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Abstract: The emergence of advanced machine learning or deep learning techniques such as au-
toencoders and generative adversarial networks, can generate images known as deepfakes, which
astonishingly resemble the realistic images. These deepfake images are hard to distinguish from
the real images and are being used unethically against famous personalities such as politicians,
celebrities, and social workers. Hence, we propose a method to detect these deepfake images us-
ing a light weighted convolutional neural network (CNN). Our research is conducted with Deep
Fake Detection Challenge (DFDC) full and sample datasets, where we compare the performance of
our proposed model with various state-of-the-art pretrained models such as VGG-19, Xception and
Inception-ResNet-v2. Furthermore, we perform the experiments with various resolutions maintaining
1:1 and 9:16 aspect ratios, which have not been explored for DFDC datasets by any other groups to
date. Thus, the proposed model can flexibly accommodate various resolutions and aspect ratios,
without being constrained to a specific resolution or aspect ratio for any type of image classification
problem. While most of the reported research is limited to sample or preview DFDC datasets only, we
have also attempted the testing on full DFDC datasets and presented the results. Contemplating the
fact that the detailed results and resource analysis for various scenarios are provided in this research,
the proposed deepfake detection method is anticipated to pave new avenues for deepfake detection
research, that engages with DFDC datasets.

Keywords: sample DFDC; full DFDC; image-detection; light weighted CNN; VGG-19; Xception;
inception-ResNet-v2; non-square aspect ratios; variable resolutions

1. Introduction

There are hardly any people who do not use computers, smartphones, and other
information channels, which has boosted the speed of information transmission, and
ultimately the development of the internet. The world is consuming more and more
images, videos, and other data via social media such Facebook, Twitter, video mails, and so
on, which shows the profound impact of the internet on people’s daily lives. Undoubtedly,
the legitimate and germane videos and images are convenient, friendly to watch, and are
innocuous. In contrast, illegitimate and spoof videos and images are exacerbating the lives.
These pirated videos or images, recognized as deepfakes [1] are inundating the internet at
an alarming rate. Many famous faces such as those of celebrities, social workers, politicians,
and civilians, have been weaponized by these fake videos [2] for nefarious purposes such
as scams and hoaxes, celebrity pornography, election manipulation, social engineering,
phony terrorism and many more. These instances have caused various mental, financial
and security distresses among the ingenuous public. Therefore, there is a vital need for
developing models that can detect these piracies in a more realistic scenario, with utmost
accuracy, to prevent these calumnies.
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Relevant examples of deepfakes are demonstrated in Figure 1. There are many ways
to manipulate videos and images. The most common and conventional operations of
creating deepfakes mentioned in [1] are adding, replicating, or removing, which are easily
accomplished with ubiquitously-available, image-editing packages, such as FaceApp [3],
that provide an accessible platform for creating fake images or videos without any prior
technical knowledge and experience. The modern approaches make use of advanced com-
puter graphics approaches and deep learning approaches, such as Generative Adversarial
Networks (GANs) [4], autoencoders [5], and other state-of-the-art technology. Conventional
manipulations may be easily detected with the naked eye. However, deepfakes created
with the assistance of these prodigiously advanced technologies, can achieve impeccable
results with better semantic consistency, making them impossible to be identified with
human visual systems. Hence, discovering an automatic way is a necessity in order to
scout such deepfakes.
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Figure 1. Photo-realistic deepfake images that exist in real life.

Recently, the growing interest in deepfake detection has been advocated for by several
research funds, workshops, conferences, and international projects such as Media Forensics
Challenge (MFC2018) and Deepfake Detection Challenge (DFDC) [6]. To come up with a
practical way to identify such deepfakes, other public media and re-search communities
have also been cooperating.

The DFDC dataset is one of the most challenging new generation datasets used for
deepfake detection. There are two different versions of DFDC datasets, the first is the
sample or preview version, and the second is the full version. Since the full version is too
large, it is separated into sample and preview datasets to reduce the research burden. To
date, there are a limited number of studies such as [7,8], which mention the usage of DFDC
datasets for deepfake detection. All these studies have only exhibited the usage of sample
or preview DFDC datasets but have not investigated the results obtained by predicting full
datasets using the model trained with sample or preview datasets. There are only scarce
studies such as [9–11] which have been successful in addressing full DFDC datasets for
training and testing, as the dataset is tremendously large to handle. In December 2020,
one of the studies [12] reported that 80% of the manipulated videos in the full DFDC
training set were accurately chosen, whereas for the black box scenario only 65% of them
were accurately classified by the model. Though several studies have used the DFDC
dataset, this research alone is not sufficient to explore all the scenarios, such as: (1) how
the model performs when it is trained with sample datasets and predicted for full DFDC
datasets; (2) how it performs when the full images are resized to different resolutions,
rather than resized by cropping, as the manipulation can be carried out not only in the
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face, but anywhere throughout the images, it is necessary to analyze all the parts of the
image thoroughly; (3) how it performs when the full image frame is resized by maintaining
1:1 aspect ratio and 9:16 aspect ratio, where 9:16 is the full image aspect ratio; (4) what
is the memory requirement to store all the frames extracted from DFDC full videos, and
what is the maximum and minimum number of frames presented in all the videos, and
many other scenarios. It is arduous to directly train or research such a huge dataset without
prior knowledge or estimation of the nature of the datasets regarding size, its memory
requirement, its performance when trained with different approaches and scenarios, and so
on. So, we compare the performance of the DFDC datasets among various state-of-the-art
pretrained models such as VGG-19, Inception-ResNet-v2, Xception. We propose three
custom developed CNN networks and evaluate their performance in the above-mentioned
scenarios to locate deepfakes where our proposed model (Model-A, Model-B and Model-C),
outperformed the results when compared with these state-of-the-art methods. In addition to
this, the proposed model is flexible for any kind of image resolution and aspect ratio, hence
outbreaks the boundary for training and predicting within specific resolution or aspect
ratio only for any image classification or deepfake image detection task. The experiments
and results published in this study would be extremely advantageous for estimating the
resources and choosing the direction for carrying out future research in deepfake detection
using massive DFDC datasets.

