, the transmission may pause
for an extended period or even disconnect entirely, which can affect the standard TCP
efficiency significantly.

In addition to the two methods used by standard TCP, the BoostTCP’s packet loss
judgment mechanism uses a dynamic self-learning algorithm to predict packet loss based on
the network characteristics of the TCP connection path. The prediction algorithm considers
network characteristic factors similar to those considered by the self-learning algorithm for
BoostTCP congestion detection. The BoostTCP packet loss detection algorithm calculates a
probability of loss for each packet sent but not confirmed by the other party’s ACK. The
probability changes as the transmission process continues. When the probability reaches
a certain value, the algorithm considers the data packet lost and initiates retransmission
immediately. This mechanism significantly reduces the likelihood of the TCP transmission
relying on timeout and determining the packet loss, allowing it to fill holes faster, transmit
data more smoothly, and achieve a higher average transmission rate. This packet loss-
to-retransmission mechanism, which is faster than the standard TCP, is beneficial for
maintaining faster and smoother data transmission in ultra-long-distance special-line
optical fiber transmission networks.

Due to the untimely packet loss detection of standard TCP, its transmission efficiency
is frequently very low, and transmission quality is unstable, which is difficult to predict
and impacts user experience. BoostTCP acceleration can predict packet loss in real time
and recover the lost packets on time. The transmission is smoother and faster, significantly
improving the user experience.

3.3. Congestion Control Algorithm

The flowchart of the BoostTCP congestion control algorithm is presented in Figure 1.
It defines the smoothed throughput rate, which can reflect the actual throughput rate and
roundtrip time, and controls the growth mode of the congestion window (CWND) based
on different factors, such as the actual throughput rate and roundtrip time. The smoothed
throughput rate variation is used to determine the most suitable CWND growth mode,
which follows the principle of maximum throughput rate. As long as increasing the CWND
value improves the smoothed throughput rate, the CWND value will be continuously
increased. However, BoostTCP does not use the smoothed throughput rate to determine
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the necessary CWND reduction, and the CWND value to reduce is determined based on
packet loss.
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CWND growth can be classified into three types: exponential growth, linear growth,
and termination. The exponential growth mode assumes that the current CWND value is
one. After the first, second, and third increases, the CWND value is two, four, and eight,
and further changes follow the exponential trend. Each time the CWND value increases
linearly, it is increased by a fixed value. It should be noted that the CWND value does not
increase during the termination stage and remains constant.

The specific steps of the BoostTCP congestion control algorithm are as follows:
Step 1. In the initial state, set the smoothed throughput rate to B = 0 and the growth

mode (GM) of CWND to exponential growth;
Step 2. Every time a new data package is sent, record the sending time TS of the

package and the total amount of data FS that has been sent and has not been acknowledged
(ACKed) yet;

Step 3. When the ACK response is received, if the ACK corresponds to one or more
data packages that have been sent and there are no retransmitted data packages, the data
package in the acknowledged messages with the highest sequence number (SEQ) is selected,
and the following parameters called instant throughput rate and smoothed throughput
rate are calculated:

The instant throughput rate is calculated according to BC = FS/(T − TS), where T
denotes the current time; TS denotes the sending time of the data package with the highest
SEQ; and FS denotes the total data amount that has been sent at the time TS but has not been
subject to ACK yet. As mentioned above, TS and FS are recorded when the data package
with the highest SEQ is sent.

