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Abstract: The data economy is based on data and information sharing and tremendously impacts
society as it facilitates innovative collaborations and decision-making strategies. Nonetheless, most
dataset-sharing solutions rely on a centralized authority that rules data ownership, availability, and
accessibility. Recent works have explored the integration of distributed storage and blockchain to
enhance decentralization, data access, and smart contracts for automating the interactions between
actors and data. However, current solutions propose a smart contract design limiting the system’s
scalability in terms of actors and shared datasets. Furthermore, little is known about the performance
of these architectures when using distributed storage instead of centralized storage approaches.
This paper proposes a scalable architecture called DeBlock for data sharing in a trusted way among
unreliable actors. The architecture integrates a public blockchain that provides a transparent record
of datasets and interactions, with a distributed storage for data storage in a completely decentralized
way. Furthermore, the architecture provides a smart-contract design for a transparent catalog of
datasets, actors, and interactions with efficient search and retrieval capabilities. To assess the system’s
feasibility, robustness, and scalability, we implement a prototype using the Ethereum blockchain and
leveraging two decentralized storage protocols, Swarm and IPFS. We evaluate the performance of
our proposed system in different scenarios (e.g., varying the amount and size of the shared datasets).
Our results demonstrate that our proposal outperforms benchmarks in gas consumption, latency, and
resource requirements, especially when increasing the number of actors and shared datasets.

Keywords: blockchain; decentralized file systems; smart contracts; data sharing; IPFS; swarm

1. Introduction

Recently, the European Commission highlighted the tremendous impact on our society
of the data economy [1]. Sharing data and information facilitates innovative collaborations
in research and company ecosystems and contributes to decision-making strategies impact-
ing society. Over the last decade, the fast progress in information and telecommunications
technology allowed the availability of data and information at an unprecedented scale [2].

Existing data-sharing platforms (e.g., open data portals and data marketplaces) gen-
erally rely on a central authority regulating the users and data, acting as a third-party
intermediary. The intermediary enables trust among the participants and manages the
system by defining the policies for data ownership, access, and usage and by setting the
rules to evaluate data reliability and integrity [2]. However, intermediaries favor usability
over transparency as they aim to connect data owners with users rather than to facilitate
the availability of data to anyone [3]. Hence, the central authority controls data access and
usage and can discriminate among different users. Moreover, a centralized system suffers
from a single point of failure, which is a well-known problem in cloud services [4]. The
breakdown of the central node has several negative consequences, including data breaches,

Sensors 2022, 22, 9118. https://doi.org/10.3390/s22239118 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239118
https://doi.org/10.3390/s22239118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5847-2145
https://orcid.org/0000-0002-6690-0250
https://orcid.org/0000-0003-4426-8220
https://orcid.org/0000-0002-1835-3475
https://doi.org/10.3390/s22239118
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239118?type=check_update&version=2


Sensors 2022, 22, 9118 2 of 23

denial of service, and data loss [5]. Therefore, a need emerges for a system that enables
sharing and retrieving data without needing a trusted third party (TTP).

Blockchain can address this need as it guarantees trusted interactions among the users
without needing the TTP. Blockchain provides a platform that combines cryptography,
data structures, and incentive mechanisms to maintain a unique and immutable record of
information in a peer-to-peer network [6]. Originally introduced for cryptocurrency [6],
the inherent decentralization provided by blockchain has had a great impact in several
other scientific fields, including edge computing [7], AI [8], resource management [9], and
Internet of Things [10]. Furthermore, blockchain technology is intrinsically verifiable and
immutable, as all the actors in the network can access the information without being able
to modify anything. For these reasons, blockchain is a suitable technology for sharing
data among untrusted actors without needing a TTP [11]. Nevertheless, blockchain does
not support storing a large amount of data given the different constraints imposed by
various practical issues (e.g., block size, transaction fees, and latency) [6,12]. Consequently,
data sharing requires blockchain to be integrated with centralized or decentralized off-
chain services to store the data. Traditional centralized cloud-storage services, such as
google drive, dropbox, or even Github, remove blockchain’s decentralization benefits by
introducing an intermediary (i.e., the service provider). Conversely, decentralized storage,
also called Decentralized File Systems (DFS), does not require the TTP and preserves
the decentralization introduced by blockchain. Two of the most common DFS protocols
are InterPlanetary File System (IPFS), and Swarm [13]. However, there has been little
quantitative analysis of the architectures for integrating blockchain and DFS, particularly
in terms of scalability, robustness, and performance in data-sharing applications.

1.1. Related Works

An increasing number of works are integrating blockchain and distributed storage
for applications in several domains, such as Industry [14], Healthcare [15], and IoT [16], to
name a few. Furthermore, a recent survey by Ismail et al. [17] highlighted the importance
of decentralized storage systems, not only as a complement to blockchain applications
but as an alternative to centralized storage services. The authors surveyed nine DFS (e.g.,
Filecoin [18], Sia [19], and Arweave [20]) providing long-term decentralized storage, where
a blockchain incentivizes the users and pays for the storage space. Hence, their focus differs
from sharing datasets between untrusted actors.

Other solutions [21–27] propose the association of a private blockchain with a DFS
network to provide a decentralization of the dataset storage. Some solutions store the datasets
in the DFS platform, and the link to the datasets in the blockchain [23–27]. Other approaches
propose to store on the blockchain information related to the authors or the shared dataset. For
example, the authors in [22] store the dataset metadata to increase traceability. Authors in [21]
store the information to cryptographically check the integrity and availability of a file in the
blockchain. However, private blockchains require a central authority that assumes different
forms, such as a group of actors called approves [27] to add and assign a cryptography
signature for every new peer [26]. This may reduce the decentralization and openness
introduced by the blockchain as the central authority should approve each participant (or user).

Some studies, e.g., [16,28–30], explored the integration of public blockchain and DFS net-
works to maintain the decentralization properties and open the system to any untrusted users.

