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Abstract: Silicon photomultipliers are relatively new devices designed as a matrix of single-photon
avalanche detectors, which have become popular for their miniature dimensions and low operating
voltage. Their superior sensitivity allows detecting low-photon-count optical pulses, e.g., in ranging
and LIDAR applications. The output signal of the photomultiplier is a non-stationary stochastic
process, from which a weak periodic pulse can be extracted by means of statistical processing.
Using the double-exponential approximation of output avalanche pulses the paper presents a simple
analytical solution to the mean and variance of the stochastic process. It is shown that even for an
ideal square optical pulse the rising edge of the statistically detected signal is longer than the edge
of individual avalanche pulses. The knowledge of the detected waveform can be used to design an
optimum laser pulse waveform or algorithms for estimating the time of arrival. The experimental
section demonstrates the proposed procedure.

Keywords: silicon photomultiplier; non-stationary Poisson process; correlated averaging; range
finding

1. Introduction

The detection of weak optical pulses has traditionally been based on vacuum photo-
multiplier tubes or avalanche photodiodes (APD). Photomultipliers are mature and bulky
devices with more than 80 years of history. A semiconductor photodiode represents a more
practical device that can be miniaturized and easily integrated into an opto-electrical setup.
The ultimate goal of sensitivity, i.e., single-photon detection, can be achieved by means
of photodiode design modification. APDs working as single-photon avalanche detectors
(SPAD) appeared in the 1980s [1,2]. SPAD is a photodiode designed for operation above the
reverse breakdown. An incident photon triggers a self-sustaining avalanche, which should
be quenched by an external circuitry. The simplest method, known as passive quenching,
uses a series resistor. When the avalanche develops, the diode voltage decreases below the
breakdown and the avalanche ceases, which creates an easily detectable electrical pulse.
However, the pulse waveform does not depend on the number of photons that hit the
diode active area.

Silicon photomultipliers (SiPMs) are devices that have appeared only recently [3].
The analog SiPM, which the study is focused on, is a matrix of hundreds of SPADs with
integrated quenching resistors, all of them connected in parallel. In case of digital SiPM,
the active quenching and detection logic are integrated with each pixel [4]. The size of
individual SPAD pixels ranges from 10 µm to 100 µm. The devices are manufactured
either by a custom process with vertical photodiode-like current flow or by a CMOS-
compatible process with planar structures on a common substrate, which differ in the
transient behavior [5]. In contrast to the single SPAD, the current of analog SiPM is in a
certain range proportional to the number of detected photons because there are many pixels
ready to be triggered [6]. In addition to their linearity, the main advantage of SiPMs is the
low operating voltage (tens of volts), which greatly simplifies the design of battery-powered
devices, high gain (up to several millions), and insensitivity to magnetic field.
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One of the problems of SiPMs is the long tail of output pulses, which may reach up to
hundreds of nanoseconds. If their rate is low, they can be easily separated. When the rate
grows, the tails start to overlap and the separation of individual pulses is more complex or
even impossible. One of the options to filter-out the pulse tail is to couple each SPAD pixel
to the output with a capacitor [7]. The high-pass filter created passes only the fast edge of
the avalanche pulse. Such devices have been developed by the SensL Company (now ON
Semi) and are used in this study.

SiPMs have become popular in applications that require the detection of optical
signals with a low photon count. The applications include ranging and remote sensing [8,9],
spectroscopy in biology and nuclear sciences [10], quantum physics [11], and numerous
other fields [3]. A considerable effort has been devoted to the development of SiPM theory.
Similar to APD, the high gain of SiPM is accompanied by excess noise, but the physical
essence is different. The avalanche breakdown of one particular pixel may trigger, with a
certain probability, one or more neighboring pixels. The physical mechanism includes a
direct optical crosstalk with almost no delay or a release of trapped charge carriers with a
microsecond delay [12]. As a result of those correlated breakdowns the charge associated
with each detected photon is slightly different, creating an excess noise [13,14].