The smoothed throughput rate is obtained by B = (1 − α)B’ +αBC, where α denotes
a constant parameter and B’ denotes the previous smoothed throughput rate set in the
initial state or obtained in the previous calculation iteration. BoostTCP uses a first-order
exponential smoothing formula to compute the smoothed throughput rate. This is because
network delay often fluctuates constantly due to various reasons, causing the real-time
throughput rate to fluctuate accordingly. After smoothing, some high-frequency noise can
be eliminated, and the network throughput can be estimated more accurately;

Step 4. Determine the variation state of the smoothed throughput rate B and control
the CWND growth mode GM accordingly. Particularly, the two following situations
are possible:

# If B is higher than the previous smoothed throughput rate set in the initial state
or obtained in the last calculation and exceeds the set value γ, then the GM is an
exponential GM;

# If B decreases three times in a row and the total amount of the three reductions is not
less than the preset value of ∆, then judge the SRTT value: if SRTT ≤ η · RTTMIN,
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then the GM is a linear GM; otherwise, the GM is a termination GM. SRTT denotes
the smooth roundtrip time, and RTTMIN denotes the minimum roundtrip time.

Step 5. If packet loss occurs at any time, set CWND = β · CWND and the GM to a
termination GM when entering the recovery mode.

Step 6. Set GM to the exponential GM when exiting the recovery state as being recov-
ered from the congestion state and perform operations similar to the above initial state.
After exiting from the recovery mode, the smoothed throughput rate B is not cleared but per-
forms operations similar to the initial state based on the original smoothed throughput rate.

The definitions and values of the above α, β, γ and other parameters are shown in
Appendix A.

3.4. Implementation Architecture

The BoostTCP consists of several modules, as shown in Figure 2. The modules are
explained in the following:

# Learning state machine: This is an information and control hub of BoostTCP, which
accumulates knowledge about network paths and makes real-time decisions about
the transmission of specific connections, such as the rate at which data are transmitted
and the timing of data retransmission;

# Traffic monitor: This module extracts and learns the external features of each TCP
flow and records and maintains the learning state machine;

# Packet loss monitor: This module monitors packet loss and determines the most
probable cause of data loss using a learning state machine, for instance, whether the
loss is caused by simple random packet drops or network congestion;

# Congestion controller: This controller executes the core congestion control logic based
on a learning state machine;

# Exception handler: This module leverages knowledge of the learning state machines
to identify flaws in peer TCP stacks or certain devices along the data transmission path,
such as security detection devices. This module is used to detect specific characteristics
of TCP to ensure maximum acceleration. Exception handlers also contribute to the
knowledge accumulation of learning state machines;

# Window controller: This controller calculates the size of the TCP broadcast window
and balances incoming packets from the LAN and WAN sides;

# Resource manager: This module tracks and controls system resources, including mem-
ory and computing power, and dynamically balances system resource consumption
across all active TCP flows. The knowledge of learning state machines is the input to
resource management.
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3.5. Deployment Location

As an acceleration engine, BoostTCP follows the network driver interface specification
and is located between the protocol stack and the hardware network interface card (NIC).
It is fully compatible with the standard TCP protocol and does not attempt to replace
the original TCP protocol stack in the operating system. When an application continues
to interact with the TCP stack of the operating system in which it resides, BoostTCP is
completely transparent to the application. When traffic is routed through the BoostTCP
module, BoostTCP accelerates it by changing the timing of data packet transmission and
retransmission without changing the data content or TCP encapsulation format. The
position of BoostTCP in a multi-layer network architecture is presented in Figure 3.
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4. Experimental Results
4.1. Experimental Environment

The study simulated the network environment with the TC and used the Reno, BBR,
BoostTCP, and standard TCP algorithm in the simulation tests. The performance indica-
tors of throughput, fairness, and preemption were compared for scenarios with varying
bandwidth, delay, and random packet loss rate. The experiment was conducted on five
Inspur NF5280M5 servers equipped with two Intel Xeon-GoXD 6136 (3.0 GHz/12-core)
processors and 64 GB memory. The simulation network structure is presented in Figure 4.
In the presented structure, Server 1 acted as a sender, employing the Cubic and Reno con-
gestion control algorithms; Server 2 acted as a sender, employing the BoostTCP algorithm;
Server 3 acted as a sender, employing the BBR algorithm; Server 4 acted as a receiver;
and, lastly, Server 5 acted as a simulated controller for the designed network environment.
The two network ports on Server 5 were connected to the switch and Server 4, forming a
network bridge. TC managed the delay and packet loss and simulated the environment of
a wide-area network.
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The experimental topology was an end-to-end configuration with 1 Gbps network
bandwidth. Multi data flows were sent from the sender to the receiver at the specified
network delay and packet loss rate, with a default data packet size of 500 MB.