To automatize the data access and retrieval, interactions between the actors and the
network are controlled by smart contracts, whose design critically influences the system
performance in terms of time and cost (GAS). For example, the authors in [16] propose a
smart contract for each kind of dataset structure to handle the retrieval. However, this reduces
the scalability, and the system’s generalization as dataset structure not considered in the
system design cannot be shared. The authors in [29] propose to generate a smart contract
for each actor willing to share data and for each data query, making the architecture hardly
scalable to many actors. Moreover, a smart contract for each actor implies a degradation of
the performance in terms of cost and time with the increasing number of actors in the system.
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Moreover, each dataset query requires a transaction that modifies the blockchain’s state,
significantly increasing the computational load and thus the cost which is one of the main
barriers to adopting these types of solutions [17]. Although both approaches use a public
blockchain to guarantee decentralization and automation, they lack a quantitative evaluation
of the system performance in terms of time and cost. However, the evaluation is critical to
understanding the robustness and scalability of the system when varying the number of
actors and shared datasets. Further, they are mostly designed for specific use cases, such as
IoT big data [16], and do not generalize to all types of data, e.g., images and text. Finally, none
of the approaches tracks the dataset evolution over time, e.g., the updates and integration. For
example, considering IoT sensors that continuously acquire measurements, data can be shared
every few months by updating the already shared dataset. Summarizing, a need emerges
for an architecture for data sharing that (i) is completely decentralized both in managing and
storing data, (ii) ensures trusted interactions among unknown actors, (iii) ensures dataset
traceability, (iv) ensures the data integrity, accessibility, and auditability, and (v) is scalable in
terms of actors and shared datasets. Moreover, an evaluation of the performance is needed to
understand the system’s robustness, accessibility, and scalability.

1.2. Novel Contribution

This paper proposes a novel architecture to share trusted data between untrusted
actors without needing a third-party authority as an extension of the work in [31]. The
architecture relies on a public blockchain that is open to anyone and uses a DFS network
for storage. The architecture exploits the blockchain to store the information on the dataset
(i.e., metadata) and the DFS network to store the dataset, creating a fully decentralized
solution. The interactions between the users and the network for the data upload and
retrieval are governed by smart contracts. We propose two types of smart contracts: the
catalog smart contract tracks the data in the system, and the dataset smart contract allows
fast and efficient retrieval. This software architecture guarantees a scalable system regarding
the number of actors and shared datasets, with time responses comparable to those offered
by a centralized cloud system without including an intermediary.

We implement a proof of concept of DeBlock using the Ethereum blockchain network
and two different DFS networks– InterPlanetary File System (IPFS) and Swarm. Then, we
evaluate the system performance in different scenarios (e.g., varying the amount and size
of the shared datasets), considering as metrics the transaction cost and processing time, the
data upload and download time and the node resources’ impact in terms of memory and
CPU impact. We also benchmarked against a baseline to demonstrate the scalability and
efficiency of DeBlock when increasing the number of actors and shared datasets.

In summary, the main contributions of this paper are: (i) the use of a public blockchain
acting as a central authority, which guarantees trust among untrusted users and dataset
access, integrity, and traceability; (ii) the design of two types of smart contracts, i.e., catalog
and dataset, that guarantee the scalability of the system in terms of actors and shared
datasets; and (iii) the evaluation of the proposed architecture performance to assess the
scalability and robustness with respect to literature architectures and centralized storage.

1.3. Structure of the Paper

The rest of this paper is structured as follows. Section 2 introduces blockchain technol-
ogy and the distributed storage system. Then, Section 3 proposes the architecture focusing
on the interactions between the users and the network. Section 4 reports the architecture set-
up and experiments to evaluate the proposed architecture performances. Finally, Section 5
concludes the paper and presents the future work.

2. Blockchain and Decentralized Storage
2.1. Blockchain Technology

This Section briefly describes blockchain technology and the unique features used in
our proposed architecture. Blockchain is a technology that enables trust without intermedi-
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aries by providing a transparent and immutable list of records. The technology merges data
structures, incentive mechanisms, and cryptography techniques to create and maintain a
special distributed database on a peer-to-peer network [10,31]. The first use case for this
technology is cryptocurrencies (e.g., Bitcoin [6]), where a blockchain system stores financial
transactions between unknown parties, acting as a distributed Ledger. Nonetheless, several
other use cases emerged in the last few years [9,10], confirming that systems can be adopted
in other applications where data exchange occurs between untrusted actors.

The three main components of a blockchain system are the transactions, the blocks, and
the network state. Transactions store information about the information exchange between
two system actors. A block is the data structure that groups transactions with additional
cryptographic safeguards and is validated by all the peers. Finally, the information in the
validated blocks creates a unique global state that all the network peers agree upon [31].

2.1.1. Blockchain Protocol

A blockchain system is governed by a protocol that describes (i) how to create and
validate transactions, (ii) how to create and validate new blocks, and (iii) how to broadcast
the block and update the state of the network [31]. This protocol applies whenever two
peers interact, as shown in Figure 1 and described in the following subsections.

Figure 1. Block scheme of the blockchain protocol for creating and validating a transaction, creating
and validating a block, and broadcasting the block in the network from an agreed state in Tk to an
agreed state in Tk+1.

Transaction creation and validation. The identity of each actor in a blockchain is
represented by a unique address associated with a pair of cryptographic keys. Actors use
these keys (i) to sign their transactions to certify their origin and (ii) to validate the integrity
and the origin of the transaction they receive. Blocks collect valid transactions and are
distributed in a peer-to-peer network and thus are accessible to any actor. Hence, Blockchain
is a transparent and verifiable record of interactions (property of auditability) [10].

Block creation and validation. A block is a time-stamped data structure, grouping
transactions and linked to the previous block. When creating a block, the protocol applies
cryptographic techniques to validate it, using a hashing function to create a unique identifier
(i.e., the block ID). This ID protects the block (and the content) from tampering since it loses
its validity with any data change in the block’s content. Furthermore, the link with the
previous block creates a retroactive relation that contributes to securing the Blockchain: any
modification implies heavy computations to validate and seal the previous and following
blocks. Thus, the information in Blockchain is considered permanent in time (property of
immutability) [31].

Block broadcasting. Finally, when a new block is broadcast to the network, each peer
appends it to the local copy of the chain after validating it. Therefore, each peer has a
copy of all the blocks in the Blockchain, providing a distributed architecture to the system,
and thus, it is tolerant to data failures. Appending the block implies its validation and
the update of the Blockchain global state that is agreed upon by all the peers, following
a consensus algorithm. The consensus dictates how to resolve conflicts, avoid abuses
related to personal interests over the common good, and incentivize participants without
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intermediaries. In this way, interactions occur directly among peers without any central
control. Consequently, the consensus protocol makes the system decentralized, which is an
intrinsic property of Blockchain [31,32].

2.1.2. Blockchain Taxonomy

There are two main types of Blockchain: permissionless (also known as public) and
permissioned (also known as private) networks. A permissionless blockchain, such as
Bitcoin [6], Ethereum [33], and Litecoin [32], is open, and anyone can join the network
and create new blocks. Permissionless blockchains rely on unknown users to operate as
network peers in exchange for cryptocurrency incentives as the processing fee for validat-
ing transactions [34]. Malicious behaviors in the block validation are discouraged by the
cryptocurrency amount [35] or the computational resources for solving a cryptographic
puzzle [6] needed when creating new blocks. In a permissioned blockchain, an organization
or a group controls access to the network to a limited number of peers and defines different
roles and permissions for the users. New blocks are published by authorized nodes, reduc-
ing the security constraints and thus, increasing the performance of the system [32] without
processing fees for the transactions. Even if a private blockchain provides auditability
and offers better performance (e.g., lower latency, higher transaction throughput), it is not
entirely decentralized or censorship-resistant as a public blockchain. Moreover, a private
blockchain is not as tamper-resistant as a public blockchain as the organization may roll
back the Blockchain to any point in the past.