The output signal of SiPM is composed of pulses generated by triggered SPAD pixels.
More or less complex circuit models have been elaborated for studying the output pulse
waveforms, for simulations, and for optimizing the readout electronic circuits. The usual
approach consists in a combination of linear RC structures, whose complexity depends
on the number of parasitic components considered, with controlled switches to model
the breakdown [5,15,16]. Although the approach works well for Spice simulations, it is
also desirable to express the pulse waveform by means of an analytical function. Many
papers, such as [15,17], suggest using the double-exponential waveform for the output
pulse approximation. The paper [18] presents a more complex model. Based on the double-
exponential approximation of the pixel current, the multiple-exponential approximation of
the output pulse is proposed. A similar result based on a detailed analysis of pixel layout
can be found in [16]. Depending on the internal chip design, the output pulse may contain
a “fast” derivative component as a result of the non-negligible parasitic capacitance of the
quenching resistor [19]. The fast component can improve the timing resolution of photon
detection [20].

The work presented in this paper was motivated by the problem of detecting very weak
periodic optical pulses in the presence of background radiation, which can be found, for
example, in LIDAR applications. In this case, the SiPM response is indistinguishable from
pulses that are due to the optical background for one shot of the probing laser. Multiple
laser pulses should be transmitted, and the response is obtained by means of statistical
processing of the SiPM output, a technique known as correlated averaging [21,22].

The output signal of SiPM is a continuous-time stochastic process. The Monte Carlo
simulation, used by many authors [23–25], is a straightforward solution, which allows
including such phenomena as correlated pulses, decreased detection efficiency during pixel
recharge, and a finite number of pixels in the matrix. However, Monte Carlo is a numerical
method without the possibility of obtaining a closed-form analytical solution with in-depth
insight. A series of theoretical papers by S. Vinogradov [26,27] are focused on including the
correlated events into the classical Poisson process. The papers are focused on the detection
of scintillation events without explicitly describing the output signal. A similar problem is
treated in [28], where a detection of a distinguishable scintillation event is studied.

The paper [29] focuses on obtaining a solution for an output pulse rate incorporating
non-ideal phenomena of SiPM. The method presented leads to an analytical solution for
the stationary case. However, in the non-stationary case, the solution is only available in a
discretized form. A comprehensive statistical model for the output charge of SiPM for an
arbitrary light-pulse shape is presented in [30], but not for the directly measurable voltage.
A simplified solution for the output signal statistics is presented in [31] with a focus on the
signal-to-noise ratio of a single event and not the complete waveform.
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The presented paper combines the well-established multiple-exponential modeling
of SiPM pulses with the statistical theory and derives closed-form expressions for the
mean and variance of the stochastic output signal for high-pass coupled SiPMs. To
the best knowledge of authors, the topic has not been published yet. It can be shown
that the averaged pulse differs from the directly measurable pulses at the SiPM out-
put. The presented model is simple in that it allows an analytical solution, but at the
same time, it includes all essential phenomena. The theoretical waveforms can be used
to design optimum laser pulse waveforms or advanced filtering in full-wave detection
techniques [32]. Section 2 of the paper presents the mathematical procedure, and Section 3
describes the experimental setup and measurement results.

2. Modeling of SiPM Signals
2.1. Approximation of Output Pulse

The analog SiPM represents a matrix of single-photon avalanche detectors, often called
pixels, with integrated quenching resistors, which are connected to a common supply bus [33].
The output signal is then a superposition of pulses from individual pixels. Figure 1 shows
two possible methods of collecting the output signal.

Figure 1. Methods of sensing the output pulses of analog SiPM: (a) Measuring the supply current pulses
vp1 through a small series resistor Rs [15]. (b) A special output vp2 with capacitive coupling [7].

The commonly used principle of obtaining the output signal shown in Figure 1a is based
on measuring current pulses on the common supply bus [15]. Note that Figure 1a shows only
the principle schematic diagram. A more practical arrangement with a grounded sensing
resistor, which can be directly connected to a broadband amplifier, is shown in [34].

