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Abstract: With the gradual maturity of the terrestrial laser scanners (TLS) technology, it is widely
used in the field of deformation monitoring due to its fast, automated, and non-contact data acqui-
sition capabilities. The TLS technology has changed the traditional deformation monitoring mode
which relies on single-point monitoring. This paper analyzes the application of TLS in deformation
monitoring, especially in the field of ground surface, dam, tunnel, and tall constructions. We divide
the methods for obtaining ground surface deformation into two categories: the method based on
point cloud distance and the method based on displacement field. The advantages and disadvantages
of the four methods (M2M, C2C, C2M, M3C2) based on point cloud distance are analyzed and
summarized. The deformation monitoring methods and precisions based on TLS for dams, tunnels,
and tall constructions are summarized, as well as the various focuses of different monitoring objects.
Additionally, their limitations and development directions in the corresponding fields are analyzed.
The error sources of TLS point cloud data and error correction models are discussed. Finally, the
limitations and future research directions of TLS in the field of deformation monitoring are presented
in detail.
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1. Introduction

With the development of human activities, there are more and more constructions.
At the same time, disasters caused by construction deformation occur from time to time
(such as building collapse, landslide, debris flow, tunnel collapse, etc.), causing great losses
to human life and property safety. Therefore, the monitoring and analysis of the ground
surface and constructions deformation has become increasingly important. It is necessary
to regularly monitor the constructions to reasonably ensure and maintain their safety [1].
Continuous observation and analysis of deformation phenomena of deformed bodies by
using special instruments and methods, and prediction of deformation trends can avoid
serious consequences caused by construction deformations. The traditional deformation
monitoring techniques mainly use level, total station, or GNSS (global navigation satellite
system) for single-point observation [2]. However, these observation methods have few
monitoring points and cannot provide comprehensive monitoring of objects. Moreover, it
is difficult to lay control points in complex terrain areas because of the heavy field work
and the long period to obtain results, which greatly affects the monitoring efficiency [3,4].

Three-dimensional (3D) laser scanning is an emerging measurement technology, which
is used to quickly and accurately capture points on the object surface with its advantages
of fast speed, automation, non-contact, and high precision [5]. Its appearance has changed
the traditional single-point deformation observation, and it is a whole-based deformation
monitoring method. The acquired data points are generally defined based on x, y, z
coordinates associated with attributions, such as the intensity of the laser beam reflected
from the observed object. Over the last two decades, geomatics experts, researchers, and
practitioners have witnessed a dramatic change in the way surveying is conducted. Point
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clouds are the most viable kind of data, representing various objects at different scales and
levels of complexity [6]. During data acquisition, laser scanning units can be classified
based on the position of the laser sensors; these classifications are aerial, mobile, and
terrestrial laser scanning corresponding to air (e.g., helicopter, plane, or drone), mobile
equipment (e.g., vehicle, train, or boat) and the ground [7]. Each method has its own
advantages, but TLS does not need a carrier as it can work when mounted on a tripod. TLS
technology has been used more commonly and is popular. Therefore, its applications to the
field of deformation monitoring has great significance and research ability [8]. TLS also
has great potential in the inspection processes due to its ability to capture objects in high
speed with accuracy up to sub-millimeter, and its low cost compared to other traditional
inspection methods.

In the past decade, a large number of studies have proved the feasibility of TLS in
deformation monitoring, and deformation monitoring has been applied in surface, building,
dam, tunnel, and other scenes [9]. For the literature search, the main source of information
was considered to Web of Science. Moreover, a supplementary literature search was also
conducted in Google Scholar and PubMed. We obtained 527 articles by searching for
the keywords terrestrial laser and deformation. Keywords are important to present the
fundamental concepts/concerns and subject areas of the published work, and demonstrate
a quick overview of the research horizons [10]. Co-occurrence of keywords analysis is
presented in Figure 1.
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Figure 1. Network of co-occurring keywords.

In view of the keyword association in Figure 1, we chose to summarize the deformation
methods of ground surface, dams, shield tunnels, and tall constructions. In this paper, we
review the deformation monitoring methods of ground surface and constructions based on
TLS. Section 2 introduces the applications of TLS technology in ground surface and slope
monitoring. Section 3 summarizes the applications of TLS in deformation monitoring of
constructions (including dams, shield tunnels, and tall constructions). Section 4 analyzes
the influencing factors of TLS deformation monitoring, including registration, filtering,
and data quality. Section 5 summarizes the whole paper and proposes the future research
directions of TLS in deformation monitoring.
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2. Research and Applications of TLS in Ground Surface Deformation Monitoring

Under the influence of long-term geological processes and human factors, the original
stress state of natural or artificial surface slopes will change, leading to stress redistribution
and stress concentration, which will cause the surrounding rock and soil to experience
different forms and even deformation, thus endangering the safety of nearby infrastructure
and people. Therefore, it is important to monitor the safety and stability of slopes. The
traditional monitoring methods include manual measurement, total station, GNSS, and
close-range photogrammetry [11]. Although TLS generally cannot measure the same point
twice as opposed to other techniques, which resulted in a loss of single-point accuracy,
deformation monitoring based on TLS can provide discrete 3D data of the surface, avoiding
the locality and unilaterality of stress-strain analysis based on single-monitoring-point
data. At the same time, it can improve the efficiency, accuracy, and diversity of data types,
which ensures that the surface slope deformation monitoring based on TLS has a wide
application prospect.

The surface slope deformation monitoring mainly calculates two types of quantities:
(i) distance measurement between point clouds based on the variation difference with time;
(ii) displacement field calculation based on the identification of corresponding elements in
continuous point clouds.