2.1.3. Scripting Capabilities and Smart Contracts

The central protocol supports additional features that can improve the functionalities
of a blockchain system. One of the most relevant features is the smart contracts [36]. Smart
contracts are software stored in the Blockchain, originally developed to take advantage of
blockchain features to implement and enforce agreements between two or more parties in
an autonomous way [37]. Opposite to Bitcoin, which gives limited scripting capabilities,
Ethereum provides a Turing-complete language to build software that runs on top of the
Blockchain, using the peers as a distributed computer. The software runs deterministically in
all the peers simultaneously to process the information in the Blockchain. The exact execution
output enforces the agreement among peers without the need for any third-party validator.
Smart contracts have been the key to the expansion of Blockchain to other domains beyond
cryptocurrencies. While Bitcoin is considered the reference implementation for the blockchain
protocol, the reference for smart contracts is Ethereum [38]. Permissionless blockchains have
taken Ethereum as the model for implementing smart contract functionalities.

2.2. Distributed Storage

Distributed Storage, also called Distributed Files Systems (DFS), provides a decentral-
ized infrastructure to store data in multiple nodes, typically over a peer-to-peer network, in a
replicated fashion [13]. DFS overcomes several challenges of centralized cloud storage, such
as data reliability, availability, and integrity. The underlying peer-to-peer network enables an
efficient auto-scaling system without a single point of failure, creating a highly reliable storage
infrastructure [13]. Furthermore, since a DFS simultaneously stores the files in several loca-
tions, the content is censorship-resistant with higher availability despite individual failures of
particular nodes [13]. Regarding security and privacy, cryptographic data structures provide
embedded tamper-proof of the content, creating an additional layer of integrity verification.
Two of the main DFS protocols are the InterPlanetary File System (IPFS) and Swarm [13]. Both
protocols provide distributed storage with a content delivery protocol but with differences in
design and implementation in terms of the network layer, the peer management protocol,
and the data structure used. IPFS is more mature in terms of development and adoption [39].
Swarm is developed on the Ethereum protocol and thus fully integrated with the smart
contracts [40]. Although IPFS and Swarm have different protocols [13,39], they share several
similarities in both design and implementation, see Figure 2.
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Figure 2. Block scheme of the decentralized storage protocol for splitting a file F into N pieces Pn

stored along with the hashH(Pn) in the peers.

The simplified protocol to upload and store a file in a distributed storage network is
depicted in see Figure 2 and described in the next paragraph. When uploading a file F, the
DFS divides it into N smaller pieces Pn so that F = {P1, . . . , PN}. Each Pn is processed by
a cryptographic hashing function H(·) that generates a unique cryptographic hash. For
each Pn, the hashH(Pn) acts as unique identifier. A Merkle data structure (Merkle Tree for
Swarm and Merkle DAG for IPFS, respectively) connects all the hashes of all the pieces
at different levels [41]. At the bottom level of the tree, the hashes H(Pn) and H(Pn+1) of
pieces Pn and Pn+1 are connected to generate H(H(Pn),H(Pn+1)). Finally, at the root of
the tree, a unique hash for each file H(F) is generated (see Figure 2). The use of Merkle
data structures [41] creates a unique identifier for the file based on its content. Merkle
data structures provide beneficial properties for content addressing, optimizing disk usage,
and file integrity. Each piece of file Pn is stored on different network peers along with the
corresponding hashH(Pn+1). Using the hashes in a Distributed Hash Table provides an
efficient routing mechanism to address uploaded files and their pieces among the network
peers. In addition, if any Pn is corrupted or tampered with, the hash changes for the entire
file, enabling quick integrity verification.

3. Proposed Architecture

This work proposes a fully decentralized architecture called DeBlock to share and
retrieve datasets in a trusted and traceable way without an intermediary. The architecture
integrates a permissionless blockchain and a decentralized file system (DFS). The blockchain
network provides an immutable and transparent record to all the users (actors or network
peers) and thus, guarantees traceability and trust. The decentralized file system network
guarantees dataset availability and integrity as they are encrypted and always available.
Hence, DeBlock guarantees the integrity, ownership, and availability of the dataset on the
network to all the actors in a trusted and decentralized way. DeBlock is based on three
main assumptions that are easily satisfied. The actors are (i) identified via the cryptographic
public/private keys, which are securely stored, (ii) have legal rights over the shared data,
and (iii) the encryption operations are securely performed outside the blockchain (off-chain).

Actors. We assume a group of X = {Xi, i ∈ [1, . . . , NX ]} actors that are willing to
share and retrieve data. Since the actors are unknown to each other, they are untrustable.
Therefore, the datasets to share and retrieve cannot be trusted, which means that the
datasets’ integrity, availability, and accessibility cannot be guaranteed. The actors sharing
the datasets are called data-owners and are the owners of the intellectual property of the
group of datasets Y = {Yj, j ∈ [1, . . . , NY]}. We assume that data owners are willing
to share the data, but in a secure and traceable way to preserve the ownership and the
intellectual property. In the context of scientific research, they also want recognition and
acknowledgment of the dataset used. The actors willing to retrieve datasets are called
data users, and they need a way to verify the dataset’s origin, integrity, and changes,
i.e., evolution over time. Normally, this task is done by an intermediary that connects
and mediates between two users—here, the blockchain network acts as an intermediary,
enabling trusted and direct interactions between unknown actors. Note that an actor can
act both as a dataset owner and data user within different interactions.

Metadata and Dataset. Here, we assume that each data Yj, j ∈ [1, . . . , NY] consists
of the metadata Mj, j ∈ [1, . . . , NY] and the dataset Dj, j ∈ [1, . . . , NY]. The metadata Mj
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collects all the information describing the data, e.g., the data owner, acquisition time, and
the data source. The numbers and types of metadata fields depend on the data type. Dj is
of the dataset to share that can have a different structure, e.g., a 1D signal measured by IoT
sensors, or a 2D matrix, such as a satellite image.