APDs in pixels are biased to a voltage VBIAS, which is above their reverse breakdown
voltage VBR, resulting in a Geiger-like behavior [35]. The difference VOV = VBIAS − VBR
is called “overvoltage”, and its value determines many parameters of the SiPM [33]. An
incident photon triggers, with a certain probability, a self-sustaining avalanche breakdown
causing a sub-nanosecond rise in the reverse current. After triggering the avalanche, the
photodiode represents a relatively small resistance Rd and its reverse voltage decreases
rapidly with a time constant τD. When the voltage reaches approximately the level of VBR,
the avalanche ceases and the diode becomes non-conducting again. Then, the pixel node
capacitance is recharged through the quenching resistor Rq with a time constant τC � τD,
Figure 2.

Figure 2. Waveform of the pixel voltage vpix(t) for a single avalanche event.
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Based on numerous studies, such as [15,18,36], the standard practice is to approximate
the avalanche pulse with the double-exponential waveform. Let us remove, for simplicity, the
bias from the vpix waveform and consider the pulse, triggered at t = 0, with the positive sign

vb(t) = VBIAS − vpix = V0

(
e−αt − e−βt

)
σ(t), (1)

where α = 1/τC, β = 1/τD, and σ(t) is the Heaviside step function, which guarantees that
vb(t) = 0 for t ≤ 0. The parameter V0 can be determined from the pulse amplitude.

In the theoretical case of zero parasitic capacitance of Rq (Cq = 0) the supply current
pulse as well as the voltage pulse vp1 across Rs can also be represented by the double-
exponential waveform (1). As discussed in [18,19], the nonzero Cd causes a “fast” com-
ponent to appear on the output pulse waveform, which can be modeled using multiple
exponential terms because the transfer function from a pixel to the output is more complex

vp1 f (t) =
[
V1

(
e−α1t − e−β1t

)
+ V2

(
e−α2t − e−β2t

)]
σ(t). (2)

Figure 3 illustrates the use of waveforms (1) and (2) for the normalized responses
vp1 of two devices from ON Semi, which differ in the fast component. The response of
the 10 µm-pixel device can be approximated with the double-exponential function (1).
However, the 35 µm-pixel device shows a clear “fast” component in the response, thus
the multiple-exponential function (2) should be used. The data for fitting were obtained
by means of digitizing reference waveforms from [37], where the device was illuminated
with a 50 ps laser pulse at 420 nm wavelength. Note that fitting functions (1) or (2) to the
measured response represents an approximation of complex dynamics by a system of the
second or the fourth order, respectively. The measurement of nanosecond pulses requires
a careful design of laboratory fixtures to avoid wave reflections, which usually appear as
overshoots or oscillations on the measured waveforms.

Figure 3. Approximation of the normalized output waveform for ON Semi SiPMs: (a) 10 µm-pixel
device (MICRORB-10010) with the double-exponential response (1): V0 = 1.343, α = 8.076× 107 s−1,
β = 1.044 × 109 s−1; (b) 35 µm-pixel device (MICRORB-10035) with the fast component and
multiple-exponential approximation (2): V1 = 0.5896, α1 = 1.233× 107 s−1, β1 = 0.4610× 109 s−1,
V2 = 11.096, α2 = 0.5069× 109 s−1, β2 = 0.5914× 109 s−1.

The typical charging times, i.e., the pulse tails, may reach hundreds of nanoseconds.
The slow tail can be suppressed by high-pass filtering [3], which can be done externally
or by means of a modification of the device design. The SensL Company has introduced
a modification of the common SiPM design, adding another terminal with capacitive
coupling to individual pixels [7], see Figure 1b.
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To get a reasonable, yet simple, approximation of the pulses vp2 (Figure 1b), let us start
with the transfer function of a simple RC high-pass filter of the first order:

H(s) =
sτH

1 + sτH
, (3)

where τH is the time constant (or practically the dominant time constant). The transfer
function corresponds not only to the device in Figure 1b, but also to all arrangements where
a capacitive coupling is used to remove the DC component from the amplified signal.

The corresponding impulse response of the filter (3) will be

h(t) = δ(t)− 1
τH

e−t/τH , (4)

where δ(t) is the Dirac pulse. In other words, the filter realizes a lossy derivative of the
input signal.