Four well-known congestion control methods were used in the experiment: three
lightweight learning-based methods (Reno, BBR, and BoostTCP) and the conventional
Cubic algorithm as a contrast method. To simulate the characteristics of a long-distance,
long-delay, and low-packet-loss-rate data transmission in a real aerospace business network,
the network delay in the experiment was set to 5 ms, 10 ms, 20 ms, 30 ms, 40 ms, 50 ms,
80 ms, and 100 ms, and five different random packet loss rates were used: zero, 0.01%,
0.05%, 0.1%, and 0.5%.

4.2. Results Analysis

To analyze the performance of the proposed method, it was tested and compared with
the other algorithms regarding throughput, fairness, and preemptibility.

4.2.1. Average Throughput

The average throughput curves of the four congestion control algorithms at a band-
width of 1 Gbps and network delays of 20 ms, 30 ms, 50 ms, and 80 ms are presented in
Figures 5–8, respectively. The throughput was tested three times and averaged at each
packet loss rate. The average throughput rate of BoostTCP was always the highest among
all algorithms, and its predominant position became more apparent with packet loss,
achieving a 26–41% enhancement over the BBR. The average throughput rate of the Reno
algorithm was always the lowest among all algorithms. The average throughput rate of the
Cubic algorithm decreased the most rapidly with the packet loss rate among all algorithms.
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Figure 7. The throughput curves of the four congestion control algorithms as a function of the packet
loss rate at a network delay of 50 ms.

The average throughput results of the four congestion control algorithms at a packet
loss rate of 0.05% and a bandwidth of 1 Gbps is shown in Figure 9. The results presented in
Figure 9 were averaged for each time delay. The average throughput rate of the BoostTCP
algorithm was always the highest among all algorithms, and its advantage over the other
algorithms became even more obvious at a longer time delay. Compared to the BBR
algorithm, the average throughput of the BoostTCP algorithm was nearly identical in the
early stages and increased to 2.3 times that of the BBR algorithm at a network delay of
100 ms. Among all algorithms, the Reno algorithm had the lowest average throughput. The
average throughput rates of the Cubic and BBR algorithms decreased more rapidly than
that of the BoostTCP algorithm with a time delay.
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According to the experimental results, BoostTCP had the highest average throughput
under most conditions among all algorithms. This was because BoostTCP’s bandwidth
detection mechanism was based on learning transmission history and considered actual
throughput and roundtrip time factors, which could fully use the link’s excess bandwidth.
Compared to the BoostTCP algorithm, the BBR algorithm’s throughput was less, and the
rate dropped more rapidly with a longer time delay. The reasons for this were that the
convergence speed of the BBR algorithm was too slow, the sensitivity of the bandwidth
detection stage was insufficient, and issues, such as delay and jitter, were ignored. The
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Reno algorithm had the lowest average throughput for various random packet loss rates
among all algorithms. Further, the Cubic algorithm had a higher throughput than the Reno
algorithm, but the throughput rapidly decreased as the rate of random packet loss increased.
Since the Cubic congestion control was based on packet loss, this was necessary. Random
packet loss could significantly impact its judgment of network conditions, resulting in
performance degradation.