2.1. Deformation Monitoring Method Based on Point Cloud Distance

Methods for calculating point cloud distance have been developed for model-to-model
(M2M), cloud-to-cloud (C2C) [12], cloud-to-mesh/model (C2M) [13], multi-scale model-
to-model cloud comparison (M3C2) [14], and their optimizations. In point cloud distance
measurement, for point-based strategies, point cloud is reduced to a subset of salient
points, also known as features or key points, which have unique characteristics considering
their local neighborhood. This means that they can be found in point clouds of different
measurement periods and matched between point clouds without the need to pre-register
the point clouds in a common coordinate system and use the neighborhoods in Euclidean
space [15]. Grid-based methods require the creation of models from one or two point clouds,
respectively, but are more robust to outliers than C2C, which finds the nearest points based
only on Euclidean distance [14,16]. In addition, multi-temporal datasets must be registered
prior to change analysis, which is usually performed using signal markers or defined
stability regions where the difference between the two datasets is minimized [17]. The
M3C2 algorithm is currently a common technique for change analysis based on geomorphic
point clouds, providing accurate measurements at multiple scales in a simpler workflow
that works in two steps: (1) the surface normal estimation in 3D at a scale consistent with
the local surface roughness, and (2) the measurement of the mean surface change along the
normal direction with explicit calculation of a local confidence interval [18].

Many researchers use the method of point cloud distance measurement to obtain defor-
mation information. In the study of the seasonal deformation on the Qinghai–Tibet plateau,
TIN (triangulated irregular network) has the advantage of representing the digital elevation
features by topographic feature points, and continuously calculating differences between
multi-temporal TINs to obtain the elevation fluctuation of the Qinghai–Tibet plateau [19].
The information on surface changes of a slow-moving landslide in the Austrian Flysch zone
was also obtained based on M2M [20]. This method was also applied to the subsidence
basin of the Wangjiata mining area, which was obtained by DEM subtraction in two phases,
with an accuracy up to 67 mm [21]. The surface DEM is established by using the point
clouds after coordinate transformation, and the dynamic subsidence value and subsidence
basin during the observation period are obtained by DEM subtraction. When monitoring
the fissure of the ground surface, the differences between point cloud registration are used
as the global displacement [22]. Due to the complexity and heterogeneity of the ground
fissure disaster evolution, it is difficult to obtain a reasonable global registration result to
express the characteristics of deformation and damage by best-fitting methods. Therefore,
control points are set in the non-deformation area, and point clouds in different periods
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are registered by using control points to obtain surface subsidence. The C2C method
was applied to landslide monitoring to calculate landslide displacement [23]. Then, an
upgraded method on C2C was proposed, which used a combination of point distance
and statistical sampling to measure deformation directly from point cloud data without
mesh or curve fitting to maximize data integrity and minimize errors [16]. C2M is the most
common technique in inspection software. Surface change is calculated by the distance
between a point cloud and a reference 3D mesh or theoretical model [13,24,25]. The M3C2
algorithm was used to obtain the rock glacier surface deformation and orientation of the
landslide at different intervals [26,27]. It found that higher temporal resolution will play an
important role in the future observation of glacier rocks, the average distance of boulder
movements during the 3-week period is 0.08 m (±23 mm, standard deviation) [26]. How-
ever, M3C2 relies on position averaging in the reference and data point clouds to reduce
noise, which may cause undesired artifacts in high roughness surfaces or around occluded
points. Therefore, a point cloud denoising and calibration method is proposed to solve this
problem [17], which used the point redundancy in space and time, calculates the distance
using the multi-scale normal distance method, and uses a set of calibrated point clouds to
eliminate the systematic error. The median value is used to filter the distance value of the
neighborhood in space and time to reduce random type errors and improve the ability of
monitoring and detecting small changes. Additionally, a method for change detection and
change quantification using 3D point clouds was presented [28], which extends the state-
of-the-art M3C2 method by incorporating knowledge about the uncertainty of individual
points. It applied the error propagation theory to the M3C2 algorithm and upgraded it
to M3C2-EP to reduce the quantization difference of LoDetection (level of detection) in
the M3C2 algorithm and the number of false alarms. However, it was difficult to interpret
changes measured using the M3C2 method when: (1) change occurs in directions different
to the direction of change computation, or (2) the quantified magnitudes of change are
exceeded by the associated uncertainty due to a rough surface morphology. The approach
named correspondence-driven plane-based M3C2 approach was presented, to quantify
the small-magnitude (<0.1 m) 3D topographic change of rough surfaces by reducing the
uncertainty of quantified change [29]. The advantages and disadvantages of point cloud
ranging methods are compared in Table 1.

Table 1. Comparison of point cloud ranging methods.

Method Reference Advantage Disadvantage

M2M [19–21] Direct comparison of terrain models, simple and
easy to understand.

Point clouds with rough surfaces cannot be
finely meshed, and it is difficult to describe

rough and vertical surfaces, which are essentially
limited to 2D surfaces.

C2C [12,16,22,23]
Simple and fast, direct comparison of 3D point
clouds, no need to mesh and planarize point

clouds, and no need to calculate surface normal.

Sensitivity to point cloud roughness, outliers,
and point spacing, and dependence on spatial

sampling rate.

C2M [13,24,25] Good for flat surfaces.

For rough and occluded point clouds, mesh
creation is inconvenient, and interpolation of
missing data introduces uncertainties that are

difficult to quantify.

M3C2 [14,17,26,28,29]

It is more robust to deal with missing data of
point cloud, does not need to mesh the point

cloud, and can reduce the influence of noise and
outliers in the point cloud.

Long calculation time, relies on the average
position in the reference point cloud and data

point cloud to reduce noise, insensitive to
deformation of flat areas.

2.2. Deformation Monitoring Method Based on Displacement Field

It is a common method to construct a 3D displacement field to represent the deforma-
tion direction of the surface area. The displacement field contains displacement vectors with
corresponding directions, which represent the displacement change trend of the surface of
the survey area. The displacement field operation often uses a sliding window to register
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the regional point cloud to obtain the displacement vector. In other words, the difference in
the method based on displacement field is the different way of point cloud registration.