The paper is organized into Five sections. We have already introduced the overview of
the paper addressing some related works in the first section. We then introduce the-states-
of-the arts methods and proposed methodology for deepfake image detection. Then the
experimental procedure and results obtained from the experiments are described in the
next section, Section 3. Finally, we discuss the limitations and the direction of the future
enhancements in Section 4, and then conclude with a summary of the whole paper in
Section 5.

2. Methods

In this section, we will discuss our proposed deepfake detection model, and other
pretrained model, that we used in our study with DFDC datasets to predict deepfakes.

2.1. State of the Art Pretrained Models

VGG-19 [13], Inception-ResNet-v2 [14] and Xception [15] are pretrained models for
detecting deepfake images, which have proved their excellent fake-detection capabilities in
studies such as [8,16], hence why we chose to follow these pretrained architectures. In our
evaluation framework, we follow the same architecture considered in [13–15], respectively,
for Xception, VGG-19 and Inception-ResNet-v2. However, while training, we modified the
top layer of all three models which are summarized as follows:

• The last fully connected layer (fc2) with 4096-dimensional feature output of VGG-19
model, was updated to accommodate the dense layer having 1024-dimensional feature
output. Furthermore, the last output layer was designed in such a way which resulted
in two classes (real or fake), rather than 1000 classes.

• We did not remove or modify any layer of Inception-ResNet-v2. We just enhanced the
model by optimizing the last output layer, for predicting two classes only instead of
1000 classes. Apart from this, all the parameters and layers were kept as in case of
Inception-ResNet-v2.

• Unlike in Inception-ResNet-v2, for the Xception model we added one extra dense layer
with an output dimension of 1024 before output layer, and after average pooling layer
of the Xception model. We also modified the output layer the same as for VGG-19 and
Inception-ResNet-v2.

The output layer of all pretrained models was designed with a single unit dense
layer with sigmoid activation function, to fine-tune the model for deepfake detection. The
sigmoid activation function was preferred over the SoftMax activation function in the
output layer, as the classification is binary. The weight of optimized layers was only trained
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during the training period of these three pre-trained models (VGG-19, Inception-ResNet-v2,
and Xception) while the weight of all other layers was kept frozen.

2.2. Proposed CNN Model Architecture

To allow for efficient training and experiments, under minimum resource requirement,
we developed and made use of our own light-weighted CNN model, which provided
superior results over the pretrained models for the cases where pretrained models were
trained for top layers only. In this section, we elaborate on the generic layout of the
proposed network and the detailed specific configuration in the experiment section.

We developed CNN models referred to as Model-A, Model-B, and Model-C to identify
the manipulated images by stacking several building blocks which are described below:

Input images: The proposed CNN model accepts input as arrays of image pixel and
the color channel. We used Keras ImageDataGenerator for converting images to array
pixels in RGB color channel mode. Each of the pixeled input images is then passed through
a series of convolutional layers.

Convolutional layers: This is the key layer of convolutional neural network whose
purpose is to detect, or extract, the set of features (high-level and low-level features)
available in the input image. These layers consist of linear operation (convolution) and
nonlinear operation (activation function). Convolution involves the multiplication of
weights, which we can call learnable filters or kernels, with the input. The height and width
of the filters is changed by heat and trial method, such as (3 × 3) or (5 × 5) or (11 × 11)
or (7 × 7), which we call filter size. The convolutional layer weights are learned by the
network during the training phase, which corresponds to the exact features that we want
to find in the real and fake images.

During training in forward pass, the kernel slides across the height and width of the
image and computes convolution at that receptive region. This produces a two-dimensional
activation map that gives the responses of that filter at every spatial position. The sliding
size of the kernel is called stride. There was an entire set of filters in each convolutional
layer where each of them would produce a separate two-dimensional activation map. These
activation maps are stacked along the depth dimension and the output volume is produced.
For each input image of size width (Wcin) × height (Hcin) × number of channel (D) and Dout
number of filters, the size of output volume can be determined by the following formulae:

WCout =
Wcin − FC + 2P

SC
+ 1

HCout =
Hcin − FC + 2P

SC
+ 1

where, Sc is stride size, Fc is the size of filter used and P is the padding size (which is zero
in our case). This would provide the output volume of size Wcout × Hcout × Dout.

Normalization layers: The batch normalization layer introduces some additional com-
putations such as mean, standard deviation, scale, and offset factors. Batch normalization
allows us to use much higher learning rates and be less careful about initialization, prevent-
ing the training from getting stuck in the saturated regimes of nonlinearities. It also acts as
a regularizer and accelerates network training 14 times [17].

Nonlinear activation function: The output of linear operation (convolution) is sub-
jected to nonlinear function for further complex operation. Relu activation function was
used in the convolutional layer. Other activation functions such as hyperbolic tangent
(tanh), sigmoid, softmax, and leaky-Relu can also be used as activation function. Since the
classification is binary in our case, we used sigmoid activation function in the outer layer.

