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Abstract: Cosmic ray neutron sensors (CRNS) are increasingly used to determine field-scale soil
moisture (SM). Uncertainty of the CRNS-derived soil moisture strongly depends on the CRNS count
rate subject to Poisson distribution. State-of-the-art CRNS signal processing averages neutron counts
over many hours, thereby accounting for soil moisture temporal dynamics at the daily but not
sub-daily time scale. This study demonstrates CRNS signal processing methods to improve the
temporal accuracy of the signal in order to observe sub-daily changes in soil moisture and improve
the signal-to-noise ratio overall. In particular, this study investigates the effectiveness of the Moving
Average (MA), Median filter (MF), Savitzky–Golay (SG) filter, and Kalman filter (KF) to reduce
neutron count error while ensuring that the temporal SM dynamics are as good as possible. The
study uses synthetic data from four stations for measuring forest ecosystem–atmosphere relations
in Africa (Gorigo) and Europe (SMEAR II (Station for Measuring Forest Ecosystem–Atmosphere
Relations), Rollesbroich, and Conde) with different soil properties, land cover and climate. The
results showed that smaller window sizes (12 h) for MA, MF and SG captured sharp changes closely.
Longer window sizes were more beneficial in the case of moderate soil moisture variations during
long time periods. For MA, MF and SG, optimal window sizes were identified and varied by count
rate and climate, i.e., estimates temporal soil moisture dynamics by providing a compromise between
monitoring sharp changes and reducing the effects of outliers. The optimal window for these filters
and the Kalman filter always outperformed the standard procedure of simple 24-h averaging. The
Kalman filter showed its highest robustness in uncertainty reduction at three different locations, and
it maintained relevant sharp changes in the neutron counts without the need to identify the optimal
window size. Importantly, standard corrections of CRNS before filtering improved soil moisture
accuracy for all filters. We anticipate the improved signal-to-noise ratio to benefit CRNS applications
such as detection of rain events at sub-daily resolution, provision of SM at the exact time of a satellite
overpass, and irrigation applications.

Keywords: soil moisture; cosmic ray neutron sensor; synthetic neutron flux; Savitzky–Golay filter;
Kalman filter; median filter

1. Introduction

Soil moisture is a critical component of the climate system. It plays a crucial role in
moisture distribution and energy through soil–atmosphere feedback [1]. Furthermore,
soil moisture influences the evolution of the planetary boundary layer during the day [2],
the surface Bowen ratio, convective available potential energy [3,4], and cloud forma-
tion [5]. It is vital for crop production in the agriculture sector when the right amount of
water and conditions are known. The sustainable production of agricultural products
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is dependent on the effective management of agricultural water. The availability of
water resources for agricultural production is significantly threatened by global climate
change [6,7]. For improved use of this resource in agriculture, it is imperative to monitor
soil moisture, which is a crucial variable in irrigation management and hydrological
modeling, groundwater recharge, and flood and drought forecasting.

Several techniques for estimating point and spatial soil moisture have emerged over
the past decades. The point or in situ source measurement methods include Time Do-
main reflectometry (TDR), Frequency Domain Reflectometry (FDR), and gravimetric soil
sampling. A comprehensive review of in situ soil moisture estimation technique was
conducted by [8], emphasizing their strengths and weakness. One common limitation of
these methods is their uncertainty in spatial representativeness, as they only measures
1 dm3. The extent of coverage of these techniques in depth and area is limited due to the
substantial human effort and destructive nature of the installation and high maintenance
costs. In recent years, remote sensing satellites made substantial improvements in soil
moisture observation [9]. However, although they have a good spatial coverage, they offer
only shallow soil moisture (0 to 3 cm [10]) and a temporal resolution of 1.5–4 days [11].
These significant temporal and spatial resolution shortcomings make practical applications
of retrieved hydrologic products difficult for users.