The cross-correlation-based particle image velocimetry (PIV) method was applied to
derive a surface deformation field [30]. Point clouds in different periods are gridded
on the XY plane; the first stage point clouds were fixed, and the second stage point
clouds were registered with the first stage point clouds by using a correlation window
and inquiry window and calculating the correlation matrix. The disadvantages are that
significant surface damage between continuous scans will reduce the correlation, and a
single PIV parameter is not applicable for complex landslide deformation. When extracting
landslide displacement, the ICP (iterative closest point) algorithm [31] deduced a 3D
displacement vector with a maximum 3D deviation of about ±7 cm [32]. To simplify
computation time, the point clouds are divided into unit elements of selectable size and an
ICP matching algorithm is applied to each voxel. The correspondence between points and
surfaces is calculated [33], and the transformation matrix derived for each voxel is used
to connect each point of the primary point cloud with the corresponding surface of the
secondary point cloud, and the generated connections can describe the motion between
point clouds. A method called PCSC (point cloud set conflict) was proposed for giant
landslide displacement analysis to acquire the surface changes from two temporal point
clouds [34]. In this method, the surface displacement results, including magnitude and
directions, are calculated by the PCSC technique based on terrain roughness. However,
the deviations between PCSC and InSAR (interferometric synthetic aperture radar) results
are at a centimeter level (1.18 cm). The confidence of a centimeter could be acceptable in
study of an oversized landslide. The coarse registration method of point cloud based on
SIFT (scale-invariant feature transform) feature points and the fine registration method
based on an improved ICP algorithm of K-D tree were applied to slope deformation
monitoring [35]. It constructs a prism with the normal vector of the reference point cloud
as the axis, determines the position of the comparison point cloud by calculating the center
of gravity in the prism, extracts 3D deformation information along the normal line, and
determines the optimal model parameters through model tests. The mobile registration
window technique is used to determine the displacement field of underground mining. The
accuracy of the proposed method to automatically determine the displacement field, when
taking into account the georeference error, was within the range of a few centimeters [36].
The technology divides the reference point cloud and the point cloud to be registered into
multiple segments. The corresponding segments are then consecutively registered, and
for each registration window, the corresponding displacement vector is determined using
the transformation parameters between the base segment and the registered point cloud.
In the process of registration, the size of the window is critical. Some people have made
breakthroughs in the field of deformation monitoring using deep learning. For the previous
algorithm, the displacement vector only represents the distance between surfaces, rather
than the actual displacement of points on the surface. Therefore, the derived vector does not
represent the real 3D displacement, and the result is usually interpreted and visualized only
on the basis of its amplitude. Furthermore, it mainly represent deformations orthogonal to
the surface, and does not reflect or significantly underestimate the actual displacements in
the case of motions/deformations parallel to the surface or more complex motions [37,38].
A novel deep learning framework was proposed to compute realistic 3D displacement
vectors, called F2S3 (feature-to-feature supervoxel-based spatial smoothing) [38,39]. The
main idea of F2S3 is to establish corresponding points in each period based on the proximity
in the feature space spanned by local feature descriptors, rather than the proximity in
Euclidean space. The local feature descriptors describe the geometric information of the
local neighborhood around the point of interest in the form of a high-dimensional vector.
By establishing the corresponding points in the feature space, F2S3 is also sensitive to the
displacement along the surface to produce a complete 3D displacement vector.

The two methods based on point cloud distance and displacement field are the most
commonly used methods in surface slope monitoring. The method based on point cloud



Sensors 2022, 22, 9179 6 of 19

distance is used more frequently than the method based on displacement field. Except for
C2C and M3C2 that directly compare point clouds, other methods all need to establish dif-
ferent types of models. This requires selecting appropriate models for different monitoring
scenarios. Simple triangular meshes can be established for those with small fluctuations,
while polynomial fitting is often used for those with surface irregularity. At present, there
is a lack of unified evaluation of model accuracy, in addition, there is not much research
that gives appropriate type correspondence for selecting fitting methods. The displacement
field technology does not need to face this problem. The core of the displacement field
technology is the matching of point cloud features. Through sliding windows, roughness,
and other point cloud features, it is possible to match the differences in features of point
clouds at different periods. The key is the method of feature extraction, which is more
difficult than point cloud distance measurement. From the above analysis, it can be seen
that the average accuracy of TLS in surface deformation monitoring is basically at the
centimeter level. This is because the surface deformation area is large, and the point cloud
data quality decreases with the increase of distance when TLS scans over long distances.

3. Research and Applications in Constructions Deformation Monitoring
3.1. Deformation Monitoring of Dam

As an important part of river flood control projects, dams realize the reasonable
regulation and optimal allocation of water resources through water storage, which is very
important to produce electricity, water supply, and irrigation. They play an important role
in the lifeblood of society and economy [40]. However, with the progression of time and
the evolution of the natural environment, some dams have serious safety hazards. The
collapse of a dam will cause serious threats to the safety of people’s lives and property,
and social and ecological damage. Therefore, the safety of dams is crucial for the normal
operation of water engineering systems. Continuous monitoring is important in order to
prevent any hazardous effects of dams [41].

A reconstruction algorithm based on spherical projection was proposed [42], which
used the triangulation algorithm to construct a 3D surface model. The test vector algorithm
was used to gradually search for the best local vector along the surface of the object in
a similar forward wave manner and propagated down until all points had the correct
vector. At the same time, a partial spherical projection unit was generated at each point to
express the discrete sampling points and the geometric information of the contained local
neighborhood. The overall dam deformation was obtained by comparing the cloud data of
different reference points with the reference surface model. NURBS (non-uniform rational
B-splines) technology was used to model the point cloud data of the dam and create a high
spatial resolution model of the earth rock dam with sufficient accuracy (±2 mm) [43]. As the
model was created from a series of continuous monitoring exercises at different times, the
deformation characteristics of the earth rock dam are explained more completely. Others
used the point cloud registration method to obtain dam displacement. Two-step point
cloud registration and contour model comparison method was applied to an arch dam dis-
placement change detection, which can reach millimeter level accuracy [44]. A customized
processing procedure for deformation extraction was proposed [45], the core idea of which
was to achieve high accuracy registration of the point cloud in an iterative manner using
the ICP algorithm for different time periods in the reference region, displaying the features
and undeformed geometry at stable locations at each time period. Then, the alignment
transformation matrix was applied to the point clouds of each upstream surface in each
period, and the multiple adjusted point clouds were compared pairwise for deformation
evaluation. The minimum detectable deformation was in the range of below ±10.0 mm if
the numerical errors of surface generation were removed. A registration algorithm based
on a normal distribution was proposed [46], which improved the original progressive
encryption triangulation filter algorithm. Researchers used the C2M method to compare
and analyze the patterns of the monitored dam shape variables, and developed a source
program to realize the processing, comparative analysis, and modeling of the integrated
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monitoring point cloud data. The mean square error in dam subsidence displacement was
about ±1.98 mm.