The main idea of the BBR algorithm is to detect the maximum bandwidth and min-
imum roundtrip time continuously and alternately and then estimate overall network
congestion using the two extreme values. Thus, the minimum roundtrip time accuracy is
critical in determining the BBR algorithm’s impact on network congestion. The ground
network environment’s primary characteristics are a high delay and sufficient bandwidth.
In this case, the minimum roundtrip time is no longer capable of responding to network
congestion accurately. Therefore, if the BBR algorithm continues to estimate the congestion
window using the detected minimum roundtrip time, the estimated CWND value of the
congestion window will be less than the link’s actual ideal capacity. Further, reduced
CWND limits the sender’s sending rate, causing the bandwidth value measured by the
BBR algorithm in detecting the link’s maximum bandwidth to be less than the link’s best
achievable bandwidth. For instance, a lower maximum bandwidth results in a lower
CWND value. As a result, the BBR algorithm can operate only at a reduced rate, thus
causing significant network resource waste.

BoostTCP dynamically learns the network path characteristics of each TCP connection
during transmissions, such as the end-to-end delay and its variation characteristics, the
arrival interval and variation characteristics of the receiver’s feedback data packet (ACK),
the degree of data packet reversal and its variation characteristics, delay and jitter caused
by deep data inspection by security equipment, and random packet loss caused by various
factors. While tracking these characteristics in real time, BoostTCP analyzes them holisti-
cally and derives precursor signals that reflect congestion and packet loss along the TCP
connection network path. Further, it determines the congestion degree based on the results
of the dynamic, intelligent learning processes; determines the transmission rate and the
congestion recovery mechanism that are compatible with the available bandwidth on the
current path; and then performs the packet loss judgment and recovery accurately and in a
timely manner. The BoostTCP algorithm can detect congestion in real time, automatically
slow down, avoid mechanism congestion caused by excessively aggressive transmission,
and accurately identify packet loss caused by random error codes. Thus, high-speed trans-
mission is maintained and transmission behavior is smoother, which indirectly increases
the effective data transmission rate.

4.2.2. The Fairness of Single Algorithm for Multiple Flows

To investigate the fairness of sharing link bandwidth when multiple flows coexist in
the same scheme, this study sent one data flow at 0 s, 10 s, and 20 s in the test to determine
whether three data flows can finally share the link bandwidth evenly, as well as the time
required to evenly share bandwidth and reach convergence. Using a 1 Gbps link bandwidth,
100 ms network delay, and zero random packet loss rate as an example, the tested fairness
of each scheme is summarized as follows.

The fairness results of the algorithms are presented in Figure 10, where it can be
seen that the BBR had a higher throughput rate than the other algorithms when only
one data flow was used. However, when two data flows of 10 s and 20 s are added, the
throughput rates of the two data flows significantly differed. After 30 s, the throughput
rates of the three data flows fluctuated, indicating that the BBR algorithm was unable to
achieve an effective link bandwidth share. The results of the Cubic congestion algorithm
for a network delay of 100 ms and a packet loss rate of zero are presented in Figure 11.
After adding data flows at 10 s and 20 s intervals, the Cubic algorithm could average the
throughput of three flows and ensure efficient link bandwidth sharing. The results of the
BoostTCP congestion algorithm at a network delay of 100 ms and a packet loss rate of
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zero are presented in Figure 12. As demonstrated in Figure 12, the BoostTCP algorithm
could maintain fairness between three data flows in a steady-state. However, the BoostTCP
algorithm had a larger bandwidth-sharing fluctuation range than the Cubic algorithm,
achieving an average value of 6.6 Mbps. BoostTCP could achieve a transmission rate of
320 Mbps after stabilization, which was faster than those of BBR and Cubic, indicating a
more efficient use of network resources.
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Figure 12. The fairness test curves of the BoostTCP congestion control algorithm at a network delay
of 100 ms and a packet loss rate of zero.

4.2.3. Analysis Results of Preemption Ability

Different TCP connections have different bandwidth preemption levels in a real-world
transmission network because they use different congestion control protocols. The band-
width preemption level shows the ability to preempt bandwidth in terms of transmission
performance. The greater the preemption capability is, the more efficiently network re-
sources are used. The preemptive results of the BBR, Cubic, and BoostTCP algorithms are
presented in the following figures.