Let us consider the pixel pulse (1). The output voltage is given as a convolution of the
pulse with h(t). For the double-exponential waveform and zero initial conditions, we have

vp2 = h(t) ∗ vb(t) = V0

(
Ae−αt + Be−βt + Ce−γt

)
σ(t), (5)

where “∗” denotes the convolution, A = − α
γ−α , B = β

γ−β , C = γ(α−β)
(γ−α)(γ−β)

, and γ = 1/τH .
It can be easily verified that the filtering removed the DC component∫ ∞

0
vp2(t) dt = 0. (6)

Figure 4 shows fitting the approximation (5) to the output waveform vp2 of a 10 µm-pixel
device ON Semi MICRORB-10010 (Phoenix, AZ, USA) . The maximum approximation error
at the peak is 8%. Note that the identified parameters α and β of (5), see Figure 4, differ from
those shown in Figure 3 for the same device. The measured waveform vp1 on the main output
differs from the pixel voltage vpix, and therefore vp2 is not a simple high-pass version of vp1.
Similar to Figure 3, the reference waveforms were taken from [37] for the device illuminated
by a 50 ps laser pulse.

Figure 4. Fitting the function (5) to the measured capacitive-output waveform vp2 for MICRORB-
10010: V1 = 2.315, α = 5.860× 107 s−1, β = 1.045× 109 s−1, γ = 0.7067× 109 s−1.

2.2. Stochastic Process of Photon Detection

The optical power illuminating the detector active area can be considered as the
Poisson flow of photons, which trigger, with a certain probability, avalanche breakdowns
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in the pixel matrix. If there are enough other pixels in the fully charged state during the
recovery period of a triggered pixel, the event rate depends linearly on the rate of incident
photons, i.e., the photomultiplier operates in the linear regime [38].

As the rate of incident photons increases, fewer and fewer cells are in the fully charged
state and the probability of photon detection decreases. The device becomes saturated. In
case of short light pulses (tpulse � τC), the saturation process can be modeled by using the
formula [38]

Nt = Npix

(
1− e

−PDE Nph
Npix

)
, (7)

where Nt is the number of triggered pixels, Npix is the total number of pixels, Nph is the
number of incident photons, and PDE is the photon detection efficiency, i.e., the probability
that an incident photon triggers the avalanche. For (PDE Nph) � Npix, we obtain an
obvious relation

λt = λphPDE, (8)

where λph is the average photon rate, and λt is the average rate of photon-induced
avalanche pulses in the SiPM device. There are several physical mechanisms that cause a
primary avalanche event to trigger, with a certain probability and delay, avalanches in the
same or neighboring pixels [14,39]. The afterpulsing and crosstalk causes the number of
detected pulses to be higher than the number of primary photo-events.

To obtain representative results, let us assume that the photomultiplier operates in the
linear regime and the process of avalanche breakdowns can be modeled as a non-stationary
(or non-homogeneous) Poisson process [40] whose only parameter is the time-variable
average event rate λ(t)

λ(t) = λ0 + λp(t). (9)

The constant part λ0 corresponds to the spontaneous breakdowns (Dark Count Rate)
and the constant background radiation. The time-dependent part λp(t) = K pR(t) corre-
sponds to the received optical pulse pR(t). K is the ratio of proportionality depending on
detector operating conditions and the photon wavelength.

Let us consider, for simplicity, that each avalanche breakdown results in the same
output pulse. The output voltage v(t) is a superposition of the pulses shifted in time. Note
that if two or more events are close enough, the pulses cannot be separated, as shown in
Figure 5 for the events t2 and t3.

Figure 5. Output signal of SiPM as a filtered Poisson process.