In dam deformation monitoring, deformation information should be extracted from
the model rather than the point cloud. First, a complete dam model was constructed from
the point cloud, including triangulation model, contour model, and function fitting model.
Since the point cloud data will inevitably encounter the situation of leakage holes and noise
points, it was necessary to interpolate the point cloud data during modeling, which reduced
the influence of point cloud roughness. At the same time, the question of whether the point
cloud obtained by interpolation was consistent with the actual surface condition deserved
consideration. As a means to obtain deformation information, the accuracy of the model
affected the accuracy of the final deformation monitoring results directly. The current stage
is to explore the improvement of model accuracy, from TIN, the linear contour model, and
then to the function fitting model. The high accuracy of the dam surface model is the key
goal we pursued. Due to the dam being monitored over a smaller area, the accuracy in
deformation monitoring of the dam was at millimeter level.

3.2. Deformation Monitoring of Shield Tunnel

With the development and utilization of urban underground space, tunnels are be-
coming more and more common. Laser scanning technology for deformation monitoring
in the tunnel engineering application has caused some concern [47], especially for shield
tunnels, which are formed by the assembly of tube pieces, which are regular in shape and
facilitate deformation monitoring of their whole using point cloud data. As a key to the
construction and maintenance of tunneling projects, traditional monitoring technology
only measures a small number of data points, which is not sufficient to understand the
deformation of the entire tunnel [48]. With the gradual maturity of TLS technology, when
used for tunnel surface survey, the overall deformation distribution of the tunnel can be
obtained, overcoming the shortcomings of the traditional survey. The main difficulties
include: (1) tunnel central axis extraction, (2) tunnel cross-section extraction, (3) tunnel 3D
model construction, (4) water leakage, segment dislocation, and crack identification.

Aiming at the problem of how to effectively obtain 3D models and accurately extract
the feature information of large-scale composite structures such as tunnels, a surface-based
nondestructive measurement method was proposed and developed, and its accuracy falls
within the millimeter range [49]. The method focused on extracting feature sections and
central curves for tunnel deformation monitoring. The innovation of this method lies
in the projection and iterative filtering of the ring data and rasterization of the point
clouds for vertical and horizontal lines. The standard deviation of distances between
the central points and central curve was about 3.5 mm. A new method was proposed
to extract the tunnel central axis based on the 3D invariant moments and best-fit ellipse,
and it can be with an accuracy of 2 mm for cross-section measurement [50]. To enable
fast registration of the point cloud, a method of locating the base was proposed, and an
improved moving least-square method was proposed to reconstruct the tunnel center
line from the unorganized point cloud. After fitting an optimal circle, the cross-sections
were estimated by the proposed method. The RMSE of the TLS method was estimated as
4.7 mm. The convergence of the tunnel cross-section was analyzed based on each point
cloud slice to determine the safety state of the tunnel [51]. Since the original point cloud
collected by TLS cannot show tunnel deformation, a 3D modeling method based on the
elliptical fitting algorithm (EFA) was proposed to analyze the settlement deformation,
segment dislocation and cross-section convergence of the tunnel. Compared with the
results of numerical simulation, the maximum error of the convergence deformation was
about 1 mm [52]. To extract the shield tunnel cross-sections from point clouds, a new
framework was proposed [53]. It consisted of two steps: tunnel central axis extraction
and cross-section determination. A slice-based method was proposed to obtain the initial
central axis, which was further divided into linear and nonlinear segments. The circular
segment algorithm based on enhanced random sample consensus (RANSAC) tunnel axis
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segmentation solved the problem of linear and nonlinear hybrid segment extraction. The
cross-sectional fitting error was only 1.69 mm. Compared with the designed radius of
the metro tunnel, the RMSE of extracted cross-section radius only keeps 1.6 mm. A high-
precision interpolation and filtering algorithm was introduced to extract the continuous
tunnel profile of the entire tunnel, which was further refined by solving the constrained
nonlinear least-squares method. In view of the difficulties in extracting cross-section
information and the lack of applicable deformation analysis based on the point cloud,
an adaptive cross-section extraction algorithm for deformation analysis was proposed
and the deformation analysis accuracy was less than 3 mm [54]. Boundary points were
extracted along the point cloud route direction, and the central axis was determined using
a bidirectional projection algorithm. After a comprehensive analysis of the curve fitting
algorithm, the cubic B-spline curve was selected to fit the cross-section points. Finally,
the radial and diametric divergence were used to analyze the local deformation position
and overall deformation trend. The technique of acquiring the 3D shape of tunnel surface
was proposed for the first time [55], and the 3D deformation reconstruction technology
method was based on the ellipse fitting algorithm, coordinate transformation, and the
M3C2 algorithm. There are many methods to detect the cracks, water leakage, and other
diseases in the shield tunnel. A tunnel surface parameterization algorithm based on a
harmonic map was proposed, which reconstructed a triangle mesh model of the tunnel
and then generated a harmonic map depth map of the tunnel inner wall on the triangle
mesh [56]. It is able to obtain the spatial distribution and location information of the
appendages and detect whether there are cracks, water leakage, falling pieces, and other
diseases by the depth images. An automatic tunnel monitoring method based on the image
data collected by the motion vision measurement unit composed of camera arrays was
studied [57], combined with the deep learning algorithm to identify cracks through the
Mask R-CNN network. Using the reflection intensity value of the point cloud data, the
combination of expansion and the Canny algorithm can realize the automatic intelligent
identification and extraction of fractures [58]. A new method for underground tunnel
leakage detection was proposed [59]; the reference target was used to correct the influence
of distance and incident angle on the intensity based on piecewise linear interpolation.
After corrections of distance and incident angle effects, the corrected intensity data were
used to detect the water leakage regions in the underground tunnels.

