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Abstract: The large view angle and complex background of UAV images bring many difficulties to
the detection of small pedestrian targets in images, which are easy to be detected incorrectly or missed.
In addition, the object detection models based on deep learning are usually complex and the high
computational resource consumption limits the application scenarios. For small pedestrian detection
in UAV images, this paper proposes an improved YOLOv5 method to improve the detection ability
of pedestrians by introducing a new small object feature detection layer in the feature fusion layer,
and experiments show that the improved method can improve the average precision by 4.4%, which
effectively improves the pedestrian detection effect. To address the problem of high computational
resource consumption, the model is compressed using channel pruning technology to reduce the
consumption of video memory and computing power in the inference process. Experiments show
that the model can be compressed to 11.2 MB and the GFLOPs of the model are reduced by 11.9%
compared with that before compression under the condition of constant inference accuracy, which is
significant for the deployment and application of the model.

Keywords: pedestrian detection; UAV; small target; model compression

1. Introduction

In recent years, thanks to the rise of UAV remote sensing technology and its advantages
such as fast response and global view, UAV image pedestrian object detection technology
has been playing an important role in emergency search and rescue and law enforcement
tracking [1]. However, there are two problems that need to be solved: first, the UAV remote
sensing images have large view angles and complex backgrounds, and the pedestrian
targets in the images are small in size, so they are easily missed or misidentified; second, the
object detection algorithms based on deep learning are often computationally intensive and
possess high requirements for hardware computing power, so the application scenarios are
limited. However, the structure of high-precision detection models is usually more complex
and requires more computational resources, so it is difficult to achieve a balance between
efficiency and accuracy to ensure detection accuracy while minimizing computational
consumption for a wider range of applications.

Since the time when convolutional neural networks were first applied to object de-
tection tasks, deep learning-based object detection methods have achieved widespread
use in industry with powerful feature extraction and adaptive learning capabilities, far
outperforming traditional object detection methods in terms of detection performance [2].
In the field of pedestrian object detection, more and more scholars have improved the deep
convolutional neural network structure and achieved good detection results. Hui et al. [3]
verified the effectiveness of Faster RCNN [4] for pedestrian detection by incorporating
K-means clustering algorithm and RPN network to generate suggested candidate regions,
and then classified and localized pedestrian targets by detection network. Qian et al. [5]
proposed a PVDNeT network by improving the network structure, and both pedestrian
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and vehicle detection accuracies were significantly improved compared with the original
Faster RCNN algorithm.

However, these studies mostly take the industry applications of video surveillance,
autonomous driving, and intelligent robotics as the starting point, and use data acquisi-
tion methods mainly from near-parallel views such as roadside surveillance cameras and
in-vehicle cameras. The pedestrian target size in UAV images is small, while the target
size in natural images is usually large, and the corresponding algorithms are difficult
to be fully applicable to the pedestrian detection task in UAV images. To address such
problems, Liu et al. [6] enriched the feature information by adding convolutional layers
to the YOLOv3 network structure, which in turn enhanced the detection capability of
small-sized pedestrians. Mao et al. [7] enhanced the information extraction capability of
the network in spatial dimensions by applying multi-scale segmentation attention units to
deep neural networks, which improved the pedestrian detection in complex backgrounds.
Wu et al. [8] improved the average accuracy rate by 5.09% over the original YOLOv4
network by expanding the object detection scale and introducing the attention mecha-
nism. Zhang et al. [9] proposed an improved lightweight network MobileNetv3 based on
YOLOv3 to reduce algorithm complexity and constructed a new attention module SESAM
in MobileNetv3 to judge long-distance and small-volume objects. Considering the limited
computing power of UAV platforms, Li et al. [10] proposed a lightweight combinational
neural network ComNet for object detection in UAV-borne thermal images. The experimen-
tal results show that the average precisions for pedestrian and vehicle detection improved
by 2%∼5% compared with YOLOv3 model. Jin et al. [11] utilized one emerging method
based on YOLOv3 in high-density pedestrians detection situations and achieved good
results. To improve the near-surface detection performance of UAVs in low illumination
environments, Wang et al. [12] proposed a U-type generative adversarial network (GAN)
to fuse visible and IR images to generate color fusion images. Then, a YOLOv3 model
combined with transfer learning was trained using the fused images and achieved good
results. Kong et al. [13] proposed an improved YOLOv4 model for pedestrian detection
and counting in UAV images, named YOLO-CC. YOLO-CC replaces the backbone with
CSPDarknet-34, and two feature layers are fused by FPN. By embedding the density map
generation method into the network, YOLO-CC can make feature extraction more focused
on small targets. Ma et al. [14] proposed a small-sized pedestrian detection algorithm
based on the weighted fusion of static and dynamic bounding boxes. The experimental
results showed that the proposed method was better than the mainstream object detection
algorithm. Shao et al. [15] proposed a method of aerial infrared YOLO (AIR-YOLOv3),
which combines network pruning and the YOLOv3 method. Compared with the original
YOLOv3, AIR-YOLOv3 has smaller model size while the model AP decreased by only 1.7%.