Pooling layers: This layer is used for down-sampling the feature maps, to introduce
translation invariance to small shifts and distortions. Our network used max-pooling as
a type of pooling layer. There would be no learning parameters in the pooling layer, as
this only reduces the number of learning parameters and features that are not learnt in
this layer, and hence reduces the cost and time for training. For the activation map of size
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width (Wpin) × height (Hpin) × Dout, the output volume for the pooling layer is determined
by the following formulae:

Wpout =
Wpin − Fp

Sp
+ 1

Hpout =
Wpin − Fp

Sp
+ 1

where Sp is stride size, Fp is the size of filter used yielding the output volume of
Wpout × Hpout × Dout.

Dropout layers: This layer is used for preventing overfitting in the network.
Fully connected layers: The output of the last convolutional layer is flattened into a

one-dimensional array and is connected to one or more fully connected layers. This layer is
responsible for determining the relationship between a class and the position of features
extracted by convolutional layer in the image. The layer classifies the input image as real or
fake and will compute the class scores. We have used only one fully-connected layer which
refers to an output layer with dense one to perform binary classification. The activation
function applied to this layer was sigmoid. We have also tried using SoftMax, but the
sigmoid activation function in this layer gave significant results over SoftMax, in our case.

Using all of these layers, the proposed models, Model-A, Model-B and Model-C, are
developed and discussed below:

2.2.1. Model-A Architecture

We built a network model that comprised two convolutional layers and the other five
layers consisted of a pooling layer, normalization layer, flatten layer and dropout layer.
The first convolutional layer comprised 32 filters with a kernel size of 5 × 5 and a stride
size of 1. In the second convolutional layer, we used 64 filters of kernel size 3 × 3 with a
stride size of 1. All the convolutional layers were equipped with the Relu [18] activation
function for non-linear operations. The output of each convolutional layer was fed to the
batch-normalization layer and then to the max-pooling layer, for feature down sampling.
The max-pooling layer involved the stride size of 2 × 2. The results obtained from the
max-pooling layer were fed to the dropout layer to reduce overfitting. The dropout rates of
0.8 and 0.6 were used for different layers. The network is concatenated with a flattened
layer after the last dropout layer, which converts the output into a one-dimensional array
for feeding to the output layer. The flattened layer result was connected to the output
layer. At the output layer, we used sigmoid activation function with dense one (as the
classification was binary i.e., 0 and 1. 0 for fake, and 1 for real). We trained the Model-A
structure with DFDC sample datasets and tested it with the sample dataset. The network
architecture and model summary of Model-A is shown in Figure 2 and Table 1, respectively.

Table 1. Summary of self-developed CNN network: Model-A for DFDC image detection.

Model-A

Layer Type Output Shape Kernel Size Strides Dropout Rate

1 Convolution + ReLU 1076 × 1916 × 32 5 × 5 1 × 1
2 Batch -Normalization 1076 × 1916 × 32
3 Max-Pooling 538 × 958 × 32 2 × 2 2 × 2
4 Dropout 538 × 958 × 32 0.8
5 Convolution + ReLU 536 × 956 × 64 3 × 3 1 × 1
6 Batch-Normalization 536 × 956 × 64
7 Max-Pooling 268 × 478 × 64 2 × 2 2 × 2
8 Dropout 268 × 478 × 64 0.6
9 Flatten 8,198,656
10 Dense + Sigmoid 1



Sensors 2022, 22, 9121 6 of 15

Sensors 2022, 22, x FOR PEER REVIEW 6 of 16 
 

 

7 Max-Pooling 268 × 478 × 64 2 × 2 2 × 2  

8 Dropout 268 × 478 × 64   0.6 

9 Flatten 8,198,656    

10 Dense + Sigmoid 1    

 

Figure 2. Proposed CNN architecture of Model-A for detecting deepfake images. 

2.2.2. Model-B 

Model-A and Model-B closely resemble each other, except for the change in kernel 

size, and differences in output shapes. In Model-B, the first convolutional layer used a 

kernel size of 11 × 11 and the second used 5 × 5. Except for these changes, the other struc-

ture was the same as Model-A. This model was trained with the Kaggle sample DFDC 

dataset and was tested for the sample DFDC dataset and full DFDC datasets. Table 2 and 

Figure 3 below show the model summary and network architecture of Model-B. 

Table 2. Summary of self- developed CNN network: Model-B for DFDC image detection. 

 Model-B  

Layer Type Output Shape Kernel Size Strides 
Dropout 

Rate 

1 Convolution + ReLU 1070 × 1910 × 32 11 × 11 1 × 1  

2 Batch -Normalization 1070 × 1910 × 32    

3 Max-Pooling 535 × 955 × 32 2 × 2 2 × 2  

4 Dropout 535 × 955 × 32   0.8 

5 Convolution + ReLU 531 × 951 × 64 5 × 5 1 × 1  

6 Batch-Normalization 531 × 951 × 64    

7 Max-Pooling 265 × 475 × 64 2 × 2 2 × 2  

8 Dropout 265 × 475 × 64   0.6 

9 Flatten 8,056,000    

10 Dense + Sigmoid 1    

Figure 2. Proposed CNN architecture of Model-A for detecting deepfake images.