In recent years, the application of TLS technology in engineering surveys has become
a technology for large-scale applications in the tunnel engineering environment, due to its
advantages of non-contact, fast speed, high precision, and large-scale data acquisition. In
order to obtain satisfactory scanning data, this section briefly introduces the application in
tunnel monitoring. In tunnel deformation monitoring work, the first thing to do is to extract
the central axis, and then slice the tunnel point cloud to fit the cross-sectional analysis. In
tunnel deformation analysis, the accurate extraction of the axis is particularly important,
and how to fit the central axis accurately and quickly is the key research direction. From
the above research, it can be seen that the accuracy of TLS in tunnel axis extraction and
section fitting is very high, at the millimeter level. In addition, the geometric deformation
of the tunnel is monitored during excavation, and the accuracy and reliability of the 3D
reconstruction of the tunnel scene are also to be studied. The real scene in the tunnel is 3D,
and the regular monitoring modeling comparison is to determine the deformation trend of
the tunnel. Moreover, the recognition of tunnel cracks or leakage areas should also rely on
deep learning and image recognition algorithms, after all, image recognition algorithms
are more mature, and point cloud intensity information can also be used to monitor water
leakage and cracks. TLS has not yet become a common tool for tunnel measurements, but
it still has great potential for exploitation.



Sensors 2022, 22, 9179 9 of 19

3.3. Deformation Monitoring of Tall Constructions

Some scholars have used TLS to monitor the deformation of some tall constructions.
The most common characteristics of these constructions is that they are very tall. Most tall
constructions have complex multi-story structures, such as cooling towers, wind turbine
towers, and chimneys. The cross-sections of these constructions are usually circular or ellip-
tical. The long-term influence of external loads on these structures causes different degrees
of deformation of the structure. This not only affects the stability of the construction itself,
but also threatens the security of people’s lives and property. Monitoring the deformation
of tall constructions can do a good job of risk transfer and early warning before the risk
occurs. Therefore, it is important to monitor the deformation of tall constructions.

Cross-sectional method: surveyors generally use the line scanning mode of observation
to fit circles at different heights, and to fit the center coordinates of circles of thin point
cloud slices at multiple levels. By comparing the center coordinates of the upper levels
with those of the lowest levels, the 2D displacement deviations of the tower moving in the
axial and lateral directions can be determined. Some researchers used TLS to conduct line
scans of cooling towers, wind turbine towers, and chimneys to analyze axial deformation
monitoring [60], and used a least-squares circle fitting method [61,62] to fit a circle from
cross-sectional surveying points in the same horizontal plane, the center of the circle and
the deviation of the circle were calculated, a comparison of TLS, and classical deformation
measurement of two chimneys in a similar way was presented [63]. By continuously
measuring the coordinate values on the horizontal plane, the deflection of the object axis
can be calculated, and the deviation from the center is the deviation from the vertical line of
the measured object. To monitor the verticality of chimneys, two methods were proposed
to estimate the center at different levels [64]. The first solution is a manual method using
traditional CAD software, where the circular fitting is performed manually by point cloud
slicing. The second method is to automatically fit the circle using the least-squares method,
which provides not only the central coordinates but also statistics to assess the metric quality
and shows a precision better than 2 mm. In monitoring the verticality of a wind power
tower and the deformation monitoring of the wind turbine blade, the point cloud data
was processed using Bentley MicroStation V8i software for the graphical representation
and geometrical measurements [65]. The measurements were used to determine the basic
dimensions of the examined facility, deflection of the vertical axis of the stationary support,
and blade geometry. The point cloud of the chimney was cut into horizontal rings of 25 mm
width by CloudCompare software, vertical cylindrical segments to each ring were fitted
by the least-squares method, and then the x, y coordinates and average adjustment errors
of the cylindrical axes could be calculated. By comparing the x and y coordinates of the
higher layer with those of the lowest layer, the deviation of the chimney axis from the
vertical direction was calculated [66]. For the assessment of industrial chimney geometry,
TLS and structure from motion (SFM) were integrated with an average error of 13 mm,
after the registration of point clouds obtained by the two methods, the center of the circle
was piecewise fitted to obtain the axis deviation [67].

Surface parametric modeling: Gauss–Helmet nonlinear model was used to estimate
the surface parameters of a cylinder for 3D parametric modeling [68]. This method is much
more complex than the traditional cross-sectional method in determining the inclination
angle of the structure, but it is more advantageous in obtaining the inclination angle of the
structural axis directly, avoiding blind spots between the cross-sections, and performing
advanced analysis of structural deformation compared with the modeling surface. By
establishing a 3D model of the building point cloud data, the inclination of the building can
be monitored [69], comparing the angle between the y axis of the building’s central axis
and the horizontal x axis, and determining whether the building is inclined due to ground
subsidence by the degree of the angle. An angle of 90◦ indicates no inclination and less
than 90◦ indicates that the building has been inclined.