3.1. Proposed Architecture Structure

The proposed architecture consists of an interface that connects two networks (see
Figure 3), i.e., a public blockchain and a distributed file system (DFS). The blockchain net-
work stores the metadata and keeps track of all the actor interactions with each dataset. For
each dataset, the blockchain network records the ownership and the evolution (i.e., updates
and changes), the identification (ID) of actors downloading it, and the evaluation. Evalua-
tions are given by actors that previously downloaded the dataset. They can provide a score
of the dataset goodness, such as the structure and quality. To increase the system’s openness,
we propose integrating a permissionless blockchain that is open to any untrusted actor. The
advantages of using a public blockchain in terms of transparency, availability, and openness
are greater than the disadvantages, including costs, latency, and transaction throughput. A
public blockchain enables any data owner to use the infrastructure as a trustless platform
for directly interacting with unknown dataset users. As blockchain storage capacity is
limited [10], datasets are stored in a DFS network to avoid any centralization. DFS increases
the system liveness as the dataset is stored across multiple network peers. DFS provides each
dataset with a unique identifier based on the dataset content. The ID is securely linked to the
dataset owner to reduce possible mismanagement. Moreover, DFS has faster download and
upload times than a centralized storing platform because of the multiple nodes storing the
data. Finally, the decentralized interface (DI) acts as a coordinator, providing an interface to
the blockchain and the decentralized storage networks. The decentralized interface interacts
with the smart contracts and performs off-chain tasks, such as encryption and decryption of
datasets. Each actor stores a DI copy to enhance the decentralization.

Figure 3. Block scheme of the proposed system architecture that provides an infrastructure for
sharing datasets among untrusted actors.

3.2. Proposed Architecture Interactions

Figure 4 shows the interactions between the actors and the proposed architecture,
mainly depending on the actor type, i.e., data-owner or data-user. Data owners have
three possible interactions: share, update, and authorize. Data users have three possible
interactions: search, request, and score.

Dataset Owner. A dataset owner shares a dataset, i.e., metadata and the data, using
the decentralized interface (see Figure 5). The dataset is encrypted and stored in the DFS,
which provides a unique identifier (i.e., a cryptographic hash of the file). The identifier is
included in the metadata and sent to the Catalog Smart Contract (CSC). CSC inserts the
metadata in the dataset list and creates a Dataset Smart Contract (DSC). The DSC can be
updated only by the dataset owner following a similar procedure for sharing. When a
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dataset is updated, a new identifier is generated by the DFS. The new and the old ID are
stored on the blockchain, proving a traceable history of changes and modifications.

Dataset User. A data user can search in the decentralized interface by using specific
criteria, see Figure 6. The interface sends a search transaction to the CSC, which returns
the list of matches. The actor can decide which dataset to use and require the complete
metadata, querying each DSC individually. When finding a matching dataset, the data-user
requests access to the data. The access request is transformed into a request transaction
and sent to the DSC. The data owner of a dataset is notified of each access request that can
be accepted or rejected. To authorize the request, the dataset owner provides the access
key for the data, which is encrypted by the decentralized interface and sent to the DSC as
an authorized request transaction. If the owner does not provide the keys, the request is
rejected. After receiving access to a dataset, the actor is asked to evaluate the dataset quality
(see Figure 7), providing a score. The actor receives a positive or negative reward. Based
on the rewards, smart contracts can limit or encourage actor activities. Note that DeBlock
supports the seamless integration of more complex rewarding mechanisms [13,16,31,42].
However, this falls beyond the scope of this paper.

Figure 4. Modular view of the proposed system with the focus on the actors and their interactions.

Figure 5. Sequence diagram for sharing and updating a dataset.
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Figure 6. Sequence diagram for dataset search and access request.

Figure 7. Sequence diagram for accessing and scoring a dataset.

3.3. Smart Contracts

Smart contracts define rules and methods to validate and process the actor interactions
with the network and between them, providing an interface to access information. Smart
contract design is critical as it is strongly linked with the system performance in terms of
time and cost for uploading and retrieving data. Moreover, smart contracts are important
for increasing system scalability, interoperability, and usability. To have fast and secure
interactions between the users and the network, we propose two types of smart contracts,
i.e., Catalog and Dataset.

3.3.1. Catalog Smart Contract

The catalog Smart Contract (CSC) stores a list of the existing datasets and their qual-
ity scores, and thus provides user-friendly data retrieval capabilities to the architecture.
Moreover, it indicates how to share, search, and score the datasets,

Dataset Sharing. CSC receives a transaction with the metadata coded in a standard format
(e.g., ISO format). CSC first verifies the metadata format, then adds a new record in the dataset
list, and finally rewards the actor. Adding a new record requires creating a Dataset Smart
Contract (DSC) with a unique blockchain address stored in the dataset list (Algorithm 1).

Dataset Searching. The CSC receives a transaction with search criteria to filter the
dataset list. The results contain the dataset identifiers matching the search criteria and the
related quality scores.
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Dataset Scoring. After downloading a dataset, an actor must send a transaction scoring
the dataset quality to the CSC. Actors receive a positive or negative reward, depending on
if they sent the evaluation or not. The reward sum indicates the reliability of an actor.

Algorithm 1: Create new dataset in the CSC
Input: dataset, owner, dataid
Output: new_dsc.address
/* Verify that dataset does not exists */
if dataset in datasets_list then

terminate
/* Create a new DSC */
new_dsc = createDSC(dataset, owner, dataid)
/* Append new dsc to exists contract */
datasets_list.append(new_dsc)
/* Reward the owner for sharing a dataset */
owners_rewards[owner]++
return new_dsc.address

3.3.2. Dataset Smart Contract

For each dataset, a smart contract (DSC) is created and owned by the actor that shared the
dataset. Blockchain grants trust, while smart contracts provide easy access and autonomous
interactions among actors. Furthermore, the DSC performs the basic validations of the user
identity and permission, following the cryptographic rules of the blockchain. Nonetheless,
the contract could also implement more complex validations of the dataset according to
the capabilities of the blockchain platform (i.e., Turing completeness) . Therefore, the DSC
implements the methods to update, request, access, and authorize or reject the dataset access.

Dataset Updating. DSC processes transactions with the dataset changes from the owner.
In addition, the DSC tracks all the changes that are accessible by anyone in the system.

Dataset Access. Accessing the dataset requires sending a transaction to the DSC. The
DCS implements the logic for automatically giving access to the dataset or filtering requests,
for instance, based on the requester score (see Algorithm 2).

Algorithm 2: Request access to dataset in a DSC
Input: user, retry
Output: response
/* Verify that user can request */
if CSC.users_rewards[user] > 0 then

terminate
if user in accepted_requests then

/* Return the existing credentials */
return authorized_request[user].credentials

else if user in rejected_requests then
/* Return the reject response */
return rejected_requests[user].response
if retry then

/* A new request can be created */
create_new_request(user)
notify(owner)

else
/* Create a new access request */
create_new_request(user)
notify(owner)
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Dataset Request. Any dataset access request needs to be authorized by the dataset
owner. The dataset owner provides the access key encrypted using the requester’s public
key for the authorization.