2.2.2. Model-B

Model-A and Model-B closely resemble each other, except for the change in kernel size,
and differences in output shapes. In Model-B, the first convolutional layer used a kernel
size of 11 × 11 and the second used 5 × 5. Except for these changes, the other structure
was the same as Model-A. This model was trained with the Kaggle sample DFDC dataset
and was tested for the sample DFDC dataset and full DFDC datasets. Table 2 and Figure 3
below show the model summary and network architecture of Model-B.

Table 2. Summary of self- developed CNN network: Model-B for DFDC image detection.

Model-B

Layer Type Output Shape Kernel Size Strides Dropout Rate

1 Convolution + ReLU 1070 × 1910 × 32 11 × 11 1 × 1
2 Batch -Normalization 1070 × 1910 × 32
3 Max-Pooling 535 × 955 × 32 2 × 2 2 × 2
4 Dropout 535 × 955 × 32 0.8
5 Convolution + ReLU 531 × 951 × 64 5 × 5 1 × 1
6 Batch-Normalization 531 × 951 × 64
7 Max-Pooling 265 × 475 × 64 2 × 2 2 × 2
8 Dropout 265 × 475 × 64 0.6
9 Flatten 8,056,000
10 Dense + Sigmoid 1
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2.2.3. Model-C

Unlike Model-A and Model-B, Model-C resembles a deeper network, as it adds one
more convolutional layer. It consists of 14 layers. Among them, three were convolutional
layers and the rest of them were used as pooling, batch-normalization, dropout, and
output layers. The first convolutional layer used 32 filters, whereas the second subsequent
convolutional layer consisted of 64 filters, and finally the third convolutional layer was
operated with 128 filters. All three of these convolutional layers used the same filter size
of 3 × 3, reducing the size of kernel or filter as compared to Model-A and Model-B. This
network also used sigmoid activation function in the output layer and Relu activation
function in the convolutional layer. All the layers are connected in the same fashion as in
Model-A and Model-B, which is presented in Figure 4. The model was trained and tested
with sample datasets. The summary of the model is shown in Table 3.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 16 
 

 

 

Figure 3. Proposed CNN architecture of Model-B for detecting deepfake images. 

2.2.3. Model-C 

Unlike Model-A and Model-B, Model-C resembles a deeper network, as it adds one 

more convolutional layer. It consists of 14 layers. Among them, three were convolutional 

layers and the rest of them were used as pooling, batch-normalization, dropout, and out-

put layers. The first convolutional layer used 32 filters, whereas the second subsequent 

convolutional layer consisted of 64 filters, and finally the third convolutional layer was 

operated with 128 filters. All three of these convolutional layers used the same filter size 

of 3 × 3, reducing the size of kernel or filter as compared to Model-A and Model-B. This 

network also used sigmoid activation function in the output layer and Relu activation 

function in the convolutional layer. All the layers are connected in the same fashion as in 

Model-A and Model-B, which is presented in Figure 4. The model was trained and tested 

with sample datasets. The summary of the model is shown in Table 3. 

 

Figure 4. Proposed CNN architecture of Model-C for detecting deepfake images. 

  

Figure 4. Proposed CNN architecture of Model-C for detecting deepfake images.

Table 3. Summary of self- developed CNN network: Model-C for DFDC image detection.

Model-C

Layer Type Output Shape Kernel Size Strides Dropout Rate

1 Convolution + ReLU 1078 × 1918 × 32 3 × 3 1 × 1
2 Batch-Normalization 1078 × 1918 × 32
3 Max-Pooling 539 × 959 × 32 2 × 2 2 × 2
4 Dropout 539 × 959 × 32 0.8
5 Convolution + ReLU 537 × 957 × 64 3 × 3 1 × 1
6 Batch-Normalization 537 × 957 × 64
7 Max-Pooling 268 × 478 × 64 2 × 2 2 × 2
8 Dropout 268 × 478 × 64 0.6
9 Convolution + ReLU 266 × 476 × 128 3 × 3
10 Batch-Normalization 266 × 476 × 128
11 Max-Pooling 133 × 238 × 128 2 × 2
12 Dropout 133 × 238 × 128 0.25
13 Flatten 4,051,712
14 Dense + Sigmoid 1

3. Experiments and Results
3.1. Experimental Procedure

We used a computer equipped with NVIDIA GeForce GTX 1660 Graphics Process-
ing Units (GPU) for training the deepfake detection model. The codes were written in
the Python programming language [19] and involved several Python libraries such as
Keras [20], NumPy, OpenCv, sklearn and other Python libraries.
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3.1.1. DFDC Sample Dataset Preprocessing

We extracted video frames (which we refer to as image throughout the paper) from
Kaggle sample DFDC datasets by using OpenCV library, where we chose image write
quality to be 95, and saved those images in separate folders to serve as input while training
the model. The entire dataset provided in Kaggle DFDC is too large to train the fake
detection system, hence the sample dataset was chosen to train all but one of the proposed
models; Model-B was tested using the full dataset.

Some of the fake videos in the DFDC sample datasets did not have a known source
video. Such fake videos were not used for collecting the frames for training fake image
detectors. We collected 23,094 real images and 17,396 fake images in total from these DFDC
sample datasets, where these real and fake images were split into test (20%) and train (80%)
using sklearn Python library. All these extracted images were of resolution 1080 × 1920,
with an aspect ratio of 9:16 where 1080 is height, and 1920 is width of the image. Each video
had a duration of about 10 to 11 s. There were 300 frames per video extracted on average,
where minimum frames per video were 297 and maximum frames per video were 302. We
could not use test videos provided in the Kaggle DFDC sample dataset for evaluation, as
there was no metadata.json file for verification.