In addition, some scholars have used not only TLS, but also combined it with other
technologies to monitor the deformation of tall constructions. Based on the TLS technology,
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the video measurement was also used [70], with the camera placed face up at the bottom of
the generator, video observation of the nacelle using point tracking software to measure the
movement of the nacelle, and the laser scanner tilted upward to measure the deformation
at the top end of the tower. The measurements were compared in time and frequency
domains under different operating conditions, such as low/strong winds and turbine
start/brake. There was a high correlation between the laser-based signal and the reference
measurement signal in the time domain, and the same peak of the main tower oscillation
was determined in the frequency domain. The TLS technology was proved to be a capable
tool for the structural health monitoring of wind turbine towers. The GB-RAR (ground-
based real aperture radar) interferometer can also be used in combination with the TLS
for coordinate positioning [71], and the high resolution of the TLS and the advantages
of GB-RAR can be used to capture and measure the vibration frequency of the higher
oscillation mode to monitor the wind tower. The joint use of co-located TLS and GB-RAR
can provide richer information on the dynamical behavior of the structure. Model-based
processing is based on the use of interpolation to reduce noise and improve the accuracy
of displacement monitoring [72]. After the joint registration of TLS and GB-RAR, the
vibration spectra obtained by TLS and GB-RAR can be compared by spectral analysis of
distance–time series. This method is especially suitable for linear structures such as wind
towers. The oscillation profile can be estimated, the spectral characteristics of the tower can
be adequately described, the vibration amplitude of the wind tower can be described, and
the structural deformation monitoring of the wind tower can be ensured.

The TLS technology with rapid survey, large number of points, and high recognition
accuracy is very effective in surveying the geometry of objects that change rapidly over
time. However, its limitation is the repeatability, which requires the identification of
new points on the surface each time. The advantage of the cross-section method is the
simplicity of the algorithm and its wide application. However, its limitation is that it is not
global monitoring, but uses the coordinate difference of the center of the fitting circle of
the point cloud cross-section at different heights to determine the axial deviation of the
object, and does not use all the point cloud data. The advantage of the surface parametric
modeling method is that it directly obtains the inclination angle of the structure axis,
avoids the blind spots between the cross sections, and provides a more advanced analysis
of the structural deformation compared with the modeling surface. Both methods are
more effective when the shape of the monitored object is regular and can be expressed by
functions. In addition, other means (such as video measurement, amplitude measurement,
etc.) can be combined to achieve more comprehensive monitoring when monitoring the
deformation of tall constructions.

4. Key Issues in the Application of TLS Technology
4.1. Data Acquisition

As numerous studies and applications have been conducted in the field of defor-
mation monitoring, data acquisition is the premise and basis of deformation analysis. It
includes inspection of instruments, field survey, control network layout, and scanning
plan formulation. It is necessary to check whether the scanner can work normally and
whether its accuracy can meet the engineering requirements; then, to go to the site to survey
the terrain. For different terrain conditions, the subsequent deployment of the control
network and determination of the scanning position of the scanner should be considered
in advance. After investigating the terrain, the control network can be established, which
is not necessary but recommended. Control points can improve the registration accuracy,
which is conducive to transform the local coordinate system of the point cloud into the
unified coordinate system. Finally, the scanning plan is formulated, and operators acquire
the point cloud data according to the scanning plan.
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4.2. Data Preprocessing

In the application of TLS technology, data preprocessing is also an extremely important
aspect [73]. The first stage of point cloud processing is preprocessing. As part of the
processing of the point cloud, the data must be prepared for further use. The two main
steps are: registration and filtering. When acquiring point cloud data from TLS, the
deformation monitoring range is usually large. It is necessary to scan the monitoring
area using multiple stations to obtain the complete point cloud data of the deformation
monitoring area. Since the coordinate system of each station is independent, we need to
convert the scanning data of different stations to the same coordinate system, and then
perform registration operation on the point clouds of different stations. The point clouds
of different stations are spliced together to form a complete regional point cloud, which is
convenient for later analysis of deformation using point clouds of different periods [74].
In addition, point cloud data may contain some noise points [19,22] due to the occlusion
of surrounding objects and the influence of the instrument’s own factors. In addition, the
volume of point cloud data is extremely large, and there will be millions or even tens of
millions of points in the scanning data of one station. Data redundancy is not conducive to
the subsequent deformation analysis. First, the point cloud should be filtered to remove
noise points and reduce data redundancy, to meet the data volume of deformation analysis
and reduce the consumption of data processing time.

In deformation monitoring projects, multi-station splicing of point clouds in the
same period is usually done through white balls or checkerboard markers [15,21], which
are placed in the overlapping area scanned twice by the scanner, and then point cloud
splicing is carried out by identifying markers through the built-in commercial software.
In addition, the algorithm can be used to register point clouds. Registration is divided
into two categories: pairwise registration and multi-view registration [75]. Among them,
the pairwise registration method is divided into two steps: coarse registration and fine
registration. Coarse registration methods include the following categories: hand-selected
features, 4PCS (4-points congruent sets), probabilistic registration, and deep learning
registration. Fine registration is divided into ICP and NDT (normal distributions transform)
and their improvements. Multi-view registration methods are divided into sequential
registration-based methods and joint registration-based methods. Point cloud registration is
also a hot research topic, and many scholars have proposed different registration algorithms
in recent years. For cases where the local registration methods rely on sufficient initialization
or converge easily to local minima and the global registration methods rely on the accurate
extraction of geometric primitives, a CPD (coherent point drift) algorithm using geometric
information and structural constraints for point cloud registration is proposed [76]. The
algorithm considers the survey geometry and the intrinsic characteristics of the scene to
simplify points and incorporates geometric information as well as structural constraints in
the probabilistic model to optimize the so-called matching probability matrix, improving
the efficiency and robustness. A novel 3D registration framework was proposed that
transformed the point cloud into a mid-level structure space, designed a robust method
to find the effective original combination corresponding to the 6D pose of the original
point cloud, and then constructed a descriptor based on the hybrid structure [77]. The
registration was completed by matching descriptors and calculating rotation and translation
parameters. The whole process of this method was performed in the structure space. The
advantage of this method is that it can capture geometric structures and semantic features
in a larger domain, and it can robustly and effectively reconstruct urban, semi-urban, and
indoor scenes. An improved registration method based on a point cloud voxel grid was
proposed [78]. The voxel grid structure and index structure of point cloud were established
to eliminate the uneven density of the point cloud. Then, based on the distribution of
point clouds in the voxel grid, the key points were calculated to represent the whole
point cloud. RANSAC was used to find the quaternary basis in the target point cloud
according to the overlap rate and the size of the point cloud range. The corresponding
quaternion candidate set was determined by matching the affine transformation ratio, and
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the candidate transformation matrix was calculated by SVD (singular value decomposition)
for each candidate quaternion. By choosing a suitable point cloud registration method, the
efficiency and accuracy of deformation monitoring can be improved.