The aforementioned smart contract design is innovative compared to those in the
literature and has remarkable contributions that increase the system performance. The
smart contract design improves the modularity of the system as (i) a DSD is created for any
dataset, (ii) each DSD represents the interest and actions of the data owner, and (iii) one
or more CSCs track all the datasets in the system. The CSC may be easily extended to
(i) monetize the data, or (ii) incensing data-sharing and data-scoring with tokens.

3.4. Proposed Architecture Benefits

DeBlock presents several benefits derived from blockchain and distributed storage
with a scalable smart contracts design. As described in Section 2, a blockchain system
embeds auditability, immutability, and decentralization. Combining these features enables
trust among peers based on an agreed global state of the network, removing the need for
an intermediary. Similarly, DFS overcomes several challenges of centralized cloud storage,
such as data reliability, availability, and integrity.

Therefore, in our architecture, any network peers can validate the integrity and origin
of the dataset using the property of auditability. Moreover, instead of blind trust in a
central authority, the cryptographic techniques provide the tools to perform the validation
in a decentralized way. Moreover, these same cryptographic techniques guarantee the
immunatibilty of the blockchain content. Thus, actors have full access to the complete
history of the data, including the origin and following updates, without censorship or
arbitrary edits. Furthermore, the consensus algorithm provides a system’s global status,
agreed upon by the peers in a decentralized way.

Using a DFS, our architecture removes the intermediary for off-chain storage, render-
ing the system fully decentralized. The peer-to-peer network of DFS enables an efficient
auto-scaling system without a single point of failure, increasing the reliability and availabil-
ity of the stored datasets. Furthermore, the cryptographic data structures on DFS provide
embedded tamper-proof of the content, creating an additional layer of integrity verification,
transparent for the actors in the system.

Finally, smart contracts can automate task execution by encoding rules for ownership,
formats, and rewards. The proposed smart contract design allows the system to scale
easily in terms of actor and shared dataset, reducing the costs of transactions without
sacrificing performance.

4. Experimental Setup and Results

This section evaluates the proposed architecture’s performance, potentialities, and
limitations. First, we describe the experimental setup, including the hardware and software
setup, parameters, and metrics used for the evaluation. Then, we present our evaluation
divided into three objectives (i) managing the data, (ii) managing the metadata, and (iii) a
brief security analysis.

4.1. Experimental Setup
4.1.1. Hardware and Software Setup

Our architecture is blockchain agnostic, meaning it can rely on any blockchain net-
work with scripting capabilities. For this evaluation, we tailored the blockchain module
to the open-source project Ethereum [12] as it incorporates smart contracts as a Turing-
complete language for software running on the blockchain [33]. To implement the Ethereum
blockchain, we used the official Geth client (version 1.9.18-stable). To evaluate how different
consensus algorithms might impact the architecture, we ran two independent nodes with
different consensus algorithms, i.e., Proof-of-Work (PoW) and Proof-of-Stake (PoS). One
node implements the Ropsten test network with PoW. The other node implements the
Goerli network based on a variation of PoS. To reduce the security risks derived from smart
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contract vulnerabilities, we used industry-approved libraries in our implementation. For ex-
ample, rewarding mechanisms and other critical functionalities are based on OpenZepellin,
a library for a secure smart contract development considered a community-standard [38].
We used two identical virtual machines on an OpenStack server with 4 GB of Ram, 20 GB
of SSD, and 4 vCPU, and running clean Linux Ubuntu installation (version 18.04).

For the decentralized storage module, we choose Swarm and IPFS as the most common
DFS implementations [13]. IPFS [39] is more mature in terms of development and adoption.
Swarm is integrated with the Ethereum protocol [40] and smart contracts. A cryptographic
hash obtained from the content of the uploaded file uniquely identifies each document on
both IPFS and Swarm. IPFS uses a multi-hash allowing different hashing functions, with
SHA-256 as the default algorithm, and Swarm uses a hash function based on the SHA-3
algorithm. For a complete comparison of IPFS and DFS, we refer to [13]. As software tools
for the decentralized storage module, we ran two independent nodes, using the official
IPFS client (version 0.5.1) and the official Swarm client (version 0.5.7-5ccfd995). In addition,
we used two identical virtual machines on an OpenStack server, with 4 GB of Ram, 20 GB
of SSD disk, and 4 vCPU, running a clean Linux Ubuntu installation (version 18.04). The
client module was implemented using Python (version 3.6) and ran on a Lenovo T490s
notebook, with 16 GB of Ram 256 SSD disk, and an Intel i-7 processor at 1.90 GHz over a
clean Linux Ubuntu (version 18.04).

4.1.2. Dataset and Metadata Parameters

For the data stored on the decentralized file system, we considered seven sizes of
files: 1, 5, 10, 50, 100, 250, and 500 MB based on the file sizes in literature [43]. Each file
is a packed Unix archive (tar), including a single random bytes file and a text file with a
unique timestamp and description for each experiment. Since the metadata depend on
each use case, we considered raw data ranging from 100 to 1000 bytes based on the size
reported in similar works [29]. Finally, the score dataset transaction is based on an ERC20
Token transfer transaction. The ERC20 is an Ethereum standard ensuring exchangeability
and interoperability for all the blockchain tokens. The same token standard is used for
rewarding the users. In both cases, the ERC20 token represents a unique and traceable unit
of information (i.e., the score, the reward), and since it is a token, it can only be generated
by authorized contracts in the architecture. Furthermore, this standard allows other actors
outside the system to add additional value to this information, by making it exchangeable
with other ERC20 tokens [9].

4.2. Experimental Results
4.2.1. Performance of the Distributed Storage

Dataset upload times. To evaluate the upload time in the distributed storage, we
measured the upload times of the datasets as it is the main metric currently used when
evaluating centralized architectures [29]. We created and uploaded ten different files of
each size to evaluate the robustness and scalability of the system. In addition, we uploaded
one file approximately every 30 min to evaluate different network conditions. To get a
reference time compared to a centralized alternative, we also uploaded the files to a Git
repository, pushing a new commit, and we used a shell script to measure the elapsed time.
Table 1 shows the minimum, maximum, average, and standard deviation of the uploading
time for the Swarm, IPFS, and Git implementations. In addition, the table includes the
average peers connected to each node and the average ping time to the Git repository.
These results are also plotted in Figure 8. The uploading time is always increasing for the
centralized implementation (Git), showing an exponential increase. For the distributed
implementations (Swarm and IPFS), the uploading time is almost constant for files smaller
than 10 MB and increases for larger files. The distributed storage implementation based on
Swarm has higher uploading times than the centralized implementation for files smaller
than 375 MB. Conversely, the uploading time for files larger than about 375 MB is shorter
than for the Git-based implementation. The IPSF implementation based has significantly
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lower uploading times than the Git and Swarm implementations for files of all dimensions.
This is because the IPSF normally splits the data into fewer pieces and sends them to closer
nodes, while the Swarm protocol privileges more split and farther nodes.