Figures 13 and 14 illustrate the preemptive test curves of the congestion algorithms for
the zero network delay and packet loss rate. The first test was conducted with the Cubic
algorithm, followed by the BBR algorithm 10 s later. At the moment, the Cubic and BBR
algorithms coexisted, and the Cubic algorithm severely preempted the BBR’s bandwidth,
resulting in no significant increase in the BBR algorithm’s throughput. BoostTCP was
restarted after 20 s, after which congestion occurred. The BoostTCP algorithm’s throughput
rate reached a stable value quickly, within 3 s, while the BBR algorithm’s throughput rate
gradually increased. After 35 s, the three algorithms’ throughput rates converged to a
steady-state. The BoostTCP algorithm had a higher throughput rate than the Cubic and
BBR algorithms. The second test started with the BBR algorithm, and was followed by
the Cubic algorithm 10 s later. Thus, the Cubic and BBR algorithms coexisted 10 s after
the test began. The Cubic algorithm severely restricted the BBR’s bandwidth, resulting
in a throughput rate of nearly zero. After 20 s, the BoostTCP algorithm was invoked and
congestion occurred. The BoostTCP algorithm’s throughput rate reached a stable value
quickly, within 3 s, while the BBR algorithm’s throughput rate gradually increased. After
35 s, the three algorithms’ throughput rates stabilized. The BoostTCP algorithm had a
higher throughput rate than the Cubic and BBR algorithms.
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The preemptive test curves of the congestion algorithm for a network delay of 80
ms and a packet loss rate of zero are shown in Figure 15. The third test began with the
Cubic algorithm, and the BBR algorithm was run after a 10 s delay. After that moment,
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the Cubic and BBR algorithms coexisted, and their throughput rates were essentially
identical. After 20 s, the BoostTCP algorithm was started. Congestion occurred during this
period. The BoostTCP algorithm’s throughput rate rapidly stabilized after 3 s, whereas
the BBR and Cubic algorithms’ throughput rates decreased slightly. Finally, the three
algorithms’ throughput rates reached their steady states. The BoostTCP algorithm had a
higher smoothed throughput rate than the Cubic and BBR algorithms.
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The results of the three tests indicated that the BoostTCP algorithm had a better ability
to preempt bandwidth than the BBR and Cubic algorithms under different delay conditions.
Additionally, the results demonstrated that the BoostTCP algorithm was beneficial to the
BBR and Cubic algorithms by assisting suppressed algorithms in resuming their normal
throughput rates, demonstrating the BoostTCP algorithm’s correctness.

4.3. Test in Actual Environment

To validate the BoostTCP algorithm’s performance in real-world network transmission,
a real-world network test was conducted analyzing the data transmission throughput rate
between ground stations and satellite user centers. The real-world network test results
of BoostTCP and standard TCP are presented in Figure 16, where the data transmission
performances of the two algorithms were compared for a network consisting of seven
ground stations and a satellite user center. The relationship between the increase in data
transmission throughput rate and the network’s maximum bandwidth is depicted in
Figure 17. The relationship between the speed-up ratio of data transmission throughput
rate and network delay is shown in Figure 18.
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As presented in Figure 16, the BoostTCP algorithm performed significantly better
than the standard TCP algorithm. Data transmission rates between the satellite user center
and seven ground stations were significantly increased. For instance, the speed-up ratio
was typically tenfold and could reach seventyfold. The result indicates that the BoostTCP
algorithm significantly increased data transmission throughput and effectively increased
network resource utilization.

The relationship between the increase in data transmission throughput and the max-
imum network bandwidth is presented in Figure 17. As shown in Figure 17, when the
network bandwidth increased from 300 MB to 2300 MB, the data transmission throughput
rate increased significantly. The relationship between the speed-up ratio of the data trans-
mission throughput rate and the network delay is displayed in Figure 18. When the network
delay increased from 1 ms to 70 ms, the data transmission throughput rate’s speed-up ratio
increased proportionately. As a result, the greater the network bandwidth and delay were,
the greater the performance advantage of the BoostTCP algorithm was. The measured data
have conclusively demonstrated that the BoostTCP algorithm is more suitable for networks
with high bandwidth and a long delay than the conventional TCP algorithm.