CRNS is a non-invasive technique for estimating soil moisture on relevant scales that
have shown promising results [12,13]. Cosmic ray neutron sensors work using principles
of nuclear physics. Fast neutrons express a high affinity to hydrogen due to the mass of
a neutron being similar to that of a nucleus of the hydrogen atom [13]. Soil moisture can
be estimated using the CRNS method by considering the inverse relationship between
soil moisture and aboveground epithermal neutrons [14]. The CRNS estimates the
average areal soil moisture over a radius of 120–240 m and a depth ranging between
15 and 80 cm depending on the moisture content of the soil and other parameters
(aboveground biomass, atmospheric humidity, etc.). The introduction of the CRNS
method for estimating soil moisture bridged the gap between point measurement and
satellite estimation of soil moisture. Previous studies showed excellent agreement
between CRNS-estimated soil moisture in comparison to co-located point-scale sensor
networks covering a similar footprint at sites with advantageous conditions [15,16]. It has
been shown that performance is lower at sites with less favorable conditions (locations
with high atmospheric pressure, high biomass density, and humid climates) [17–19].
The external factors that influence the neutron count include atmospheric pressure [20],
incoming neutron flux (see, e.g., [15,17]), specific humidity [21], and biomass [17,22].
Several factors contribute to the presence of neutrons in the atmosphere, including the
attenuation of incoming neutrons from space by air molecules. As a result, surface
neutrons change with changes in air mass. In addition, the atmospheric water content
influences neutron abundance at the surface in two ways—integral water content in
the whole air column moderates neutrons above the neutron detector. The presence of
near-surface water vapor in the sensor’s footprint reduces the soil albedo component.
Standard correction techniques are proposed for correcting these external or atmospheric
feedbacks (see [15,17,21,22]). Other sources of uncertainty in neutron flux are calibration
parameter (N0), detector size, and neutron count rate, which follow Poisson statistics [15].
Various neutron detectors exist of different sizes and efficiencies. Typically, a larger
detector volume improves the counting statistics and thus reduces the uncertainty of the
soil moisture product. A Poissonian distribution applies to a non-continuous quantity
such as a neutron count, becoming Gaussian (i.e., normal) distribution for neutron
counts above 30 counts per hour (cph) [23]. Conditions such as wet environment,
dense vegetation and low elevation affect the CRNS detection of soil moisture within its
accuracy limit [24]. In such environments, the error is mainly caused by the uncertainty of
the neutron count and other hydrogen sources. However, since the count rate is inversely
related to soil moisture, drier soils lead to more accurate measurements. Neutron
counts are usually recorded as hourly totals, which are subsequently converted to soil
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moisture. Commercially available detectors for cosmic rays still exhibit a high degree of
noise at hourly resolution, leading to high uncertainties in soil moisture measurements
(example, [25]). This is usually resolved by applying a temporal filter to reduce the
uncertainties in soil moisture.

Several studies have examined how some environmental factors that affect neutron
intensity, as seen in the previous paragraph. These early studies focused on reducing un-
certainties caused by environmental factors such as biomass, water vapor, and incoming
neutron intensity on the measured neutron counts. The temporal changes induced by
these factors on the CRNS counting rate were studied and corrected. An example of such
studies was by [15], whose work highlights a correction factor to account for the changes
in the cosmic ray, and high-energy neutron intensity, which affects the epithermal–fast
neutron count measured by a CRNS probe. In addition, [21] developed a correction
factor for removing the influence of the temporal changes in atmospheric water vapor
content on neutron count. Other studies [15,17,22,24,26] contributed significantly to
the correction of uncertainties associated with belowground and aboveground biomass.
In the case of temporally stable additional hydrogen pools, estimating their contribution
and subtracting it from the neutron counts when converting them into volumetric soil
moisture contents reduces uncertainty [15]. According to [17], more complex corrections
are required when hydrogen pools change with time. A systematic uncertainty analysis
has been conducted by [27], who quantified how the vegetation or soil properties affects
the CRNS product. Furthermore, [28] proposed an area-sensitivity function based on
the number of neutrons emanating from a given radial distance. All these proposed
correction functions formed the basis for standard correcting raw neutron counts to
remove uncertainty in soil moisture estimates. These studies focus on reducing un-
certainties due to some environmental factors. However, additional hydrogen sources
must be accounted for, especially if their contributions change significantly over time to
reduce error. It is evident that averaging removed high-peaked noise that we attribute to
uncertainty in the count rate. In addition, a few studies investigate the performance of
smoothing algorithms on neutron count uncertainty reduction. In some studies, tempo-
ral filters such as the moving average and Savitzky–Golay filter were applied to the CRN
measurements to reduce the uncertainty in the soil moisture estimates (e.g., Ref. [29]:
window length of three measurements; Ref. [30]: window length of seven measurements).
Most of these studies apply just one filter with either one or two selected window sizes.
Ref. [25], for instance, applied only the moving average filter with window sizes 3 and
9 to reduce the uncertainty before estimating soil moisture. However, studies such as
Ref. [31] explored the ability of the moving average and Savitzky–Golay to improve
neutron count measurement from the Hydrological Open Air Laboratory (HOAL) in
northeast Austria to be used in daily rainfall estimation. In their study, the authors
applied the moving average and Savitzky–Golay filter after the standard correction
on the neutron count. One question in this context is whether the variables used for
standard calibration of neutron count propagate uncertainty to estimated soil moisture.
In addition, a limitation of MA and SG filters for filtering neutron count is dependent
on the total counts, which are related to the site location (i.e., geomagnetic latitude),
elevation, and detector size or type. Another challenge is the ability of the smoothing
filters to accurately capture rapid changes in soil moisture due to short-term events such
as irrigation or precipitation. For this reason, the dynamic behavior should be better
taken into account when reducing the uncertainty of the neutron count using temporal
aggregation methods.