The output signal v(t) is a filtered non-stationary Poisson process. Random Dirac
pulses of the Poisson process corresponding to the avalanche events excite a hypotheti-
cal linear dynamical system with the causal impulse response vp(t). The linear system
represents the SiPM itself and all the other analog blocks (preamplifier, filter, etc.) in the
acquisition chain. The output voltage v(t) is a continuous-time non-stationary stochastic
process with the mean and variance [40]

E[v(t)] = e(t) = λ(t) ∗ vp(t), (10)
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VAR[v(t)] = s2(t) = λ(t) ∗ v2
p(t), (11)

where “∗” denotes the convolution, and vp(t) is the pulse waveform, which can be either (2)
or (5). However, the subsequent analyses will be performed for the high-pass filtered
waveform (5), for which the experimental verification was performed in Section 3. Note
that the characteristics (10) and (11) can only be estimated from multiple realizations of
the stochastic process v(t), but not from the time series of one realization. Therefore, it is
applicable in situations where the process can be periodically restarted, such as ranging
applications or probing specimens with periodic laser pulses. It is expected that the pulse
period is long enough for all transients to decay. The sampling of v(t) in the receiver is
started by the synchronization pulse from the transmitter. The pulse transmission repeats
and we have multiple realizations, i.e., multiple sampled vectors, of the non-stationary
process in the memory, as shown in Figure 6. Then, the statistical parameters of v(t) can be
estimated from the corresponding samples across the realizations.

Figure 6. Multiple realizations of the process v(t) and the matrix of samples.

Having the matrix V ∈ RN×M of M samples of output voltage for each of the N
realizations, the mean and variance of the k-th sample can be estimated in a standard way:

ek =
1
N

N

∑
i=1

Vi,k, (12)

s2
k =

1
N − 1

N

∑
i=1

(Vi,k − ek)
2. (13)

2.3. Statistical Analysis

The reception of low photon-count signals whose power is below the background
radiation is typical, for example, for ranging applications. In this case, the SiPM output
pulses during the reception of the reflected optical signal are indistinguishable from back-
ground pulses for one particular realization of v(t). The signal detection is possible only by
estimating (10) from multiple laser shots, which is known as the technique of correlated
averaging. Figure 7 shows the configuration of the range-finding system considered.
However, the methodology is applicable to all setups with a nontrivial optical signal path.

Figure 7. Rangefinder with a complex target.

Let a single transmitted pulse with the power waveform pT(t) be reflected back by
the target and received as pR(t). The target surface may be complex and the received
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pulse will include components of pT(t) with a different delay (for example, a one-meter
depth corresponds to a 6.6 ns delay). Therefore, the target should be characterized by its
impulse response r(t) [41]. If we omit the propagation attenuation and the propagation
delay 2L12/c, the received pulse waveform will be

pR(t) = pT(t) ∗ r(t). (14)

If the target is a perpendicular plane at a sufficient distance, the impulse response can be
approximated by the Dirac pulse [41].

Let us consider the reflected pulse reception with non-negligible background radiation.
Because the sum of Poisson processes is also a Poisson process [40], the components
of (9) can be analyzed independently. The rate λ0 corresponds to the stationary process of
the background radiation and dark pulses, and λp(t) corresponds to the non-stationary
reception of the optical signal pR(t).

Let us assume an analysis of the high-pass filtered signal (5). Combining (9) with (10)
and (11), we have for the mean and variance

e(t) = (λ0 + λp(t)) ∗ vp2(t) = e0(t) + ep(t), (15)

s2(t) = (λ0 + λp(t)) ∗ v2
p2(t) = s2

0(t) + s2
p(t). (16)

Let us suppose that the analog processing channel including the photomultiplier has
been switched on sufficiently long before the sampling starts. In the limit case, we have for
the stationary part

lim
t→∞

e0(t) = lim
t→∞

λ0 ∗ vp2(t) = λ0 lim
t→∞

∫ t

0
vp2(τ)dτ = 0, (17)

lim
t→∞

s2
0(t) = lim

t→∞
λ0 ∗ v2

p2(t) = λ0 lim
t→∞

∫ t

0
v2

p2(τ)dτ = S2
0. (18)

Because vp2 does not have a DC component (see (6)), the mean corresponding to the
background radiation is always zero. It can be easily shown that (18) converges to

S2
0 = λ0V2

0
(β− α)2

2(α + γ)(β + γ)(α + β)
, (19)

which always gives a positive value, confirming the contribution of the background radia-
tion to the detected noise.