3.1.2. DFDC Full Dataset Preprocessing

There is a total of 100,000 fake videos and 19,154 real videos in the DFDC full dataset
according to the metadata.json file. All of the videos were grouped in chunks of up to 50
when we downloaded the whole 475 GB zip file. While inspecting the video files, we found
that 8 of them were missing, thus only 99,992 were present instead of the 100,000 fake
videos from the DFDC full set that was used. We collected image frames from all of these
videos using methodology described in 3.1, which took up nearly 2.5 TB of disk space.
Since each of the videos had a varying number of frames, ranging between 83 and 601,
the total number of extracted real and fake images from the videos were 5,721,288 and
29,731,337, respectively. All of these frames were subjected to our CNN Model-B for testing.

3.1.3. Training Procedure and Parameter Setting for Proposed CNN and Pretrained Models
for Deepfake Image Detection

Before starting experiments with the proposed model, we first experimented with
different state-of-the art pretrained models such as the VGG-19, Inception-ResNet-v2 and
Xception models, and analyzed their performance. For the VGG-19 model, the original
image of resolution (1080 × 1920) was resized to 224 × 224, which is the maximum input
size limit was fed as the input to train the network. However, the image was resized to
299 × 299 to train with Inception-ResNet-v2 and Xception, where this input size is the
maximum possible input size for both the models. Training with these models provided
convincing results, however, they were constrained by the input size limits. Hence, we
further developed our own model and carried out experiments where we were not bound
to any type of fixed image resolution, or fixed aspect ratio constraint.

As mentioned by authors in [21], the full resolution images which do not undergo
resizing, are free from any loss of essential features, hence the model can make decisions
based on information gathered from all over the images. Thus, we tried to feed a full
resolution image, i.e., 1080 × 1920 × 3 pixel—where 1080 is the height, 1920 is the width
and 3 denotes RGB (red, green, blue)—channel to our proposed simple light weighted
custom CNN network of Model-A, Model-B and Model-C. These three models were also
trained with resized image sizes of: 224 × 224, 299 × 299, 135 × 240, 270 × 480 and
540 × 960. These training images were resized from full images directly without cropping.
We experimented with our proposed model with the original aspect ratio of 9:16 and the
1:1 aspect ratio.

Initially, the experiments were carried out using Adam optimizer and SoftMax activa-
tion function in the output layer, for all these pretrained models and our proposed models,
but the networks did not converge. So further experiments were attempted, by replacing
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SoftMax with sigmoid activation function, however, the network did not converge at all
again. We also tried keeping activation function as SoftMax and changed only the optimizer
to RMSProp, but again the network failed to converge. Finally, the experiment was per-
formed by replacing SoftMax with sigmoid activation function, and Adam optimizer with
RMSProp optimizer together, which provided acceptable outcomes. Though the network
started converging after changing the optimizer and activation function in the output layer,
the convergence rate of the VGG-19 network was still prolonged. As a result, the network
saturated too early resulting in unsatisfactory output. The result of Inception-ResNet-v2
was somehow better than VGG-19, but not significantly better and the convergence rate was
still slow. Therefore, we further carried out the experiment with the Xception pretrained
model, which achieved better performance in comparison to Inception-ResNet-v2 and
VGG-19, but was still insufficient as validation data performance was still poor compared
to training data performance. As a result, we approached a simple, custom-developed,
convolutional neural network model rather than training with other pretrained models.

All these models were trained up to 60 epochs and the batch size varied according to
the input size and CNN model used. The model with best f1-score was chosen to evaluate
the performance. The batch size was set to 32 for all the pretrained and proposed models,
when the input image sizes were 224 × 224, 299 × 299, 135 × 240, 270 × 480. For other
input sizes (540 × 960, 1080 × 1920), Model-A and Model-B used the batch size of 8 whereas
Model-C used the batch size of 4. All of the models were saved after every epoch and
the performance of the model was analyzed. The best-performing model (Model-B), was
chosen for predicting the full DFDC datasets. The performance of all above mentioned
models has been shown in the following section.

3.2. Performance Evaluations Metrics

The performance of all above-mentioned models has been experimented and evaluated
in terms of evaluation metrics such as recall, precision, f1-score, overall accuracy, and AUC
(Area Under Curve) where positive class is defined to be ‘REAL’(1), and negative class
is assigned to be ‘FAKE’(0). Each one of these metrices is described in the following
points below:

True Positive (TP): It indicates the numbers of positive examples classified accurately.
In our case the number of “real” images is classified accurately.

True Negative (TN): It indicates the number of negative examples classified accurately.
In our case the number of “fake” images is classified accurately.

False Positive (FP) (Type 1 Error): FP is the number of actual negatives classified
as positive.

False Negative (FN) (Type 2 Error): FN is the number of actual positives classified
as negative.

Accuracy: Accuracy of the model is calculated using the following formula:

accuracy =
TN + TP

TN + FP + FN + TP

Recall: Recall measures how much we predicted correctly, out of all the positive classes.
It should be as high as possible. It is calculated as:

recall =
TP

TP + FN

Precision: Precision gives the measure of how many classes are positive, out of all of the
positive classes we predicted correctly. It should be as high as possible. It is calculated as:

precision =
TP

TP + FP
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ROC: It is a plot of false positive rate (x-axis) versus true positive rate (y-axis). It is
useful to know at what rates the model is recognizing fake images as real, and real images
as fake.