2. Related Theories
2.1. Single-Stage Object Detection Algorithm

The single-stage object detection algorithm does not require the suggestion frame
stage in the two-stage approach and can directly generate the class probability and position
coordinate values of the object, i.e., the image can be directly detected after a single detection
to obtain the final detection result. The YOLO family of algorithms is a classical single-
stage algorithm that has been iteratively improved since the birth of YOLOv1 [16]. Now,
YOLO algorithm has been well-applied in many industries. Khasawneh et al. [17] used
YOLOv3 to perform automatic K-complex detection in real-time with high accuracy that aid
practitioners in speedy EEG inspection. Huang et al. [18] proposed an improved YOLOv3
detection method for immature apples in the orchard scene and provided a feasible solution
for the automation and mechanization of the apple industry. Abdusalomov et al. [19]
presented a method for real-time high-speed fire detection using YOLOv3 and detected fire
candidate areas and achieved a seamless classification performance compared with other
conventional fire detection frameworks.
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YOLOv5 is one of the widely used object detection networks, which has achieved
good results in various industrial problems by virtue of high detection accuracy and fast
inference. YOLOv5 is similar to the network structure of YOLO series, Figure 1 shows the
YOLOv5 network structure, which consists of an input layer (Input), a backbone feature
extraction network (Backbone), a feature fusion layer (Neck), and output layer (Head).
Among them, input is a three-channel RGB image with an image size of 640 × 640 × 3,
and mosaic data enhancement is used to enrich the detection target image and reduce the
model’s dependence on batch size. Backbone is new CSP-Darknet53 which uses BottleNet
structure for feature extraction. New CSP-Darknet53 mainly consists of C3 and SPPF
structures. The C3 module, by improving the CSP module used in the YOLOv4 [20] model,
enhances the ability of model to capture features. The SPPF structure replaces the Spatial
Pyramid Pooling (SPP) [21] structure to improve the computational speed of the model.
Neck is a structure combining Feature Pyramid Network (FPN) and Path Aggregation
Network [22] (PAN), which fuses the semantic information extracted by the deep network
with the location information extracted by the shallow network. At the same time, feature
fusion is performed between Backbone and Neck to enable the model to obtain more
abundant feature information. Head has three detectors to predict the results for different
size image features.
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Figure 1. YOLOv5 algorithm structure diagram.

Although YOLOv5 has made good achievements, there are certain shortcomings, such
as there is room for improvement in multi-scale object detection tasks containing small
targets, and it requires high hardware computing power. Therefore, in this paper, YOLOv5
is improved and optimized in terms of algorithm model complexity and detection accuracy.
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2.2. Model Compression Methods

Model compression methods generally include the main steps of sparse training and
channel pruning. The purpose of sparse training is to make the weights of unimportant
channels converge to 0, thus preserving important information on a small number of
channels [23]. As the weights of most channels converge to 0, the network becomes
increasingly sparse, usually by using the Batch Normalization (BN) layer [24], which is
used extensively in convolutional neural networks. Channel pruning is used to obtain a
lightweight model by setting a suitable threshold for the weight of the model channels, and
then cropping out the channels with weights less than the threshold [25], and finally fine-
tuning the training so that the accuracy of the pruned model is improved [26]. By iterating
the above process until the accuracy of the model meets the application requirements, the
process is shown in Figure 2.
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3. Research Methodology
3.1. Improved YOLOv5-Based Pedestrian Detection Algorithm for UAV Images

The original YOLOv5 network uses three different sizes of feature maps to detect
targets of different sizes, and three different scales of feature maps are obtained by 8×, 16×,
and 32× down-sampling, and their feature map sizes are 80 × 80, 40 × 40, and 20 × 20
when the input image is 640 × 640 size; among them, the 80 × 80 feature map is used to
detect small targets, and the 8 × 8 image region corresponds to a pixel on this feature map.