In this paper, we explore four smoothing techniques’ ability to optimize the neutron
count’s signal-to-noise ratio while maintaining temporal dynamics of soil moisture using
synthetic neutron flux created for different geographical locations. The use of synthetic data
creates more accurate and scalable surrogate data by adjusting parameters to suit the actual
neutron flux measurement. Another advantage of using synthetic data is that the noise
added to data is known, while real observations are usually subject to additional noise from
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various interferences that affect the performance of the correction methods. This method
is unreliable for testing filter performance because real signals usually include different
noises. Again, synthetic data can be created where actual neutron data are scarce. The
study aims to identify an optimal filter and window size, which can return the true value
and capture major peaks or patterns in noisy neutron flux measurements. The remainder of
the manuscript is organized as follows: Section 2 presents data and the statistical procedure
that was used for the analysis. Section 3 presents and discusses the results of four filters at
four different sites. Finally, in Section 4, the conclusions and recommendations are given.

2. Materials and Methods
2.1. Study Site

The study was conducted for four selected Eddy-Covariance (EC) stations in Europe
and West Africa, where the prevailing climate presents different dynamics of soil moisture.

Geographically, these stations also demonstrate strong gradients in cut-off rigidi-
ties, which is a quantity that describes how Earth’s geomagnetic field shields cosmic-ray
particles. The geographical distribution and location of the EC stations are shown in
Figure 1. These sites include the West African Science Service Centre on Climate Change
and Adapted Land Use (WASCAL) observation network (Gorigo), the GHG-Europe EU-FP7
project (SMEAR II and Conde) and the TERENO (TERrestrial ENvironmental Observato-
ries) test site Rollesbroich. From South to North, the Gorigo site is located in the northern
part of Ghana within the Sudan savannah tropical climate zone, and the land surface of this
site is a heavily degraded grassland. In Spain, the Conde site is classified as an evergreen
broadleaf forest with a Mediterranean climate by the International Geosphere-Biosphere
Programme (IGBP). Almost all trees and shrubs remain green year-round. The Rollesbroich
test site is a grassland catchment located in the temperate climate zone, western Germany,
in the Eifel Mountain range. It covers an area of about 20 ha with altitudes ranging from
474 to 518 masl [32,33]. The Hyytiälä Forestry Field Station of the University of Helsinki,
Finland, hosts the SMEAR II (Station for Measuring Forest Ecosystem–Atmosphere Rela-
tions) measurement site in boreal homogeneous Scots pine (Pinus sylvestris) stands on flat
terrain. Site characteristics are summarized in Table 1.

Figure 1. Map showing geographical location of stations used in the study. The countries where
stations are located are highlighted in red.
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Table 1. Summary of the site characteristics.

Station Lon/Lat Bulk Density (g/cm3) Rigidity Cut-Off (GV) Other Site Information

Gorigo 0.82/10.93 1.54 14.68 Highly degraded grassland
Loamy sand soil

Rollesbroich 6.30/50.63 1.09 3.27 Managed grassland
Silty clay loam

SMEAR II 24.29/61.84 0.85 1.11 Homogenous Scots pine trees
Silty sand [34]

Conde −3.22/37.91 1.37 8.33 Evergreen trees and shrubs.
Clayey loam [35]

2.2. Data

Hourly soil moisture (SM) for the sites was obtained and used as an input to create
the synthetic neutron flux. This ensures that the resulting synthetic neutron flux depicts the
temporal dynamics of each site’s SM observation. As a requisite requirement, the neutron
flux is always corrected from atmospheric influence such as surface pressure, atmospheric
water vapor and incoming neutron. Therefore, surface pressure and absolute humidity
data were obtained for each site. These datasets are necessary to standard correct the
parameter’s influence on neutron flux when estimating SM. It is also needed to introduce
or add the effect of these parameters when creating synthetic neutron flux data from
soil moisture. In addition, for the correction of incoming neutron’s influence on the
neutron counts, a reference incoming neutron intensity data was obtained from the neutron
monitor at Jungfraujoch, which is available via the Neutron Monitor Database (NMDB)
at www.nmdb.eu (accessed on 24 March 2022). Data on cut-off rigidity were taken from
the Cosmic-ray Soil Moisture Observing System (COSMOS) website (http://cosmos.hwr.
arizona.edu/Util/rigidity.php) accessed on 25 March 2022).

Generating Synthetic Neutron Signal for Selected Sites

The major steps for creating the synthetic neutron signal are shown in Figure 2. This
study considered only of the soil moisture at 5 cm depth for generating the synthetic
neutron data because it is sensitive to irrigation and precipitation events. In addition, the
CRNS is highly sensitive to near-surface soil moisture dynamics. The so-called corrected
neutron flux Ncorrected, which represents the neutron flux free of atmospheric disturbances,
is calculated from the 5 cm soil moisture observations. Based on the [12] proposed relation
between gravimetric soil moisture and neutron flux, we estimated the Ncorrected using
Equation (1):

Ncorrected =

(
0.0808

SWC
ρbd

+ 0.115
+ 0.372

)
× N0, (1)

N0 represents the calibrated parameter, while ρbd represents the bulk density at the site. As
suggested in different studies [26], N0 can be calibrated based on independent soil sampling
campaigns. For the purpose of assessing how four different filters reduce uncertainty in
CRNS counts, N0 was kept constant across all sites. The standard procedure for neutron
flux to soil moisture conversion requires the correction of the neutron counts of atmospheric
factors that significantly affect the neutron flux. These factors include atmospheric pressure
(p), incoming neutron intensity (i) and the absolute humidity (h). The corrected neutron
count (Ncorrected, hereafter referred to as NTrue), accounts for the corrections as denoted in
Equation (2):