Let us consider an ideal square laser pulse and an ideal target with r(t) = δ(t). Without
the propagation delay, the non-stationary received component will be

λp(t) = Λ0(σ(t)− σ(t− Tw)), (20)

where Λ0 is the mean photon rate of the pulse, and Tw is the pulse width. The corresponding
mean and variance will be after some rearrangements

ep(t) = λp(t) ∗ vp2(t) = Λ0

(∫ t

0
vp2(τ)dτ −

∫ t

0
vp2(τ − Tw)dτ

)
, (21)

s2
p(t) = λp(t) ∗ v2

p2(t) = Λ0

(∫ t

0
v2

p2(τ)dτ −
∫ t

0
v2

p2(τ − Tw)dτ

)
. (22)

Note that vp2 is causal, and therefore vp2(t) = 0 for t < 0 in (21) and (22).
Figure 8 shows the simulated response of the mean ep(t) and standard deviation

sp(t) to a 20 ns square optical pulse for the waveform (5) with parameters from Figure 4.
To better understand the waveform, the plot also contains a single pulse vp2(t) plotted
with a dashed line. With respect to (21), dep(t)/dt ∝ vp2(t) for 0 < t < Tw. Thus, the
maximum edge slope of ep(t) corresponds to the maximum of vp2(t) and the maximum of
ep(t) corresponds to the zero crossing of vp2(t).
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Figure 8. Mean and standard deviation of v(t) for Tw = 20 ns, and Λ0 = 1: (a) Normalized mean ep(t)
computed using (21). The dashed line shows a single pulse of vp2 for comparison. (b) Normalized
standard deviation sp(t) computed using (22).

3. Experimental Study
3.1. Test Setup

Figure 9 shows the block diagram and photograph of the experimental setup for
measurements of SiPM response to weak optical pulses. The photomultiplier is located in a
chamber and is illuminated by a multimode optical fiber. The optical pulses are generated
by an 850 nm VCSEL from a modified Gigabit Ethernet SFP module. The laser is driven
directly from a port of Xilinx ML-505 FPGA board (San Jose, CA, USA) without any DC
pre-bias. A RC network is used between the 3.3 V FPGA output and the laser to limit the
operating current and to compensate for the slow rising edge of unbiased VCSEL. This
arrangement ensures that the laser is actually turned off outside the pulse duration. An
optical attenuator decreases the pulse power to a suitable level. The chamber also contains
a regulated and optically attenuated LED to simulate the background radiation. The SiPM
supply current is monitored with a precise Keysight 34465A ammeter (Colorado Springs,
CO, USA).

The SiPM output is connected to a 30 dB wideband preamplifier based on INA-02184
gain block (Gain = 30 dB, bandwidth 0.1 MHz–2 GHz). The amplified signal from SiPM and
synchronization pulses from FPGA are digitized using Tektronix DPO 7254 oscilloscope
(Beaverton, OR, USA). The instrument is capable of two-channel recording with the length
of 25× 106 samples at a speed of 5 GSa/s. Complete data processing is done in Mathworks
Matlab (Natick, MA, USA).

Figure 9. Block diagram (a) and photograph (b) of the experimental setup. The measuring chamber
is wrapped in aluminum foil to block the ambient light.
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Figure 10 shows the measuring chamber designed from Thorlabs optomechanical
parts. The ON Semi photomultiplier MICRORB-10035 (Phoenix, AZ, USA) is placed in
the middle of a 1 inch round-shape printed circuit board with MMCX connectors. The
biasing scheme is recommended by the manufacturer [34]. The positive terminal of the
power supply is grounded to get ground-referenced output signals. The fixture has two
outputs: “SLOW” (vp1) sensing the photomultiplier supply current and “FAST” (vp2) with
a capacitive-coupled output shown in Figure 1b. Table 1 summarizes the typical datasheet
parameters of MICRORB-10035. All measurements were done for bias voltage VBIAS = 33 V.
During the experiments, the chamber was wrapped in aluminum foil to block room light,
which leaked in through the printed circuit board, as shown in Figure 9b.