However, considering that the UAV image size is usually above 1000 × 1000 pixels,
the proportion of pedestrian targets is generally small, and the receptive field of 8 × 8 is
difficult to express small target pedestrian features. To enhance the detection capability
of the network for small target pedestrians without expanding the resolution of the input
image, a detection layer for small targets is added. As shown in Figure 3, a channel to
Neck is added in the first C3 module of Backbone to fuse with the bottom features after
up-sampling to obtain more semantic information, which becomes an independent P2
small-target detection head in Head after a C3 module extracts features for output. In the
case that the input image is 640 × 640 size, the feature map size of this detection head is
160 × 160, and each feature image element corresponds to the perceptual field of 4 × 4 of
the input image, which facilitates the detection of smaller targets. Meanwhile, this channel
in the PAN structure provides more position information to the P3, P4, and P5 detection
heads by down-sampling to enhance the overall prediction accuracy of the network.
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3.2. Model Compression
3.2.1. Sparse Training

In convolutional neural networks, the BN layer can be used to make the network
converge quickly and improve the generalization ability of the network. Moreover, in the
model compression task, the BN layer can be used to determine the importance of each
channel in the information flow by normalizing the ability to process the data of each
channel to filter out a small number of important channels and achieve the purpose of
network sparse. The formula of BN layer is shown in Equation (1).

ẑ =
zin − µB√
σ2
B + ε

; zout = γẑ + β (1)

where zin, zout are the input and output data of the BN layer, respectively; µB , σ2
B are

the mean and variance calculated from the input data of each network layer, respec-
tively; and γ, β are the scale and offset factors that play a linear transformation in the BN
layer, respectively.

From Equation (1), we can see that γ, as the coefficient of the normalized input
term, directly affects the proportion of input information in the output result. During
the training process of the network, if a channel contains information important to the
target classification, its corresponding γ coefficient is stimulated by the loss function and
become larger; if a channel contains information irrelevant to the classification, the γ

coefficient keeps becoming smaller under the influence of the loss function. Therefore, the
γ coefficients converge to a stable value after the training is completed, and this value can
be a quantitative indicator of the importance of the channels.



Sensors 2022, 22, 9171 6 of 14

In order to improve the sparsity of the network using the γ coefficient, the network
sparsity can be combined with the training process of the neural network to reconstruct the
loss function as shown in Equation (2).

L = ∑
(x,y)

l( f (x, W), y) + λ ∑
γ∈Γ

g(γ) (2)

where (x, y) is the training input and target, W is the training weight, λ is the penalty
term, and g(γ) is the L1 regularization. The first term in Equation (2) keeps the training
loss function of the original CNN unchanged, and the second term is the penalty function
g(γ) = |γ| imposed on the scaling factor γ. This penalty function allows the network to
further concentrate the weight distribution at the important channels while optimizing the
loss function normally.

3.2.2. Channel Pruning

First, the absolute values of the sparse scaling factor γ are sorted in ascending order,
while a pruning rate (between 0 and 1) is specified for the whole network according
to the demand, which represents the degree of network volume reduction. Next, the
corresponding numbers of convolutional channels with smaller γ are pruned according
to the pruning rate, and finally a compact network is obtained. Generally, the network
performance is reduced after pruning, and in order to recover the network performance,
the compressed model needs to continue iterative training to fine-tune the network weights.
Algorithm 1 shows the process of model compression.

Algorithm 1 Process of model compression

Input: M layers of model, pruning rate α(0 < α < 1)
Output: compact model
while (experimental results meet the requirements) do

Sparsity training and get sparse scaling factor γi
j of j-th channel of i-th layer

Sort γi
j from small to large and get new list L

Threshold t = L[int(α · len(L))]
for i = 1 to M do

for j = 1 to N(channel numbers of i-th layer) do
if γi

j < t delete j-th channel of i-th layer
end for

end for

4. Experiments and Results
4.1. Experimental Data

The experimental data for pedestrian detection were obtained from the VisDrone
public dataset [27], which was collected and created by the AISKYEYE team at the Machine
Learning and Data Mining Laboratory of Tianjin University. The dataset covers differ-
ent scenarios under neighborhoods and suburbs in 14 cities in China, covering diverse
weather and lighting conditions, including people, pedestrians, cars, vans, buses, trucks,
motorcycles, and other targets in a total of ten. The dataset consists of 263 videos and
10,209 still images, of which the VisDrone-DET dataset for image object detection is divided
into 6471 training sets, 548 validation sets, and 3190 test sets. In this experiment, images
with pedestrian annotations (as shown in Figure 4) are selected from typical scenes such as
urban, suburban, night, and daytime, and the data with the problem of missing markers
are eliminated, and the two types of targets, pedestrians and people, are combined into
one category of pedestrians to form an experimental dataset with 4634 pedestrian feature-
rich images. The dataset is divided into training, validation, and test sets in the ratio of
7:2:1, which is used in this experiment training, validation, and testing of the pedestrian
detection network model in this experiment. Figure 5 shows the distribution of all label
sizes in the dataset, the horizontal coordinates represent the ratio of target frame width to
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image width and the vertical coordinates represent the ratio of target frame height to image
height. It can be found that the ratio of pedestrian target size to image size in this dataset is
generally small.
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Considering that the pedestrian sizes in the VisDrone dataset are generally small, we
used the K-means method to re-cluster the anchors in the VisDrone dataset in order to
improve the accuracy of the model. As shown in Table 1, the original YOLOv5s model
clustered to obtain 9 anchors corresponding to 3 detection layers of different scales, and the
improved YOLOv5s_P2 model clustered to obtain 12 anchors corresponding to 4 detection
layers of different scales.
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Table 1. Anchors obtained by clustering on the VisDrone dataset.