Ncorrected = Nuncorrected × f (p, i, h), (2)

where f (p, i, h) is the atmospheric correction function on neutron counts and Nuncorrected is
the neutron flux observed by CRNS if no white noise or Poisson noise would occur to the
CRNS signal. Therefore, Nuncorrected was derived based on Equation (2). In addition, CRNS

www.nmdb.eu
http://cosmos.hwr.arizona.edu/Util/rigidity.php
http://cosmos.hwr.arizona.edu/Util/rigidity.php
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are subject to Poisson noise (±n) which is added to the neutron flux Nuncorrected to yield the
final synthetic neutron flux actually observed by the CRNS at each site:

Nsyn = Nuncorrected ± n (3)

Figure 2 shows the synthetic neutron (gray) counts generated for the various study
sites using its corresponding soil moisture data and atmospheric parameters. The temporal
dynamics of the generated synthetic neutron flux capture well the seasonal pattern of soil
moisture of the sites.

Figure 2. Graphical representation of synthetic neutron flux Nsyn (gray) generated for Finland (a),
Gorigo (b), Rollesbrioch (c) and Conde (d). The black line represents the neutron flux NTrue only
subject to the soil moisture change, while red is the uncorrected neutron flux Nuncorrected subject to
atmospheric factors and soil moisture.
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2.3. Analysis

Most studies [29,30] that employ CRNS data resort to moving window filters
(e.g., moving average with a window of 24 h). This study used four time-series fil-
ters to reduce uncertainty in the generated synthetic neutron signal created for each
site. These filters include the moving average (MA), median filter (MF), Savitzky–Golay
(SG) and the Kalman filter (KF). The filters present unique ways of removing noise
from noisy measurements. An SG filter, for instance, smooths sequential data using
least-squares polynomial approximation sliding windows. The polynomial is fitted to a
set of input samples and then evaluated at a point within the approximation interval,
which is similar to discrete convolution [36,37]. While the median filter estimates values
based on the median of the sorted values series of values presented by the window size,
Kalman filters recursively estimate the current state using previously estimated states
and current measurements. The self-correcting feature of the KF algorithm makes it
suitable for improving noisy neutron count measurements. The filters present unique
ways of removing noise from noisy measurements. A detailed description of these filters
can be found below.

Applying a filter at the right stage of converting neutron count to soil moisture
is crucial. Therefore, this study designed two scenarios (A and B) to estimate soil
moisture from CRNS. Two scenarios (A and B) were tested for the estimation of soil
moisture from the synthetic neutron flux. Thus, for scenario A, the synthetic neutron flux
was first corrected for atmospheric influence (pressure, incoming neutron intensity and
absolute humidity) before the filtering process. In the case of scenario B, the synthetic
neutron data were corrected after filtering. Ultimately, these scenarios also help us
determine whether the standard correction process introduces some uncertainty in the
soil moisture estimation. A complete summary of the various steps used for the analysis
is shown in Figure 3.

Figure 3. Schematic flow for generating synthetic neutron flux. Key steps for analysis of two scenarios
when filters are applied after (scenario A) or before (scenario B) standard correction of synthetic
neutron signal.

2.3.1. Moving Average

The moving average filter remains one of the most common tools for smoothing
data, which is often used to capture trends in cyclic statistical surveys. Following the
Central Limit Theorem, successive averaging values of a noisy signal should produce a
more accurate estimate of the actual signal [38]. Therefore, computer scientists commonly
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use a moving average (MA) as a filter based on the last n data values. A moving average
filter is a Finite Impulse Response (FIR) filter used to smoothen the signal from noisy
fluctuations. It helps retain the true signal representation or sharp step response. The
smoothness of the output signal is determined by the filter’s window length (w), which
also makes data point transitions sharper. Most simple moving averages are expressed
based on Equation (4) as

YMA(n) =
1
w

w−1

∑
i=0

N(t− i), (4)

where w is the filter window length considered for averaging, and N(t) is the synthetic
neutron flux of n point to be filtered. The window size (w) is the only parameter that can be
adjusted for this algorithm. A larger window reduces noise while the lag is also increased.