Table 1. Upload times expressed in seconds for the Swarm, IPFS, and Git storage.

File Size
Swarm IPFS Git

Min Max Avg σ Min Max Avg σ Min Max Avg σ

1 MB 1 72 12 16.11 <1 1 <1 0.47 4 6 4 0.75
5 MB 1 45 11 9.89 <1 1 <1 0.44 5 8 6 1.02

10 MB 1 40 10 8.42 <1 1 <1 0.49 6 7 6 0.49
50 MB 9 67 13 14.26 1 2 1 0.25 16 17 16 0.4
100 MB 7 98 40 30.49 1 5 2 0.91 29 30 29 0.49
250 MB 22 522 105 120.03 8 18 9 2.36 82 85 83 1.36
500 MB 58 741 194 155.79 8 18 9 2.36 210 218 214 3.12

Avg. peers: 29 Avg. peers: 164 Ping time: 23 ms
σ = 3.35 σ = 63.54 σ = 0.55

Figure 8. Average upload times for different file sizes for the Swarm, IPFS, and Git storage.

Dataset download time. To assess the performance of the proposed architecture in
retrieving the data, we measured the query and retrieval times of the datasets [29] when
downloading each file approximately 30 min after the upload. As a reference to centralized
infrastructure, we download the test file from the Git repository. To this end, we made a
pull from the command line, using a pair of register keys as the authentication method.
Table 2 shows the minimum, maximum, average, and standard deviation of the download
time for Swarm, IPFS, and Git. The table also includes the average peers connected to each
node and the average ping time of the Git repository. The downloading results for the
three implementations are also shown in Figure 9. For the centralized implementation,
the download time shows an exponential increase with the increase of the file size. The
download time for both distributed implementations is lower than the Git implementation
for all the file sizes. The download time for files up to 100 MB is almost constant for Swarm
and IPFS protocols. However, for files larger than 100 MB, the performance degrades
slightly for the IPFS and strongly for the Swarm protocol.
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Table 2. Download times expressed in seconds for the Swarm, IPFS, and Git storage.

File Size
Swarm IPFS Git

Min Max Avg σ Min Max Avg σ Min Max Avg σ

1 MB <1 1.0 <1 0.22 <1 1.0 <1 0.24 2 3 2 0.49
5 MB <1 1.0 <1 0.22 <1 1.0 <1 0.22 3 20 5 5.4

10 MB <1 1.0 <1 0.22 <1 1.0 <1 0.25 2 9 5 2.42
50 MB <1 2.0 1 0.46 <1 1.0 <1 0.25 12 43 18 12.12
100 MB 1 4 2 0.7 <1 28.0 2 6.77 5 52 23 17.55
250 MB 4 205 18 49.9 <1 2.0 1 0.32 53 87 64 13.63
500 MB 8 1218 90 301.38 1 86 7 21.03 104 156 120 18.29

Avg. peers: 44 Avg. peers: 933 Ping time: 42 ms
σ= 11.32 σ = 79.99 σ = 25.93

Figure 9. Average download times for different file sizes for the Swarm, IPFS, and Git storage.

Resources impact on the node. To understand the impact of the proposed architecture in
terms of resources for the node, we profile the computer in regular operation by taking a snap-
shop of the system resource usage every hour for one week. Then, we performed the same
profile while running the node client for IPFS and Swarm. Table 3 shows the average hourly
sent and received packets, sent and received bytes, CPU usage, and disk usage for the regular
operation, IPFS operation, and Swarm operation modes. Figure 10 shows the CPU usage over
one day, Figure 11 illustrates the memory usage over the day, Figure 12 shows the received
bytes per hour over one day, and Figure 13 shows the transmitted bytes per hour over one day.
The CPU usage of the IPFS implementation and the baseline are constant over the day, even
if the IPFS implementation has a larger CPU average usage than the baseline. The Swarm
implementation’s CPU usage is average larger than that of the IPFS implementation and
varies significantly over the day. The memory usage of the Swarm implementation and the
baseline is constant over the day, although the Swarm implementation has a larger memory
footprint than the baseline. The memory footprint of the IPFS implementation slightly varies
during the day and is on average higher than the Swarm implementation and the baseline.
Transmitted and received bytes per hour are on average higher for the IPFS implementation
than for the Swarm implementation. The IPFS implementation shows an almost constant
behavior over time, while the Swarm implementation has several high peaks of received and
transmitted data. To summarize, the Swarm protocol requires less memory than IPSF (see
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Figure 11) but has a higher CPU usage (see Figure 10). IPFS, on average, has a larger received
and transmitted bytes per hour than Swarm (see Figure 12).

Table 3. Resource impact on the node in terms of CPU and memory usage, and transmitted and received
bit per hour before (Base Line) and while running the proposed architecture with IPFS and Swarm.

Metric
Base Line Swarm IPFS

Avg Avg δ Avg δ

CPU Usage (%) 0.20 10.62 10.42% 6.04 5.84%
Memory Usage (%) 3.00 10.04 7.04% 18.01 15.01%
Network Tx (b/h) 82,138.31 11,202,555.10 11,120,416.79% 31,273,935.23 31,191,796.92%
Network Rx (b/h) 619,528.38 13,026,146.52 12,406,618.15% 38,839,748.92 38,220,220.54%

Figure 10. System average CPU usage before and while running the proposed architecture with IPFS
and Swarm.

Figure 11. System average memory usage before and while running the proposed architecture with
IPFS and Swarm implementation.

Figure 12. Network average received bytes per hour before and while running the proposed architec-
ture with IPFS and Swarm.
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Figure 13. Network average transmitted bytes per hour before and while running the proposed
architecture with IPFS and Swarm.

4.2.2. Performance of the Blockchain

To evaluate smart contract design, we measure the cost in terms of GAS of each
transaction as the metric for comparing different system operations. The GAS allows the
comparison of different blockchain-based applications and is directly related to scalability,
performance, and monetary costs [36,44]. We also provided transaction cost and transaction
processing time as additional metrics.