Figure 10. Measuring chamber (a) and the SiPM fixture (b).

Table 1. Main parameters of MICRORB-10035.

Parameter Typical

Breakdown Voltage (VBR) 25 V
Overvoltage (VOV) 7 V (10 V max)
Number of Microcells 620
Responsivity (905 nm, typ. VOV) 240 kA/W
Dark Count Rate 2.6 MHz
Dark Current 1.5 µA
Afterpulsing 1%

3.2. Event Rate and DC Current

During the experiment, the SiPM active area was illuminated by a constant optical
power from the LED embedded in the measuring chamber. The VCSEL pulse generator
was switched off. The DC current of SiPM is composed of charges drawn by each avalanche
breakdown. With respect to a relatively low afterpulse rate (see Table 1), we can consider
that each breakdown represents approximately the same charge. However, the breakdowns
can occur almost simultaneously resulting in a higher pulse. Figure 11 shows an example
record with different amplitudes.

As this study is focused on the detection of low-photon-count pulses, the measurement
was performed for low event rates, where the individual pulses are distinctive in the output
waveform. A procedure written in Matlab was used to detect single, double, and triple
events to correctly estimate the rate. The result in Figure 11b was obtained from a single-
channel record of 50× 106 samples at a rate of 5 GSa/s.
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Figure 11. Measuring the event rate: (a) Example record with multi-event pulses. (b) Estimated event
rate as a function of DC current.

The first point in Figure 11b corresponds to the room-temperature dark count rate. The
obtained values DCR = 2.5 MHz and Idark = 0.83µA correspond well to datasheet values.
Then, the LED current was increased and the process of spontaneous “dark” breakdowns
merged with photon-induced breakdowns with an expected linear dependence of the rate
on current

λ ≈ K IDC, (23)

where the proportionality constant was found K = 2.77 MHz/µA. The right vertical axis of
Figure 11b shows the corresponding average optical power computed from the photomul-
tiplier responsivity.

3.3. Pulse Analysis

The FPGA board generates optical pulses of selectable length with a repetition fre-
quency of 2 MHz. The oscilloscope records SiPM output signal and synchronization pulses
from FPGA, both of which are used by software to find the (re)start of the stochastic process.
The repetition rate was chosen as a compromise between a sufficient time for transient
decay and the number of events that can be recorded in the oscilloscope memory.

Figure 12 shows an example record of raw signals for the background rate
λ0 = 5.54 MHz (IDC = 2 µA) and pulse rate Λ0 = 27.7 MHz (see (9) and (20)). The rates
we set by means of measuring the DC current using relation (23). The measuring of DC
current is much faster during experiments than determining event rates in the software.
The FPGA pulse length was set to 100 ns with 2 ns rising and falling times. The pulse is
placed between the syncs so that the measurement is not affected by the electrical crosstalk,
as shown in Figure 12. Note that the vp2 pulses are actually negative and they are inverted
for Matlab postprocessing. The average number of pulse events per pulse duration is
3.32 including the background radiation. The waveform of vp2 documents that during the
optical pulse reception, only a few avalanche events occurred. Given the average event
rate λ, the probability that at least one event occurs in the interval T is

P(k > 0, T) = 1− e−λT . (24)

The estimations of mean and standard deviation of the non-stationary stochastic
process were computed from N = 9998 recorded repetitions, i.e., from 9998 realizations of the
process, using (12) and (13). The captured time interval was 5 ms with 25× 106 samples. The
pulse origin was shifted to 50 ns in Figure 13a, which shows the estimated waveforms of e(t)
and s(t). The mean of the stationary background process is zero. Therefore, the waveform
e(t) corresponds directly to (21). However, the standard deviation of the background
process S0 is not zero and therefore sums with the pulse deviation sp(t) (22).

s2(t) = S2
0 + s2

p(t) (25)



Sensors 2022, 22, 9134 12 of 15

as both processes are inseparable. Note that the estimation of e(t), i.e., the correlated
averaging, is a stochastic process itself, as it is computed from a finite number of repetitions.
The standard deviation of the estimated mean will be

sΣ(t) = s(t)/
√

N. (26)

Figure 12. Raw signals captured by oscilloscope (Channel 1—SiPM output vp2; Channel 3—FPGA
pulse to VCSEL, Channel 4—sync pulses). The red circle shows electrical crosstalk from sync pulses.