2.3.2. Savitzky–Golay Filter

The Savitzky–Golay (SG) smoothing approach is one of the common methods used
for noise filtering [39]. In 1964, Savitzky and Golay proposed the Savitzky–Golay filter as
an efficient method for smoothing signals. The Savitzky–Golay method filters noise based
on two parameters [39,40]: polynomial order and window size. The core of this algorithm
fits a low-degree polynomial in the least squares sense on the samples within a sliding
window—the new smoothed value of the center point obtained from convolution. The SG
is a particular type of low-pass filter which replaces each value of the time series with a
new value obtained from polynomial fit to 2m + 1 neighboring points including the point
to be smoothed, with m being equal to or greater than the order of the polynomial. General
expression for the filter can be given as Equation (5):

YSG(n) =
∑+m

i=−m ci N
H

, (5)

where synthetic neutron flux data are indicated with N, and the filter coefficient ci is the
polynomial of a specific degree that retains higher values. ci and N are linearly combined
to obtain the smoothed value, Y. The convoluting integer H equals the smoothing window
size (2m + 1). In addition, +m and −m denote signal points on the right and left of the
current signal point. One of the best advantages of this filter is that it preserves features of
the time series such as the maxima and minima. These features are usually flattened by
other smoothing techniques, such as moving averages.

2.3.3. Median Filter

The standard median filter is a nonlinear signal processing method capable of remov-
ing noise and transients from a signal without distorting the baseline of the time series.
In contrast with linear filters, the median filter can remove the effect of extreme noise input
values. Median filtering is implemented by allowing a window to slide across the points
of a sequence. The data points within the window are sorted in ascending or descending
order and replaced with the median of the original values. This produces output data that
are often smoother than the original. The input and output (YMF) of a one-dimensional
standard median filter of window size 2m + 1 is given as

YMF = med{N(t− 1), N(t) . . . , N(t + 1)} (6)

where Y is the estimated value at a point in time t.

2.3.4. Kalman Filter

Unlike the above-mentioned techniques, Kalman filters make assumptions about the
system that generates the signal. It is most commonly used for navigation and tracking
when data from different sensors are paired or by using equations. Kalman filters have
two models: a process model and a measurement model. The Kalman filter addresses the
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problem of estimating the state of a discrete-time controlled process governed by the linear
stochastic difference equation. The Kalman filter (KF) uses the observed data to learn about
the unobservable state variables, which describe the model state. Using the initial state
value N0

syn and variance P0, the prediction equations are expressed as

Nt−1
pred = ΘNt−1

syn (7)

Pt−1 = ΘPt−1Θ′ + Q (8)

Therefore, the optimal neutron can be estimated using Equation (9) as:

Ykal = Nt−1
pred + Kt

(
Nt

syn − Nt−1
pred

)
(9)

where is the Kalman gain estimated from the predicted variance (P). The difference(
Nt

syn − Nt−1
pred

)
in Equation (9) is the measurement residual, which indicates a discrep-

ancy between the predicted and actual measurements. A residual of zero means that the
two are in complete agreement. The Kalman filter improves its prediction based on the
Expectation-Maximization (EM) algorithm [41].

2.3.5. Error Measurement

We evaluated the performance of these filters using the Root Mean Square Error
(RMSE), Mean Bias Error and Pearson’s correlation coefficient (r) [36,42]. Bias and RMSE
was used in this study to describe the error’s overestimation/underestimation and mag-
nitude simultaneously. A quantitative measure of the degree of dispersion of predictions
could be obtained by both RMSE and MBE [36,43]. The Pearson correlation coefficient
is produced via the Pearson product-moment correlation (r). This coefficient efficiently
measures the degree of linearity between two continuous variables [44]. It can vary from−1
(negative linear relation) to +1 (Positive linear relation). A value zero shows no relationship
between the two variables. The error measurements used in this study are the Mean Biased
Estimator (MBE), Root Mean Squared Error (RMSE), standard deviation (σ), and Pearson’s
correlation (r) using Equations (10) to (13):

MBE =
1
n

n

∑
i=1

Noriginal − N f iltered, (10)

RMSE =

√
1
n

n

∑
i=1

(N f iltered − NTrue)
2, (11)

sdev(σ) =

√
∑n

i=1 Ni − N̄
n

, (12)

r =
∑(N f iltered,i − N̄ f iltered)(NTrue,i − N̄True)

∑(N f iltered,i − N̄ f iltered)2(NTrue,i − N̄True)2 , (13)

where N̄ denotes the mean of the neutron flux (N), which is either filtered synthetic neutron
(N f iltered) or true neutron flux NTrue. The n represents the neutron flux size considered
for the analysis. The efficiency of smoothing filters (MA, MF, SG, and KF) was evaluated
using the MBE, RMSE, standard deviation, and Pearson’s correlation coefficient. Differ-
ent window sizes (6–105 in steps of 6 h) were used to test the performance of three of
these filters (MA, MF, and SG). Aside from the filters that operate based on the sliding
window technique, the Kalman filter’s output was also evaluated with the error statistics
stated above.
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3. Results
3.1. Evaluation of Filters’ Performance at the Four Sites