Transaction costs. Each transaction has an infrastructure cost on public blockchain
networks, i.e., a transaction fee. That cost covers the reward of the miners. On Ethereum,
a transaction needs gas, the unit of measure of the computations and storage required
by a transaction. For instance, a cryptocurrency transfer typically costs 21,000 gas units.
More complex transactions have a higher cost as they require more computation and
storage. From the user perspective, gas cost translates into monetary cost using a gas price.
The gas price is typically expressed in Gwei, defined as 10−9 of an Ether, the Ethereum
cryptocurrency. Higher gas prices provide faster transaction times, giving a higher incentive
for miners. The transaction processing time is influenced by several other factors, such
as the number of transactions and active peers, that are beyond the scope of this paper.
Here, we adopted a gas price of 10 Gwei, the value recommended by software wallets
(e.g., metamask) for an average transaction processing time. Finally, to represent this value
as a monetary cost, we consider a conversion rate of 1 Ether = USD 300, considering the
average ETH price during 2019. Table 4 shows the average size (in bytes) of the metadata
and the resulting transaction, gas cost, and monetary cost (in USD) for each of the seven
transactions. The ‘Bootstrap’ and ‘Create’ transactions are the most expensive in terms
of gas and cost, as the cost in USD equals 11.83 and 3.42, respectively. In terms of size,
‘Create’ and ‘Update’ transactions are the most expensive transactions, occupying 509 and
236 bytes, respectively. ‘Search’ and ‘Detail’ transactions have no gas cost as they require
querying the local version of the blockchain.

Transaction processing times. To measure the processing time, we created 36 instances
of each transaction type (see Section 3). We send all the transactions approximately 15 min
apart to have different network conditions. Table 5 shows the minimum, maximum, mean,
and standard deviation of the processing time in seconds for ten instances using a gas
price of 10 Gwei for both PoW (Ropsten) and PoS (Goerli) networks. Figure 14 shows
the histogram of the processing times for all types of transactions on both PoW and PoS
networks. In the Ropsten network with µR = 18.35 and σR = 12.39, the transactions were,
on average, executed in less than 20 s with a maximum time of 68 s. On the other hand,
in the Goerli network with µG = 16.69 and σG = 5.8, the transaction processing time was
never larger than 32 s and, on average, around 15–18 s.
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Table 4. Transaction cost (gas usage) using different size of metadata.

Transaction Metadata Gas
(Type) (Byte) (Units)

(0) Bootstrap 10 3,589,913

(1) Create

100 1,200,317
200 1,209,577
400 1,228,036
800 1,264,490

1000 1,284,496

(2) Update

100 43,299
200 51,167
400 66,777
800 97,690

1000 113,822

(3) Authorize 50 77,402

(4) Reject 42 30,025

(5) Search - 0

(6) Request 14 43,507

(7) Details - 0

(8) Score 4 64,120

Table 5. Create transaction processing times in terms of minimum, maximum, average, and variation
on a Ropsten and a Goerli network.

Transaction
Ropsten (PoW) Goerli (PoS)

Min Max Avg σ Min Max Avg σ

(0) Bootstrap 06 40 19.14 10.74 08 24 17.00 5.92
(1) Create 04 68 19.03 15.27 02 32 15.30 5.38
(2) Update 04 48 17.50 10.81 12 30 17.20 5.05
(3) Authorize 06 50 24.61 11.14 12 30 17.13 7.11
(4) Reject 08 60 22.83 14.26 10 30 17.40 7.08
(6) Request 06 42 17.69 10.19 02 32 16.57 5.23
(8) Score 04 40 13.56 8.82 14 32 17.53 5.72

Figure 14. Transaction processing time for Ropsten and Goerli networks.
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4.2.3. Analysis of the Architecture Scalability

We perform several experiments to assess the architecture scalability by significantly
changing the number of actors and shared files. We also compared the proposed architecture
with three other designs based on current literature. This is to assess the goodness of
different smart contract designs quantitatively. The architectures considered in the analysis
are the following.

(A1) This architecture is based on [29] and has two smart contracts: DataOwner and
DataSharing. A DataOwner smart contract is created for each actor sharing a
dataset and contains all the information on the actor. This is far from our proposal,
where we only use the cryptographic key of the authors (saved in the catalog smart
contract). The data-sharing contract is similar to the Dataset smart contract in our
proposal. Each time a file is uploaded, a tuple composed of a KeywordIndex, a
transaction id, and an encryption key is added to the data-sharing contract through
a function called addIndex. Each time the users search for a file, this contract
requires a transaction that modifies the contract, thus imposing a fee for each
search. Unlike our proposal, this architecture does not consider dataset scoring,
nor does user rewards, does not have an index, and uses an additional contract for
each user.

(A2) This architecture is a naive approach, similar to that in [16], where one smart
contract is created for each author and shared file. Based on the ERC-20 standard, a
controller works as a token provider for rewarding the users.

(A3) This architecture is a simplified version of the proposed one and lacks the rewarding
and scoring functionalities. This is done to match the functionalities of architecture
A1 and make a more straightforward comparison.

(A4) This architecture corresponds to the proposed one and includes the tracking, scor-
ing, and rewards functionalities.

Table 6 presents the gas usage of the four implementations for the different function-
alities to share different numbers of files. Figure 15 shows the total gas sum of all the
operations required to share different numbers of files (i.e., create the controller, the dataset,
the user, and then add the files). In this Figure, A2 is not shown since it has the largest
gas usage by several orders of magnitudes, and thus makes the comparison with other
architectures harder.

The naive approach A2 significantly differs from the other architectures (A1, A3, A4)
in terms of GAS since it requires several transactions for sharing and searching datasets.
This highlights the goodness of our smart contract design. When sharing one single file,
A1 performs better than the other architecture, as it does not require the creation of an
additional catalog or controller contract. However, as the number of files increases, the
proposed simplified architecture (A3) requires less gas for sharing the same number of
files. Furthermore, when sharing more than 100 files, the proposed architecture A4 requires
less gas than A1. Moreover, the cost for retrieving a dataset is lower in A3 and A4 than in
A1, as A1 has an associated cost when searching a shared file. However, this cost is not
present in our architecture as we do not modify the blockchain status and the smart contract
when querying a dataset. Furthermore, the cost for adding a user is lower in our proposed
architectures A3 and A4 than in A1 as we do not create a new smart contract for each
user, but we store only the cryptographic key in the catalog smart contract. Therefore, our
proposal presents better scalability when adding more datasets, files, and users, given the
careful design of smart contracts. The results show that the performance of the proposed
architecture A4 is higher than the architecture proposed in the literature in A1 and A2 when
scaling to a large number of actors and shared datasets. Note that the proposed architecture
has more functionalities than those in the literature, including the scores for the datasets
and rewards for the users.
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Figure 15. Total gas usage for creating and searching different number of files for Architectures 1, 3,
and 4.

Table 6. Gas usage compared to state of the art with different number of files.