5. Conclusions

Due to the high precision requirements for satellite payload data transmission via a
ground network, the TCP protocol can be considered competitive. However, the limitations
of the standard TCP protocol on bandwidth utilization for networks with a long delay
and large bandwidth reduce data transmission efficiency. This article uses TC to design a
WAN simulation environment. Four congestion control algorithms—Reno, BBR, BoostTCP,
and Cubic—are tested and compared in terms of throughput, fairness, and preemptibility.
The results indicate that BoostTCP is more adaptable to network conditions and has a
significantly higher throughput than the other three algorithms. In addition, it is fairly
distributed across multiple data flows and has relatively strong preemption capability when
multiple protocols are used. Finally, the throughput of BoostTCP is verified and tested in a
real-world environment, and the results indicate that the real-world performance is identical
to that in a simulated environment. Therefore, the proposed TCP acceleration algorithm
can be used to improve the performance of ground networks when transmitting satellite
payload data. In recent years, as a new field of quantum technology, the implementation
of a quantum algorithm and quantum network has received increasing attention from
scholars. In the next step, we will discuss the application of quantum algorithms and
quantum networks in aerospace-ground service networks.
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Appendix A

Algorithm A1. Pseudo-Code of Congestion Control Algorithm.

While(1)
{
Recv ACK //Compute window’s smoothing rate

BC = Fs / (T − Ts);
B = (1 − α) ∗ B’ + α ∗ BC

If(B > B’) //window’s smoothing rate increases
{

If((B − B’) > γ)
CWND = CWND’ + εj

Else
CWND = CWND’ + ζ
j++
}

Else //window’s smoothing rate decreases
{

i++
if(i ≥ 3)

If((∑3
k = 1(B

′ − B)) < δ)
{
If(SRTT ≤ η ∗ RTTMIN)
CWND = CWND’ + ζ
Else
CWND = CWND’
}

Else
CWND = β ∗ CWND’

else
CWND = CWND’ + ζ

}
Recv NACK //packet loss occurs

CWND = β ∗ CWND’
}

The meaning of the parameters in the preceding pseudo-code are as follows:

α: The value range is from zero to one, where the value of one refers to the computed
throughput of the standard TCP; the closer the value is to zero, the longer the history
tracking will be, which is actually a fixed constant that has been tuned and optimized;
β: The value range is from 0.5 to one, where the value of 0.5 indicates standard TCP
congestion flow control. The closer the value is to one, the more aggressive it is. Three
critical values have been tuned for the acceleration engine: maximum mode (β = 0.9),
normal mode (β = 0.8), and conservative mode (β = 0.6). The conservative mode is nearly
identical to the congestion control provided by standard TCP;
γ: A constant calculated based on the bandwidth of the acceleration engine, and it has
basically the same meaning as the threshold parameter in the standard TCP. This thresh-
old prevents congestion. If the increase in throughput exceeds the threshold value, the
throughput increases rapidly. If the throughput continues to increase but remains be-
low the threshold, the bandwidth threshold is reached and the throughput continues to
increase linearly;
δ: A dynamically computed value based on the bandwidth setting in the acceleration
engine. This value is used to judge whether the congestion is avoided or the bandwidth
threshold is exceeded;
ε: A constant larger than two. The value for the standard TCP is two, and a larger value
indicates stronger aggressiveness. The ε value of the current BoostTCP has a value of three.
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ζ: An integer with a value range greater than one; one represents the constant value after
tuning and fixing in the linear increase of standard TCP.
η: A constant that indicates the network’s jitter tolerance and has a value range from one
to two. The larger the constant value is, the less perceptible the response to the network
jitter will be, which means that the occurrence of jitter cannot be easily detected. If η
equals one, the constant has been tuned out and fixed when the network jitter is judged to
be congested.
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