Figure 13. Statistical processing of recorded signals: (a) Estimation of e(t) and s(t) for λ0 = 5.54 MHz
and Λ0 = 27.7 MHz computed from 9998 records. (b) Estimation of SNR0 for different pulse amplitudes.

A software procedure was used to find “unity” pulses in the recorded signal. The wave-
form (5) was fitted to the pulses with following parameters: V0 = 22.5 mV,
α = 1.51 × 107 s−1, β = 1.98 × 108 s−1, and γ = 3.76 × 108 s−1. The theoretical
waveforms for e and s were calculated using (21) and (22), and plotted in the same figure
for comparison.

The computed estimation of e(t) may be used in the detection of the pulse arrival time.
Let us consider a simple algorithm searching for the peak of e(t) occurring at tpeak. In this
case, we can define the signal-to-noise ratio as

SNRpeak = e(tpeak)
2/s2

Σ(tpeak). (27)

As the integral (18) converges quickly after the pulse has started, we can use (19) for
the denominator of (27)
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s2
Σ(tpeak) ≈

λ0 + Λ0

N
V2

0 (β− α)2

2(α + γ)(β + γ)(α + β)
. (28)

The peak value of e(t) is then

e(tpeak) = Λ0V0 max

 t∫
0

Ae−ατ + Be−βτ + Ce−γτdτ

. (29)

Finally, (27) can be expressed using (28) and (29) as

SNRpeak ≈ N
Λ2

0
λ0 + Λ0

S(α, β, γ) = N SNR0. (30)

The first term of (30) depends on the event rates and the number of repetitions, while
the second term only depends on the single avalanche pulse approximation (5). For the
tested setup, the constant was found to be S(α, β, γ) = 5.22× 10−9. The resulting ratio
depends linearly on N with a proportionality coefficient SNR0.

In the second experiment, the response of SiPM was measured for the background
rate λ0 = 16.6 MHz (IDC = 6 µA) with amplitudes Λ0 ranging from 13.8 MHz to 138 MHz
(IDCtotal = 7 µA to 16 µA). Figure 13b shows the predicted and measured parameter SNR0
from (30).

4. Discussion

The presented statistical model is valid on the assumption of the validity of the linear
response of the SiPM to the sum of Poisson processes at the input, i.e., assuming the validity
of (8) as a local approximation of (7). Thus, the linear model is valid for the reception of
very weak signals for which the saturation phenomena will not appear.

The used double-exponential approximation for SiPM pulses represents a good com-
promise between simplicity and accuracy. The function admits an analytical solution to the
mean and the standard deviation of the stochastic process associated with SiPM operation.
This gives the possibility of obtaining analytical formulae simple enough to provide insight
into the detection process. In addition, the theoretical waveforms can be used to design
matched filters or pulse detection techniques, e.g., in ranging and LIDARs. It is possible to
formulate the following partial conclusions based on the theoretical waveforms:

• The rise time of ep(t) is longer than the rise time of vp2(t) even for an ideal square
optical pulse, which may affect the accuracy of pulse arrival time estimation. In
fact, the waveform for 0 < t < Tw is given by the first integral in (21). There-
fore, the estimated ep(t) corresponds to the original waveform (1) since vvp2(t) is its
lossy derivative.

• As a consequence of (6), ep(t) starts to decrease after reaching its maximum. Therefore,
there exists some optimum pulse width Tw, above which the amplitude of ep(t) does
not grow.

The presented model is based on a simple Poisson process, neglecting the correlated
pulses due to crosstalk. It can be seen on the falling edge of both waveforms in Figure 13a,
where the theoretical waveform deviates slightly from experimental results. The future
research will be aimed at the inclusions of correlated events.
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