Transaction Files
Gas

A1 A2 A3 A4

Create Controller 0 2,644,822 1,274,321 3,589,913
Create Dataset - 1,143,873 676,611 1,800,714 4,845,861
Create User - 529,014 0 0 0
Add User - 44,349 0 0 0

Add File

1 676,611 908,355 0 0
5 292,879 3,324,747 122,160 468,504

10 545,233 6,634,917 275,703 872,125
15 797,461 9,945,087 428,040 1,275,938
20 1,049,690 13,255,257 581,044 1,679,751
25 1,846,893 16,565,427 733,344 1,993,817
50 3,693,683 33,116277 1,497,788 3,988,850
75 5,540,986 49,667,127 2,262,296 4,983,755

100 7,387,110 66,217,977 3,025,972 6,977,892

Search File

1 74,318 0 0 0
5 274,367 0 0 0

10 311,548 0 0 0
15 388,764 0 0 0
20 473,160 0 0 0
25 519,833 0 0 0
50 989,034 0 0 0
75 1,987,560 0 0 0

100 2,859,182 0 0 0

4.2.4. Thread Model and Security Analysis

Given the exposure of DeBlock to unknown actors sharing datasets in a decentralized
way, it becomes susceptible to multiple security attacks, which may impact the system’s
trustworthiness, as well as data accessibility and availability [45]. This section discusses the
threat model for DeBlock and the related mitigation strategies. Based on current literature
on blockchain-based applications security [30,45,46] we considered the following attacks
and their corresponding mitigation strategies:
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Sybil and Distributed Denial of Service (DDoS) attack on the network. In a Sybil
attack, an actor creates multiple identities (i.e., fake users) to manipulate the system in its
favor. In a DDoS attack, several actors send simultaneous requests to collapse the system’s
availability for accessing the data and metadata. As a countermeasure, our proposal uses
a public blockchain network, which highly reduces the possibilities of these attacks [47].
In a public network, the consensus mechanism and the number of honest nodes force the
attackers to spend many resources (e.g., energy and computing power) for each attack,
greatly reducing their occurrences [45,47].

Smart Contract vulnerabilities. Smart contracts are currently the weakest point of
blockchain-based applications [46], as they introduce software vulnerabilities, including
transaction order management, reentrancy, integer overflows, and denial of service [45,48].
Our architecture uses a simple and scalable software architecture based on two smart
contracts adopting industry-approved libraries. Using these libraries introduces software
patterns and best practices to lessen the impact of possible threats. Furthermore, reusing
audited code significantly reduces the attack surface of the smart contracts [36], and thus,
the DeBlock architecture.

Dataset availability. Dataset availability is related to the presence and accessibil-
ity of the datasets and depends on their storage location. Therefore, any attack on the
storage could prevent data access for the system’s actors without redundancy [45]. Fur-
thermore, datasets could be lost forever if the storage fails and the data are not replicated
elsewhere [30]. In our proposal, the decentralized storage and the blockchain increase
the dataset availability as they provide redundancy by replicating the data in more than
one network peer [13,17]. For more detail, we refer to the literature [13,17,30] and the
references within.

Dataset integrity. This threat is related to modifying the data stored on the blockchain
or the storage network. However, blockchains are considered immutable, as the information
stored in public blockchains cannot be modified without an extremely significant resource
consumption [46]. Similarly, the information on the distributed storage is hardly modifiable
as it is replicated and includes cryptographic safeguards [30]. However, in the modification
case, the cryptographic safeguards (i.e., a hash) provide information to verify the dataset
integrity [13]. If the cryptographic hash is unavailable, an attacker could modify the dataset
without the actor noticing [30]. In our architecture, each file uploaded to the DFS is uniquely
identified by its cryptographic hash computed automatically. Further, the hash is stored in
the blockchain, where it can not be deleted or tampered with, and it is easily accessible to
check the integrity of the dataset without revealing its content [17].

Dataset privacy. By default, the public network exposes all the information to all the
participants in the system [47]. Even if openness and transparency help improve trust
among actors, disclosing the content may lead to privacy leaks, resulting in data misuse
for certain datasets [46]. Our architecture supports state-of-the-art encryption techniques,
such as ABE [29] or ZKP [15], that can be applied to the dataset. In this way, Deblock
provides modularity to share the dataset openly or use complex encryption-based schemes
to guarantee the privacy of the dataset content. This approach is aligned with current
literature for preserving privacy on blockchain-based applications [15,30,45].

5. Conclusions and Future Works

This paper presents a fully decentralized architecture called DeBlock that integrates
a public blockchain and a DFS network with an efficient smart contracts design. The
public blockchain stores the metadata and allows unknown actors to interact in a trustless
way. The DFS stores the encrypted dataset by splitting it among several peers linked to
the blockchain through the decentralized interface. Moreover, we propose an innovative
and efficient smart contract design that allows the system to scale easily in terms of actor
numbers and shared datasets. The system performance is evaluated by implementing a
PoC, considering Ethereum as a permissionless blockchain, and two DFS implementations,
i.e., IPFS and Swarm. The results showed that the proposed architecture enables the trusted
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interaction of unknown actors and the storage and update tracking of the datasets. The
permissionless blockchain is viable in terms of monetary costs and performance for dataset
sharing, allowing trusted interactions between unknown actors. Moreover, the blockchain
guarantees data integrity and access to all the actors in the system. Additionally, it provides
a tamper-proof history of the dataset, with full traceability of the updates. Considering
two different DFS implementations, the architecture’s performance has good results in
terms of time, cost, and impact on the node resource. Compared to a centralized storing
system (git version control), both DFS implementations require less time for dataset upload
and download. IPFS provides a faster upload and download than Swarm at the cost of
splitting the datasets into fewer pieces and sending them to closer nodes. Swarm requires
more time as it splits the file into more pieces stored in more and farther nodes. Although
this strategy increases the time response, it provides a higher level of decentralization
and dataset availability. Regarding the impact on the node resources, Swarm requires
less memory than the IPSF but has a higher CPU usage. On average, IPFS receives and
transmits more bytes per hour than Swarm. Considering the results, the choice of the DFS
implementation depends on the requirement of a specific use case. Finally, to evaluate the
smart contract design’s goodness, we compared the proposed architecture’s performance
with those in the literature. The results show that the proposed architecture is more efficient
and scalable in terms of actors and datasets. Furthermore, as the number of actors and files
increases, our implementation requires less gas and time while providing more benefits
(including the possibility of scoring the dataset and rewards for the data owners) than the
literature architecture.

In future works, we plan to evaluate the time response of read-only transactions and
the impact of different encryption methods on the data in terms of computational resources,
time, and gas usage. We also plan to explore how to incentive data sharing, including
developing more attractive rewarding mechanisms.
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