F1-score: It is the combination of the precision and recall of a classifier into a single
metric, where it combines them by taking harmonic mean, and is calculated as:

f1 − score =
2 × (precision × recall)

precision + recall

3.3. Experimental Results and Discusssion

In this section we present all the results obtained throughout the experiments. The
validation and training scores of VGG-19, Inception-ResNet-v2, Xception, and Model-B
obtained from the sample dataset are presented in Table 4, whereas those of Model-A and
Model-C are shown in Table A1 in Appendix A. The test results obtained by predicting
Kaggle full DFDC datasets with Model-B, that is trained with the sample dataset, are
presented in Table 5.

Table 4. Accuracy, recall, precision, AUC obtained with train and validation data (DFDC sample).

Training Results Validation Results

Model Input Image
Resolution

F1
Score

Accuracy
(%) AUC Recall Precision F1

Score
Accuracy

(%) AUC Recall Precision

VGG-19 [13] 224 × 224 0.716 68.17 0.751 0.705 0.727 0.751 67.95 0.773 0.849 0.673
Inception-

ResNet-v2 [14] 299 × 299 0.789 75.97 0.850 0.790 0.788 0.798 74.41 0.854 0.890 0.724

Xception [15] 299 × 299 0.948 94.15 0.988 0.946 0.950 0.916 90.12 0.967 0.953 0.882
Model-B 1080 × 1920 0.922 91.14 0.936 0.921 0.923 0.973 96.96 0.984 0.989 0.958

540 × 960 0.856 83.57 0.911 0.856 0.855 0.904 88.83 0.941 0.924 0.884
270 × 480 0.750 71.75 0.803 0.745 0.756 0.790 73.02 0.823 0.891 0.709
135 × 240 0.724 68.54 0.771 0.725 0.723 0.761 68.71 0.791 0.875 0.673
224 × 224 0.727 69.05 0.777 0.723 0.731 0.767 71.24 0.794 0.832 0.711
299 × 299 0.738 70.42 0.791 0.732 0.744 0.771 69.86 0.804 0.891 0.679

Table 5. Test results obtained with DFDC full dataset when predicted with Model-B that is trained
with sample DFDC dataset.

DFDC Data Type Input Image
Resolution F1 Score Accuracy Recall Precision

Full DFDC 1080 × 1920 0.268 0.3756 0.708 0.165

Similarly, the training and validation accuracy vs. epoch graph of the VGG-19 model,
Inception-ResNet-v2 model, Xception model, Model-A, Model-B and Model-C together,
is shown in Figure 5. It is worth mentioning that in Figure 5, the input image size of
1080 × 1920 has been used. The training accuracy vs. epoch graph of the VGG-19 model,
Inception-ResNet-v2 model, Xception model, Model-A, Model-B and Model-C, shown in
Figure 5, clearly shows the converging rate of the custom developed model and Xception
model is faster than VGG-19 and Inception-ResNet-v2 pretrained model, even after re-
placing SoftMax with RMSProp activation function. Though the Xception network has
shown better accuracy while training, it could not overtake Model-B in terms of validation
accuracy in almost all the epochs. The validation accuracy and f1-score of the VGG-19
model was limited to 71% and 0.75, while that of best-performing model, Model-B, has
rocketed up-to 97% and 0.97. The validation accuracy of the best-performing pretrained
model (Xception model), is 6% less than Model-B, and its f1-score is limited to 0.91.
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Figure 5. (a) Train and (b) validation accuracy of Inception-ResNet-v2, Xception, VGG-19, Model-A,
Model-B, and Model-C obtained with sample DFDC dataset when trained up to 60 epochs. The input
resolution for Model-A, Model-B, and Model-C is 1080 × 1920.

We also compared the training and validation history among various input sizes and
various aspect ratios for Model-A, Model-B and Model-C, which is revealed in Figure 6 for
Model-B, Figures A1 and A2 for Model-A and Model-C, respectively, and in Appendix A.
The comparative performance of the models among various resolution images (shown
in Figure 6), has shown the enhancement of model performance when trained with full
resolution images, rather than doing so by resizing to various sizes. There was not much
difference in the results obtained with the image sizes 224 × 224, 299 × 299, 135 × 240
and 270 × 480. In contrast, the performance scores of the custom model were increased
by five to ten percent on average, when the image resolution was maintained between
540 × 960 and original resolution, 1080 × 1920. It is observed that the model trained by
maintaining the image aspect ratio (1:1), and original aspect ratio (9:16), has not shown
a significant difference in the performance score, but the resolution of the image affected
the performance of the model. However, it is not necessary to convert all the images to
resolution 1080 × 1920, if the model must be trained or tested using other datasets.
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The runtime taken by each model, Model-A, Model-B and Model-C, were noted for all
the resolutions in minutes (min). Model-A took 55.93 min per epoch when it was trained
with original full-resolution image input. When trained with resolutions such as 299 × 299,
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224 × 224, 135 × 240, 270 × 480 and 540 × 960, it took 10.43 min, 10.91 min, 11.2 min,
13.08 min and 15 min per epoch, respectively, on average. Similarly, Model-B took 10.5 min,
11.13 min, 11.53 min, 13.43 min, 24 min and 98 min per epoch on average when the input
resolution was 299 × 299, 224 × 224, 135 × 240, 270 × 480, 540 × 960 and 1080 × 1920,
respectively. For the case of Model-C, it took 10.55 min, 10.41 min, 11.13 min, 13 min, 19 min
and 70 min per epoch on average when the input resolution was 299 × 299, 224 × 224,
135 × 240, 270 × 480, 540 × 960 and 1080 × 1920, respectively. In this sense the run time
for Model-A was shorter compared to Model-B and Model-C.