The application of the Kalman filter (KF) algorithm to the synthetic neutron signal
of each site improved the signal-to-noise ratio. Figure 4 shows the statistical measure
of the performance of Kalman-filtered synthetic neutron signal for the four study sites.
According to the results, a robust linear agreement (correlation) was observed at SMEAR
II (0.91), Gorigo (0.95), Rollesbroich (0.98) and Conde (0.97), as indicated in Figure 4d.
To this effect, the KF reduced the standard deviation of the synthetic neutron flux at
SMEAR II (26.34 cph), Gorigo (52.07 cph), Rollesbroich (37.99 cph), and Conde (39.74 cph)
by 52.05 %, 22.61 %, 28.38 % and 26.52 %, respectively. Figure 4b presents the σ obtained
after applying KF. The standard deviations for the true neutron flux, the synthetic signal,
and the KF-filtered neutron signal are given in Table 2. These results show a significant
reduction of the Poisson noise introduced during the signal creation. A possible expla-
nation for this might be that the KF filter implements the Expectation Maximization
algorithm and consists of two iterative steps (Kalman smoother and maximization of the
expected log-likelihood). This reduces the variance in its predictions. More than a single
run (in this study, 100 iterations of the EM algorithm) is required to improve the noise
estimation sampled from a given distribution; therefore, every simulation run results in
different state estimates [45].

Table 2. Standard deviations of true neutron flux, the synthetic signal and the Kalman-filtered signal
for the four sites.

Station True Neutron Synthetic Neutron KF-Filtered Neutron

Gorigo 43.05 52.07 40.30
Rollesbroich 31.16 37.99 29.99
SMEAR II 13.31 26.34 12.63
Conde 29.24 39.74 29.20

When the number of iterations increases, the Kalman gain decreases, decreasing the
signal error [41]. Although KF showed good uncertainty reduction results, a negative
bias was observed at Gorigo (1.72 cph) and Rollesbroich (2.63 cph). Whereas, at Conde
(0.31 cph) and SMEAR II (2.64 cph) sites, a positive bias was observed (see Figure 4a).
KF underestimated at Conde and SMEAR II, while it overestimated at Rollesbroich
and Gorigo.

Moreover, the remaining filters (MA, MF and SG), which use the principle window
size as part of their algorithm, also showed significant results. Figure 5 shows the MA,
MF and SG performance for different window sizes at the four sites. The correlation
pattern between the filtered synthetic signal by various filters and the true neutron count
increased with the window size increasing to an optimal window size. At the same time,
RMSE and σ for all filters decreased as the window size increased to an optimal window
size. Observations of SG and MA concerning the window size corroborate with [31],
where similar results were reported when they evaluated these filters for different
window sizes (less than 24 h). In addition, similar behavior of the filter performance as a
function of the window size was demonstrated by [46]. The correlation values observed
for the SMEAR II site for all filters at different window sizes ranged between 0.90 and
0.98, as shown in Figure 5d. This correlation range observed varies at all sites: at Gorigo
(0.80–0.96), Rollesbroich (0.75–0.98) and Conde (0.90–0.99) sites for the different window
sizes tested in this study (see Figure 5h,l,p).
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Figure 4. Performance of Kalman filter at the different station based on the MBE (a), standard
deviation (b), RMSE (c) and correlation (d).

These are expected results because these algorithms are implemented on data points
to estimate smoothed values; the number of data points that was considered in fitting
increases as window size increases. This yields a better polynomial result especially with
SG filters, which corresponds with RMSE and MBE decreasing, and better performance
is acquired. In addition, for MF and MA, when the filter window size is too small,
details of neutron count events occurring at specific periods are lost. On the other
hand, irrelevant information (outliers) is maintained for the new neutron count value
estimation if it is too large. These filters will result in different soil moisture/neutron
fluxes, which is mainly due to the window size (MA and MF) and polynomial order
(SG filter). The maximum and minimum window points of the correlation and RMSE,
respectively (see RMSE and correlation plot in Figure 5), could be regarded as the trade-
off or optimal point. Therefore, this implies that the trade-off point will better estimate
the neutron counts closer to the actual value. In terms of the filters’ performance to
window sizes, the correlation pattern observed for all sites at smaller window sizes
was such that MA > MF > SG-3 > SG-4. However, when the window size increased,
the performance was SG-4 > SG-3 > MF > MA. It is important to note that a small window
size will perform better with low noise density than with high noise density [47]. Large
window size limits the ability of these filters to follow rapid but relevant changes in the
synthetic neutron counts. On the other hand, a narrow window may cause the results to
over-fit the time series, since it retains some of the noise.
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Figure 5. Performance of MA (red), MF (blue) and SG filters as a function of window length. The MBE,
standard deviation, RMSE and correlation are presented in columns for SMEAR II (a–d), Gorigo (e–h),
Rollesbroich (i–l) and Conde (m–p) for the four stations (in rows), respectively.