In the process of laser scanning, point clouds of unwanted objects such as vegeta-
tion and electric wires will inevitably be collected and treated as noise points, which will
affect deformation monitoring and analysis [59,79]. Correct filtering of noise points and
outliers has also become a prerequisite for the credibility of deformation monitoring results.
A new LiDAR point cloud filter [80] was proposed, which was based on mathematical
morphological geodesic transformation, and has the advantages of simple concept and
easy implementation by morphological filtering method. Compared with the traditional
morphological transformation, the geodesic transformation only uses the basic structural
elements and converges after a finite number of iterations, which can effectively filter
the non-ground points. A multiscale noise removal overall filtering algorithm was pro-
posed [81]. According to the comparison of surface change factors, the point cloud was
divided into mutation area and flat area. Finally, the statistical filtering algorithm was
used to remove large scale noise in the flat area, and the bilateral filtering algorithm was
additionally used to remove small scale noise in the mutation area. In addition to the
self-developed algorithm, the point cloud processing software integrated various filtering
algorithms to process the data scanned by the corresponding manufacturer’s instruments.

As a common step in all deformation monitoring projects, the registration and filtering
of point clouds are sufficient to prove their importance in deformation monitoring studies.
The registration speed and accuracy are important indicators for evaluating the registration
method, and they are also the directions of future research. Faster point cloud registration
can reduce the preprocessing time of point clouds, and higher registration accuracy can
build a model that is more consistent with the surface and obtain higher shape variables.
Point cloud filtering is required to improve the degree of automation and the accuracy.
Nowadays, some projects still use the manual method to remove noise, which undoubtedly
increases the time of data processing. How to completely and accurately remove noise
points to ensure that the real surface data is not removed is a key issue. Currently, many
algorithms can meet the basic requirements, but the presence of noise point outliers is
fatal for more precise deformation monitoring projects. It is also a factor restricting the
application of TLS in high-precision deformation monitoring. In the future, the filtering
algorithm should be developed in a fast and accurate way to promote the application of
TLS technology.

4.3. Data Quality Assurance

Millimeter accuracy is often required in the deformation monitoring industry. There-
fore, data quality is one of the most important factors for the effective use of TLS in the
deformation monitoring industry. As with traditional techniques, TLS is subject to different
sources of uncertainty during surveying. In this case, it is crucial to identify potential
sources of errors which affect the data quality and assess their impact on the results.

When using TLS, the accuracy of point cloud data can be affected by instrument mech-
anisms, atmospheric conditions, object surface properties, and scan geometry [82,83], and
other systematic and random errors can also lead to noise. Many studies have addressed
error analysis and performance evaluation of laser scanners, which are essential to ensure
adequate data quality and reliability. Several factors affecting accuracy are discussed,
including laser incidence angle, object height, surface material, and point cloud density [79].
The larger the scanning distance and incident angle, the greater the influence on the scan-
ning quality. The higher the point cloud density is, the more accurate the deformation
results will be. At the same time, the disadvantage is that the data volume becomes larger
and the scanning time increases. The impact of the incidence angle on the point cloud
data was tested, and it was found that about 80% of the data would be lost when the laser
incidence angle was greater than 70 degrees [84]. The presence of high incidence angles
in TLS measurements has limited the capability to identify the significant displacement
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of the targets [85]. Systematic and random errors affect the coordinates of each point in
the point cloud, which is directly related to the data quality and subsequent processing of
the point cloud. The errors affecting the quality of point cloud data are classified, and the
document standard summary is formulated for the performance evaluation of TLS, and
the performance methods for evaluating TLS are summarized [86]. A robust target-based
TLS self-calibration method was proposed at the algorithm level [87]. The solution was
obtained by normalizing the residual vector and calculating the method based on the
equivalent covariance matrix, which effectively eliminated the random errors and gross
errors related to the observation, and improved the point accuracy from the centimeter
to millimeter level. The point cloud registration errors that affect the final deformation
estimation were studied [88], appropriate segmentation methods for extracting deformed
surface data points were determined, methods for identifying undeformed or reference sur-
faces for deformation estimation were investigated, and a method for minimizing outliers,
noisy data, and/or mixed pixels that affect the deformation estimation was proposed. In
addition to the analysis of the influence of the errors, there are also studies to put forward
the corresponding error model to offset part of the influence of errors. An error model
for TLS measurement was proposed [89], where the error was estimated based on the
distance to the object and the incident angle. A stochastic model for TLS observations
was proposed in reference [90]. The current error model was extended by classifying
atmospheric parameters as randomly correlated basic errors. Others integrated the external
models related to atmospheric refraction, beam drift, and incident angle into the seven
parameter similarity transformation model to introduce the combined model to detect
external errors and record multiple scans [91]. Instrument specification, plane residual
accuracy, required point spacing, target color, and target gloss are also factors which users
should consider when selecting scanning positions [92]. Moreover, two methods were
applied for radiometric correction of laser scanning intensity data [93]. It should be noted
that there is still a lack of standardized tests for quantifying the impact of various error
sources, as well as uniform accuracy requirements. Therefore, the quality and reliability of
acquired point cloud data will still face challenges.

In the future, the impact of various errors on the accuracy of point cloud data should be
solved from following two aspects. Firstly, research and development of the TLS equipment
should be conducted to improve the scanning distance of the TLS, reduce the scanning
limitation caused by the incidence angle, improve the scanning distance and accuracy
of the TLS, and select a laser that is less affected by environmental factors as the light
source. Secondly, the error correction models should be studied, and the algorithm model
should be applied to improve the point cloud data quality. The error models of atmospheric
refraction, point cloud reflection, and other influencing factors should be established. The
correction model of temperature and humidity should be improved through experiments
and analysis.