Model Detection Heads Anchors

YOLOv5s
P3 [3, 6], [4, 10], [7, 9]
P4 [6, 13], [9, 13], [7, 18]
P5 [10, 22], [16, 21], [18, 36]

YOLOv5s_P2

P2 [3, 5], [4, 8], [6, 8]
P3 [4, 12], [6, 13], [9, 12]
P4 [7, 17], [12, 15], [10, 23]
P5 [14, 26], [27, 27], [23, 50]

4.2. Accuracy Metrics

In this paper, we used the accepted performance evaluation metrics in the field of
object detection: Precision, Recall, and Average Precision (AP) under different Intersection
over Union (IoU) thresholds to measure the detection accuracy of the algorithm [28]. In
this paper, the value of the IoU used to produce the results is 0.5.

Precision is the ratio of the number of pedestrians correctly detected by the model
to the total number of pedestrian targets identified as pedestrians in the test set; Recall is
the ratio of the number of pedestrians correctly detected by the model to the total number
of pedestrian samples in the test set; and AP value is a comprehensive evaluation metric
determined by the area under the P–R curve plotted by Precision and Recall, the better
the algorithm detection effect the higher the detection accuracy. Recall and Precision are
defined as:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP denotes the pedestrian samples correctly identified, FP denotes the background
samples misidentified as pedestrians, and FN denotes the pedestrian samples misidentified
as background.

4.3. Model Training

In this paper, the YOLOv5s model is selected and trained under Ubuntu 18.04 oper-
ating system (Dell Co., Ltd., Beijing, China) with the deep learning framework Pytorch
1.12.0, and the image processor (GPU) is NVIDIA GeForce GTX TITAN X (12GB video
memory). Using the default hyperparameters of the YOLOv5s network, the training and
test image sizes were set to 640 × 640, the batch size used for the model was set to 16, and
the number of training epochs was set to 200. The training process is shown in Figure 6, and
the accuracy of the model gradually increases until convergence as the number of epochs
increases. In Figure 6, YOLOv5s represents the original model, and YOLOv5s-improved
represents the model with the addition of small object detection layer. It can be seen from
the figure that the accuracy of the improved model is higher than that of the original model.
The Precision–Recall curves of YOLOv5s and YOLOv5s-improved are shown in Figure 7.

The pruning coefficient λ is set to 0.005, and the model with the addition of the small
object detection layer is trained sparsely. As shown in Figure 8, with the sparse training of
the model, the γ parameter of the BN layer gradually converges to 0. After 300 epochs of
training, the model converged, and at this time most of the γ parameters of the BN layer
converged to 0, indicating that there are indeed low-information channels in the network
model, which lays the foundation for the channel pruning later. Figure 9 shows the changes
in the model accuracy on the validation set during the sparse training process. It can be
seen that the accuracy of the model gradually decreases between 0 and 80 epochs, which
corresponds to the process that the γ parameters of the BN layer converge to 0 rapidly in
Figure 8; in the subsequent 220 epochs, the distribution of the γ parameters of the BN layer
no longer changes significantly, while the the accuracy of the model also gradually rises
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and returns to the original value until convergence. After the sparse training, the pruning
ratio is set to 0.3 for channel pruning, and the pruned model is fine-tuned for training to
obtain the final lightweight model.
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4.4. Experimental Analysis

After improvement and compression, the model was evaluated for accuracy on the
test set, and the results are shown in Table 2. Compared with the original YOLOv5s model,
the improved model with the addition of the small object detection layer (YOLOv5s_P2)
improved 1.3% in accuracy, 3.4% in Recall, and 4.4% in AP. The introduction of the small
object detection layer does improve the overall accuracy, especially on the recall rate,
indicating that the problem of missing small-sized pedestrians in the original YOLOv5s
model was alleviated to some extent. The introduction of the small object detection layer
makes the minimum down-sampling of the detection head of YOLOv5 model 4× rather
than 8×. When the input size of image is 640 × 640, a pixel of the feature map in the small
object detection layer corresponds to the 4 × 4 image area, which matches the size of the
small target.