Thus, for accurate determination of relevant peak signals, the critical factor is the
number of data points smoothing the window size, which are located in the half-width
of the peak. As the number of data points at both sides of the peak is large, the value of
the peak point is reduced. Although this improves filtering, it also causes a reduction in
the amplitude, especially if the peaks are relevant. Another parameter that improves error
reduction is the polynomial order of the SG filter. We can, therefore, always approximate
data inside a window with a low-order polynomial once we set its width. For sharper
peaks, this might be different. Increasing the polynomial’s order would be the best solution.
If the order is kept the same (without expanding the window width), the polynomial
would closely mimic the noise oscillations. However, the signal is unsmoothed if the
polynomial order equals the window length (n = w): the polynomial order (n) uses w
window length to estimate the polynomial coefficients. Therefore, if n = w, smoothing
is not performed, but the polynomial interpolates the data points [48,49]. Consequently,
choosing a polynomial order less than the window length is always necessary. Our results
also suggest that as the polynomial order of the SG filter increases, the optimal window
size becomes relatively large, as observed between SG-3 and SG-4 correlation for all sites.
Thus, the trade-off or optimal point between the window size and polynomial order where
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errors are minimal occurs at a shorter window for the 3rd-order polynomial compared to
the 4th-order polynomial SG variant. Despite strong positive correlations for all filters at
all window sizes, the MA, MF and SG filters underestimated the original neutron flux at
SMEAR II (MBE; −0.55 to −0.39 cph), Rollesbroich (MBE; −0.50 to −0.19 cph) and Conde
(MBE; −3.0 to −0.90 cph). At Gorigo, the MF filter overestimated the original neutron flux
for all window sizes tested (MBE; 0.50 to 1.20 cph). Meanwhile, the SG and MA filters
showed underestimation with mean bias error ranging between −0.50 and 0.01 cph for
all window sizes. The results for the SG filter indicate a slight difference in output as the
polynomial order increased, which is similar to the results reported by [50].

3.2. Optimal Filter and Window Length

A filter’s robustness and efficiency lies in its ability to preserve relevant peaks or slopes
from the synthetic neutron flux that appear in the actual neutron flux. Figure 6 shows the
time series of the reconstructed synthetic neutron flux from the SG filters, MA, MF, and KF.
Each filter depicted a similar pattern as the sites’ true neutron flux (Ncor). Additionally,
the most considered smoothing technique (MA 24-h window size) in CRNS was included
in the analysis of this section. Results showed that the optimal window size for MA, MF,
SG-3 and SG-4 varied from site to site (see Table 3).

Figure 6. Time series of synthetic neutron flux (gray dot) and filtered flux using the MF, MA, SG and
KF filtering techniques at SMEAR II (a), Gorigo (b), Rollesbroich (c) and Conde (d) sites. The black
line represented the original neutron flux.

Selection of the best window size for MA, MF, and SG depended on the correlation,
mean bias error and the standard deviation assessed in Section 3.1. At various sites, KF,
MA, MF, SG and MA-24 filters captured the seasonal pattern of the true neutron flux at
all sites, as shown in Figure 6. On the other hand, the 24 h MA results showed some
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delay in periods of sharp changes and a slow change rate in neutron flux (Figure 6b,c).
The window size tuning parameter exhibits effects such as reducing noise and lag
introduction. The small window size retains some amount of noise while following
rapid changes. As the window size increases, noise reduction improves, but lags are
introduced into the result (especially the MA filter). Therefore, filtered synthetic neutron
flux has a lower bias, RMSE, and standard deviation than the original neutron flux.
The optimal window size obtained in this study reflects the trade-off between large
and small window sizes. These results are more helpful in filtering data for short-term
or long-term soil moisture changes to suit hydrological purposes, e.g., resulting from
irrigation, drought, precipitation and snowmelt.

Table 3. Optimal window size (h) of various filters for the different sites.

Station MA (h) MF (h) SG-3 (h) SG-4 (h)

Gorigo 30 36 78 84
Rollesbroich 18 18 30 48
SMEAR II 36 42 54 84
Conde 18 12 30 36

Since these are important hydrological processes, a filtered CRNS should be able to
capture such sharp soil moisture changes as well.

Therefore, two selected cases of sharp neutron (converted to soil moisture) changes at
Gorigo and Rollesbroich were used to test the performance of the used filters (Figure 7a–d).
To this end, a comparison between the actual change observed from the true soil moisture
and the soil moisture estimated using all filters (MA, MF, SG, and KF) was performed
using the optimal windows identified at these two sites. In addition to using the optimal
windows identified at these two sites, we tested the performance of the filters (MA, MF,
SG3 and SG4) at a window size of 12 h. During the event period (pale red shaded region in
Figure 7), smaller windows (Gorigo: SG3-12 h, Rollesbroich: SG3-12 h) captured the sharp
changes in soil moisture more closely. Generally, as expected, the smaller window size
(12 h) captured the short changes in the soil moisture better, in which the SG3-12 h filter
produced the lowest relative percentage difference at Gorigo (17.08%) and at Rollesbroich
(12.04 %) as indicated in Figure 7b,d respectively. These results confirm that the 12-h filters
can follow rapid changes quite well, but, on the other hand, they performed worst in case
of moderate soil moisture variations during a more extended period and thus failed to
capture the long-term trend. This result implies that the optimal filter type and window
size may also depend on soil moisture application, i.e., 12-h filters should be used in case of
studies in which rapid soil moisture changes are expected, e.g., flood forecast or irrigation
management. In contrast, filters with larger window sizes should be employed in case of
long-term water balance studies.