5. Summary and Prospect

With the development of TLS technology, the proportion of its application in deforma-
tion monitoring has gradually increased. In this paper, we reviewed the latest development
of deformation monitoring based on TLS, especially the deformation monitoring methods
used in the fields of surface, tunnel, dam, and tall constructions. We summarized the
differences in the methods and the focus of extracting deformation information in differ-
ent domains. In ground surface and slope monitoring, there are two methods based on
point cloud distance measurement and characteristic displacement. Most dam monitoring
methods are based on the difference of models. In tunnel monitoring, we should pay
attention to the extraction of the central axis, segment dislocation, and leakage cracks. In
tall constructions monitoring, the cross-sectional method and surface parametric modeling
are used to analyze their tilt and offset. Then, we presented the main steps of point cloud
preprocessing, including registration and filtering, and analyzed the factors that affect the
quality of point cloud data, as well as the factors limiting the development of TLS were
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discussed. Finally, we can see from the above research that the accuracy of the TLS is
unfixed for different monitoring objects. When monitoring the surface displacement or
settlement, the observation range is often large and some places are far away from the
scanner, resulting in incomplete point cloud data, which reduces the final overall accuracy.
This is the limitation of the application of TLS. However, when monitoring in a small range,
objects can be scanned in detail, and the accuracy can mostly be within the millimeter level,
so TLS can play an efficient role in short distance and small range observation.

In order to promote the development and application of TLS in deformation monitor-
ing, this paper analyzes and proposes the following future research directions:

(1) Improve the accuracy of the data acquired by the instrument. From the above
analysis, we can know that TLS acquires very detailed data in short distance and small
ranges, but with the increase in the observation distance, data quality becomes more and
more poor, which limits the widespread application. Instrument manufacturers should
develop more precise scanners suitable for remote measurement to adapt to deformation
monitoring in different scenarios.

(2) Improve the data processing capability. Although a lot of research has been con-
ducted on data processing, there is still a considerable gap between the existing technology
and its application requirements. There is great potential in improving the processing
efficiency, robustness, and automation of algorithms. In addition, the developed algo-
rithms should be oriented to practical applications and have universal applicability in
the field of deformation monitoring. Finally, a standard system should be established to
evaluate the performance of the algorithms in order to select appropriate methods for
different applications.

(3) Establish a high-precision point cloud model. When TLS is used for deformation
monitoring, the scanning point cloud modeling is used to obtain the overall information
of the object surface. When the point cloud data is lost [94], the selection of different
modeling methods and the precision of the model establishment are particularly impor-
tant [95]. Five categories are presented to establish a preliminary systematization of these
methods: (I) point-based models: single points; (II) point-cloud-based model: point cloud;
(III) surface-based model: grid structure; (IV) geometric-based model: continuous surface;
(V) parameter-based model: parameters that approximate the surface [96]. An overview of
research activities dealing with the modelling of point clouds with regard to the derivation
of deformations is provided [97]. It is subdivided according to the measured objects and
conveys an application-orientated state-of-the-art areal deformation analysis of these ob-
jects. The current application fields are systematically summarized to provide modeling
reference for different research fields.

(4) Artificial intelligence (AI) is adopted. At present, AI has been widely used in
all walks of life. As a branch of computer science, it has great advantages in processing
and analyzing a large amount of data. There is no doubt that AI will become one of the
main trends in the field of deformation monitoring in the future. In recent years, various
AI techniques, especially deep learning, have been found in previous studies proving its
great potential in object detection and quality assessment [98–100]. In the future, problems
such as project planning, scanning planning, and deformation prediction can be solved
with the assistance of AI. In this case, it is urgent to generate point cloud training datasets
for deformation monitoring, train network models, and apply them to the deformation
monitoring industry.

(5) Use BIM (building information modeling) technology. It is also a trend of point
cloud application. Through the construction of building model information, the charac-
teristics of objects and their surrounding environment can be intuitively seen. To achieve
an integrated project, i.e., integrate and manage each project phase and management (sur-
veying, architectural design, restoration project, the design of the different installations,
the construction project, resource management, management of the result) a BIM approach
becomes indispensable [101]. In addition, BIM draws attention from the field of heritage
documentation and conservation and has generated a new issue of heritage/historic build-
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ing information modeling (HBIM) [102]. The HBIM model is no longer just a virtual
representation and geometric reconstruction of heritage, but the sub-elements have become
advanced objects with rich information, including the quantitative and qualitative descrip-
tion and strict relationship information [103]. The advantages of detailed point cloud data
can be combined with its BIM/HBIM to produce a broader application prospect.

(6) Combined with VR/AR (virtual reality/augmented reality) technology. In the
current workflow of using point cloud data for architectural applications, the acquisition of
point cloud data is usually separated from the visualization and processing of point cloud
data. Due to process fragmentation, engineers are unable to obtain meaningful construction
activity information from point cloud data in time. Its delay prevents the timely identi-
fication and processing of on-site problems, especially those related to geometric quality
inspection and construction progress tracking. Due to this limitation, future research needs
to develop methods for real-time visualization and processing of point cloud data for
practical applications. One possible solution is to combine point cloud acquisition and
processing tools with VR/AR technology [104]. Taking the deformation monitoring of
building components as an example, once the point cloud data of building components are
obtained, the point cloud data can be input into the VR/AR system for visualization, where
the point cloud data of different periods can be compared and the deformation differences
between them could be viewed. In this way, engineers can visualize and identify geometric
quality problems in the field after obtaining point cloud data, and immediately take neces-
sary measures to solve the problem [105]. Future research needs to develop methods for
real-time visualization and processing of point cloud data for architectural applications,
which can be combined with VR and AR technologies.
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