Table 2. Experimental results of our methods.

Model Precision
Rate

Recall
Rate AP Model

Size (MB)
Single Picture

Detection Time (ms) GFLOPs

YOLOv5s 0.701 0.507 0.572 14.4 4.6 15.8
YOLOv5s_P2 0.714 0.541 0.616 15.2 7.5 18.5
YOLOv5s_P2+
Compression 0.733 0.542 0.612 11.2 6.8 16.3

At the same time, the introduction of the small object detection layer also brings
additional computational overhead, with the size of the model expanding from 14.4 MB
to 15.2 MB, GFLOPs of the model expanding from 15.8 to 18.5, and the single picture
detection time rising from 4.6 ms to 7.5 ms. This also shows the limitation of this method:
the introduction of small objects detection layer inevitably leads to the increase in model
parameters, model size, and computational complexity.

Compared with the improved model before and after compression, the model size
is reduced from 15.2 MB to 11.2 MB, GFLOPs are reduced from 18.5 to 16.3, and the
single picture detection time is reduced from 7.5 ms to 6.8 ms while maintaining nearly
same AP, which shows that model compression method has better results in reducing the
computational resource overhead while maintaining high accuracy. In the process of sparse
training, the main information in the model is gradually gathered into some important
channels, while the information in the unimportant channels has little impact on the output
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of the results; therefore, when we remove the unimportant channels, on the one hand, we
obtain a more compact model than before; on the other hand, the accuracy of the model
does not have a greater impact. However, this method also has limitations. According
to the theory of information entropy, there is a limit to the compression of any piece of
information. Therefore, if you want to compress the model while maintaining the original
accuracy, there is also a limit, rather than infinite compression.

In addition, we trained YOLOv7 (the latest algorithm of the YOLO family) [29] and
FCOS with ResNet50 (an anchor free object detection method) [30] on the VisDrone dataset
for 200 epochs and compared them with our method, and the results are shown in Table 3.
YOLOv7 and FCOS are higher than our method in Precision, but lower in Recall and
AP, and the model sizes of YOLOv7 and FCOS are generally large and not suitable for
deployment on low computing power platforms. It can be seen that our method can
achieve a better balance between accuracy and efficiency and is suitable for deployment on
embedded devices.

Table 3. Experimental results of different models.

Model Precision Rate Recall Rate AP Model Size (MB)

YOLOv5s_P2+
Compression 0.733 0.542 0.612 11.2

YOLOv7 0.902 0.282 0.525 149.2
FCOS 0.856 0.274 0.463 128.8

Figure 10 shows the comparison of the detection results of the original YOLOv5s
model and the compressed YOLOv5s_P2. The first column shows the ground truths of
dataset, the second column shows the detection results of the YOLOv5s model, and the
third column shows the detection results of the compressed YOLOv5s_P2.

In general, the problem of small target detection was solved to a certain extent. Taking
the first line and the last line of images as an example: the person sitting on the ground
in the upper left corner of the first line of images and the people riding on the square
in the upper left corner of the fourth line of pictures were detected in the compressed
YOLOv5s_P2, which is too small for YOLOv5 to detect.

In addition, the introduction of the small object detection layer also promoted the
detection of the other three detection layers, integrating more location information and
semantic information to make object detection more accurate. Taking the second line and
the third line of images as an example: in the second line, the target marked by blue ellipse
is easily confused with the background, which leads to missed detection in the YOLOv5s
model; in the third line, the three people gathered at the top of the image are close to each
other, which leads to occlusion phenomenon and the YOLOv5s model only detected one of
the three people. However, in the results of compressed YOLOv5s_P2, these two problems
did not occur.

But compressed YOLOv5s_P2 has some problems. For example, in the last line of
images, compressed YOLOv5s_P2 obtained one missed detection and one false detection,
which shows that the method in this paper has limitations.
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5. Conclusions

The task of pedestrian target detection in UAV images is one of the research hotspots
in the field of remote sensing. In this paper, a small object detection layer is introduced to
YOLOv5, and after sparse training and channel pruning, high accuracy and recognition
rates are achieved on the research dataset. The method has better performance and higher
efficiency compared with YOLOv5, and is one of the effective solutions for pedestrian
target detection in UAV images. In the subsequent research, we will continue to optimize
the model and improve the detection speed of the model to achieve real-time pedestrian
detection for UAV embedded platforms.
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