A further assessment of the performances of the optimized filter results for the MA,
MA-24 h, MF, SG and KF for the individual sites is presented in Figure 8. All filters
underestimated the true neutron flux at SMEAR II, Gorigo and Rollesbroich sites (Figure 8).
Nevertheless, the Kalman filter performed best at SMEAR II with a standard deviation
(12.62 cph) close to NTrue (13.29 cph) among the filters followed by the SG-4, SG2/SG3 and
MA, as presented in Figure 8a.

For the Gorigo data, the MF showed the best performance. The filter showed the
highest correlation (0.97), least RMSE (11.25 cph) and a standard deviation (41.34 cph)
similar to the true neutron counts (see Figure 8b). Again, the Kalman filter presented
the best results at both Rollesbroich and Conde. Overall, the Kalman filter showed great
improvement in reducing uncertainties in the neutron flux to preserve important features
similar to the true neutron flux. As expected, all filters whose algorithm uses filtering
windows show a reduction in the measurement uncertainty with increasing window size to
some point. For most filters, the amount of noise reduction is proportionally accompanied
by signal degradation [40], which may distort the filtered signal.
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Figure 7. Relative percentage difference (b) and (d) of filter response to shape changes in soil moisture
at Gorigo (a), Rollesbroich (c) sites, respectively. The pink shaded region represents the interested
event.

Figure 8. Performance of the optimal window size of the different filtering approaches at SMEAR
II (a), Gorigo (b), Rollesbroich (c) and Conde (d). The original neutron flux is denoted by the black dot.
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3.3. Uncertainty Propagation from CRNS Standard Correction

Soil moisture estimates from cosmic ray neutrons are also liable to the systematic
error of atmospheric parameters (absolute humidity, pressure, temperature and incoming
neutron intensity) used in the correction of the neutron counts. The procedure of neutron
count data pre-processing prior to noise reduction also helped improve the error reduction
in cosmic neutron counts. Figure 9 shows the effect of applying the various filtering
techniques after (Scenario A) and before (Scenario B) the standard atmospheric correction
on neutron counts. Soil moisture is improved when the synthetic neutron flux was corrected
before filters were applied, as shown in Figure 9a. In contrast, estimated soil moisture
shows a random fluctuation compared to the observed soil moisture (Figure 9b) when the
standard correction was performed after the filtering process. Parameters used for standard
correction (absolute humidity, incoming neutron intensity and surface pressure) could be
the source of these random fluctuations. This improvement in the soil moisture estimates is
expressed with the RMSE, as indicated in Table 4.

Table 4. RMSE comparison of scenarios A and B regarding soil moisture uncertainty reduction.

Filter Scenario A (cm3/cm3) Scenario B (cm3/cm3)

KF 0.006 0.008
MA (30 h) 0.006 0.009
SG-3 (78 h) 0.007 0.009
SG-4 (84 h) 0.007 0.008
MA (24 h) 0.007 0.009
MF (36 h) 0.007 0.009

Figure 9. Time series of observed soil moisture (black line) at Gorigo and estimated soil water content
from filtered synthetic neutron count based on two scenarios. Scenario A (a): Filters applied after
atmospheric correction. Scenario B (b): Filters applied before atmospheric correction.

The results indicate that the correction parameters are also prone to some amount of
uncertainty that is propagated to soil moisture during the correction of neutron flux. These
uncertainties may influence hydrological modelling and soil moisture representation in
forecasting models.
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4. Conclusions

Accurate soil moisture estimates are essential for crop management planning, cali-
bration of hydrological models and improving extreme event forecasts. Therefore, it is
imperative to enhance existing soil moisture estimation techniques by reducing uncertain-
ties in their measurement.

This study aimed to assess the optimal approach for reducing cosmic ray neutron
count uncertainties using four different filtering algorithms. The investigation of filter
performance at different sites has shown that the Kalman filter is robust in uncertainty
reduction. The KF presented a unique algorithm which maintained relevant sharp changes
in the neutron count at three locations. In addition, the evaluation of Moving Average
(MA), Median filter (MF) and Savitzky–Golay (SG) filters revealed that the choice of
optimal window size changes based on the level of noise present in the synthetic data. One
interesting result emerging from this study is that a relatively large window size captures
the long-term pattern in soil moisture well. In contrast, shorter window sizes capture
short-term events well, especially in combination with the Savitzky–Golay filter. Therefore,
short window sizes should be used for analyzing short-term events such as irrigation,
infiltration, or snowmelt. In contrast, a larger window size is more suitable for studying
long-term hydrological events, such as droughts.

The second significant finding was that the variable used for the standard correction
also introduced errors in CRNS soil moisture estimates. Therefore, it is recommended that
the CRNS count be filtered after standard correction before further analysis. However,
one limitation of the current study was to assess filter performance on a seasonal basis.
We, therefore, caution that, when applying these filters, identifying window size and
interpreting sub-daily soil moisture data from CRNS, care should be taken. We anticipate
that our study’s results will help create better awareness of CRNS data filtering and reduce
uncertainty in CRNS soil moisture product.
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