The destitute test results (accuracy = 37.56%, f1-score = 0.26) in Table 5, concluded that
the model trained and tested with the sample dataset is not suitable for predicting the full
Kaggle DFDC datasets. Hence it would not be a better idea to generalize the model that is
trained with the sample dataset. We need to train the CNN model with all varieties of full
datasets if we want to get better prediction results for DFDC dataset.

4. Limitations and Future Work

In this work, we tested the Kaggle Full DFDC datasets with only one of our proposed
models. We have not tested it with all deepfake detector models that we trained with sample
datasets. Furthermore, we trained the model with a sample dataset only and predicted
results for a full dataset. In future, we can test the Kaggle Full DFDC dataset with Model-A
and Model-C that we used in the experiment and analyze the result. However, if resources
and time are limited then instead of testing Model-A and Model-C again with full DFDC
dataset, we suggest training the Model-B with full DFDC dataset and then implementing it
for video detection too, as Model-B has provided the best score among these three models.
However, we do not mean that it is not important to test Model-A and Model-C with the
full DFDC dataset too. It is advised to train the model with full resolution, rather than to
train by cropping or resizing. We also found some videos mentioned in metadata.json were
missing, which we have mentioned in Section 3.1.2. We suggest correcting those misplaced
video names in the metadata.json file for ease of further research in DFDC datasets. In the
case of full datasets, most of the videos have 300 frames per video, but there are also some
videos which contain frames of maximum 601 and minimum 83.

This study has performed various experiments and published the results for different
settings. However, this paper has not addressed the core reason behind why Model-B
has performed better over Model-A and Model-B. We can see the Xception network has
performed better than VGG-19 and Inception-ResNet-v2, and at the same time Model-C has
not shown satisfactory results over the Xception network. Though, the validation scores of
the proposed model are better than pretrained models for so many epochs, the validation
score over the epochs for Model-A, Model-B and Model-C fluctuate and are stable for some
epochs only. We are not able to explain the main reason behind these issues. Hence, future
research can be directed towards studying the cause of all these existing scenarios and
optimizing the models accordingly.

Though the proposed model is focused for deepfake detection purposes only in this
study, our proposed model can be implemented for many other image classification prob-
lems where we can feed any input image, having any aspect ratio and image resolutions.
For example, we can test our model in bacteria image analysis, such as lytic bacteriophage
detection in sewage water images [22], in future. The paper in [23] has used a multilayer
network for cervical cancer diagnosis. We can also use this approach to detect deepfakes
in future and compare the results with our proposed model. Additionally, our proposed
model can also be used for the cervical cancer diagnosis and to compare the results obtained
in the paper [23].

5. Conclusions

In this study, we developed and compared different deepfake image detection models
with DFDC datasets. Firstly, we compared our proposed model (Model-A, Model-B and
Model-C) with various states of the art pretrained models such as VGG-19, Inception-
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ResNet-v2 and Xception, where the proposed model (Model-B) outperformed the scores
of pretrained models. Unlike the other existing research articles, we also trained and
tested the model using various resolutions such as 1080 × 1920, 224 × 224, 229 × 299,
135 × 240, 270 × 480, 540 × 960 for DFDC datasets where we included the image sizes by
maintaining both 1:1 and 9:16 (original) aspect ratios, hence developing the flexible model
for variable resolutions and aspect ratios. The images were resized without cropping to
spot the manipulations throughout the images, rather than limiting to spot forgery within
the facial region only. Furthermore, we tested the Kaggle Full DFDC datasets using the
model that is trained and validated in the sample dataset, and presented the result, which
has never been discussed in any previous research works. Additionally, we also provided
an overview of the total number of frames contained in full DFDC videos, missing videos,
resources taken by the datasets, and many more crucial results within such a massive
dataset, by implementing our best-performing proposed model, Model-B. This would
be a great benefit for further research that is focused on DFDC datasets for fake image
detection, or fake video detection. Thus, this study fulfills its objective of developing and
comparing deepfake image detection in various scenarios, and provides the detailed test
results performed using full DFDC datasets.
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Appendix A. Results Obtained with Model-A and Model-C

Table A1. Accuracy, recall, precision, AUC obtained with train and validation data (DFDC sample)
for Model-A and Model-C.

Training Results Validation Results

Model Input Image
Resolution

F1
Score

Accuracy
(%) AUC Recall Precision F1

Score
Accuracy

(%) AUC Recall Precision

Model-A 1080 × 1920 0.904 89.08 0.913 0.903 0.905 0.959 95.25 0.970 0.990 0.930
540 × 960 0.808 78.18 0.866 0.807 0.808 0.873 84.64 0.925 0.926 0.825
270 × 480 0.756 72.13 0.805 0.758 0.754 0.813 78.15 0.861 0.836 0.791
135 × 240 0.767 73.56 0.823 0.765 0.769 0.817 76.50 0.868 0.922 0.733
224 × 224 0.721 67.89 0.759 0.729 0.714 0.753 64.52 0.774 0.949 0.624
299 × 299 0.660 53.95 0.498 0.783 0.570 0.726 57.03 0.5 1.0 0.570

Model-C 1080 × 1920 0.924 91.35 0.950 0.924 0.924 0.924 91.57 0.974 0.903 0.946
540 × 960 0.876 85.84 0.937 0.879 0.873 0.902 88.51 0.963 0.935 0.872
270 × 480 0.856 83.78 0.924 0.850 0.863 0.884 86.51 0.948 0.900 0.867
135 × 240 0.829 80.60 0.902 0.829 0.830 0.853 82.40 0.929 0.898 0.812
224 × 224 0.833 81.24 0.903 0.822 0.844 0.855 82.80 0.924 0.893 0.820
299 × 299 0.869 85.16 0.936 0.867 0.871 0.889 87.18 0.950 0.903 0.875
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Figure A1. Comparison of (a) train and (b) validation accuracy versus epoch obtained with various
input resolutions 1080 × 1920,135 × 240, 270 × 480, 540 × 960, 224 × 224, 299 × 299 for Model-A.
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Figure A2. Comparison of (a) train and (b) validation accuracy versus epoch obtained with various
input resolutions 1080 × 1920,135 × 240, 270 × 480, 540 × 960, 224 × 224, 299 × 299 for Model-C.
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Compact Representations of 3D Point Clouds. Comput. Vis. Image Underst. 2020, 193, 102921. [CrossRef]

6. Kaggle Deepfake Detection Challenge. Available online: https://www.kaggle.com/c/deepfake-detection-challenge/data
(accessed on 20 July 2021).

7. Li, L.; Bao, J.; Zhang, T.; Yang, H.; Chen, D.; Wen, F.; Guo, B. Face X-Ray for More General Face Forgery Detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June
2020; pp. 5001–5010.

8. Pashine, S.; Mandiya, S.; Gupta, P.; Sheikh, R. Deep Fake Detection: Survey of Facial Manipulation Detection Solutions. Int. Res. J.
Eng. Technol. IRJET 2021, 8, 12605.

9. Bonettini, N.; Bondi, L.; Cannas, E.D.; Bestagini, P.; Mandelli, S.; Tubaro, S. Video Face Manipulation Detection through Ensemble
of CNNs. In Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milano, Italy, 10–15 January
2021; pp. 5012–5019.

http://doi.org/10.1109/JSTSP.2020.3002101
http://doi.org/10.22215/timreview/1282
https://www.faceapp.com/
http://doi.org/10.1016/j.cviu.2020.102921
https://www.kaggle.com/c/deepfake-detection-challenge/data


Sensors 2022, 22, 9121 15 of 15

10. Hashmi, M.F.; Ashish, B.K.K.; Keskar, A.G.; Bokde, N.D.; Yoon, J.H.; Geem, Z.W. An Exploratory Analysis on Visual Counterfeits
Using Conv-LSTM Hybrid Architecture. IEEE Access 2020, 8, 101293–101308. [CrossRef]

11. Zhu, X.; Wang, H.; Fei, H.; Lei, Z.; Li, S.Z. Face Forgery Detection by 3D Decomposition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVRP), Nashville, TN, USA, 20–25 June 2021; pp. 2929–2939.

12. Skibba, R. Accuracy Eludes Competitors in Facebook Deepfake Detection Challenge. Engineering 2020, 6, 1339–1340. [CrossRef]
13. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR

2015, San Diego, CA, USA, 4 September 2015; pp. 1–14.
14. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual Connections on

Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017; pp. 4278–4284.

15. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.

16. Shah, Y.; Shah, P.; Patel, M.; Khamkar, C.; Kanani, P. Deep Learning Model-Based Multimedia Forgery Detection. In Proceedings
of the 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam, India,
7–9 October 2020; pp. 564–572.

17. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In
Proceedings of the ICML’15: 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11
July 2015.

18. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
2017, 6, 84–90. [CrossRef]

19. Van Rossum, P. Development Team the Python Language Reference Release 3.6.4, 12th ed.; Media Services: Hong Kong, China, 2018.
20. Chollet, F. Keras. 2015. Available online: https://github.com/fchollet/keras (accessed on 6 May 2020).
21. Marra, F.; Gragnaniello, D.; Verdoliva, L.; Poggi, G. A Full-Image Full-Resolution End-to-End-Trainable CNN Framework for

Image Forgery Detection. IEEE Access 2020, 8, 133488–133502. [CrossRef]
22. Alsaffar, M.; Jarallah, E.M. Isolation and characterization of lytic bacteriophages infecting Pseudomonas aeruginosa from sewage

water. Int. J. PharmTech Res. 2016, 9, 220–230.
23. Fekri-Ershad, S.; Ramakrishnan, S. Cervical cancer diagnosis based on modified uniform local ternary patterns and feed forward

multilayer network optimized by genetic algorithm. Comput. Biol. Med. 2022, 144, 105392. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2020.2998330
http://doi.org/10.1016/j.eng.2020.10.008
http://doi.org/10.1145/3065386
https://github.com/fchollet/keras
http://doi.org/10.1109/ACCESS.2020.3009877
http://doi.org/10.1016/j.compbiomed.2022.105392
http://www.ncbi.nlm.nih.gov/pubmed/35299043

	Introduction 
	Methods 
	State of the Art Pretrained Models 
	Proposed CNN Model Architecture 
	Model-A Architecture 
	Model-B 
	Model-C 


	Experiments and Results 
	Experimental Procedure 
	DFDC Sample Dataset Preprocessing 
	DFDC Full Dataset Preprocessing 
	Training Procedure and Parameter Setting for Proposed CNN and Pretrained Models for Deepfake Image Detection 

	Performance Evaluations Metrics 
	Experimental Results and Discusssion 

	Limitations and Future Work 
	Conclusions 
	Appendix A
	References

