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Abstract: In a smart grid communication network, positioning key devices (routers and gateways) is
an NP-Hard problem as the number of candidate topologies grows exponentially according to the
number of poles and smart meters. The different terrain profiles impose distinct communication
losses between a smart meter and a key device position. Additionally, the communication topology
must consider the position of previously installed distribution automation devices (DAs) to support
the power grid remote operation. We introduce the heuristic method AIDA (AI-driven AMI network
planning with DA-based information and a link-specific propagation model) to evaluate the connec-
tivity condition between the meters and key devices. It also uses the link-received power calculated
for the edges of a Minimum Spanning Tree to propose a simplified multihop analysis. The AIDA
method proposes a balance between complexity and efficiency, eliminating the need for empirical
terrain characterization. Using a spanning tree to characterize the connectivity topology between
meters and routers, we suggest a heuristic approach capable of alleviating complexity and facilitating
scalability. In our research, the interest is in proposing a method for positioning communication
devices that presents a good trade-off between network coverage and the number of communication
devices. The existing literature explores the theme by presenting different techniques for ideal device
placement. Still rare are the references that meticulously explore real large-scale scenarios or the
communication feasibility between meters and key devices, considering the detailed topography
between the devices. The main contributions of this work include: (1) The presentation of an efficient
AMI planning method with a large-scale focus; (2) The use of a propagation model that does not
depend on an empirical terrain classification; and (3) The use of a heuristic approach based on a
spanning tree, capable of evaluating a smaller number of connections and, even so, proposing a
topology that uses fewer router and gateway positions compared to an approach that makes general
terrain classification. Experiments in four real large-scale scenarios, totaling over 230,000 smart me-
ters, demonstrate that AIDA can efficiently provide high-quality connectivity demanding a reduced
number of devices. Additional experiments comparing AIDA’s detailed terrain-based propagation
model to the Erceg-SUI Path Loss model suggest that AIDA can reach the smart meter’s coverage
with a fewer router positions.

Keywords: smart grid communication network; key device positioning; AMI network planning

1. Introduction

The power grid is a complex system that includes the elements responsible for gener-
ating, transmitting, and distributing energy [1]. The authors in [2] explained that existing
resources must be optimized through intelligent technologies called smart grids (SGs),
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which integrate new technologies to improve the monitoring and control of operations, as
well as the generation and distribution of energy. Furthermore, it is essential to adapt to
variations in demand and facilitate the evolution of energy distribution systems.

In this context, the smart grid concept can significantly improve electrical systems’
robustness and efficiency through an integrated communication network. According to the
authors in [3], smart grid communication will improve the quality of power, allowing the
integration of different energy sources and enabling the efficient creation of new products
and services. In addition, an important difference between traditional and smart grids is
the two-way communication capability provided by the SG [4].

In a smart grid, the advanced metering infrastructure (AMI) benefits from bi-directional
communication for monitoring and control purposes, enabling reliable and secure high-
speed communication between smart meters at the end-user side and the smart grid control
center (CC) [4]. This AMI communication is indispensable for the reliable operation of
the grid, as explained by [5], which refers to the AMI as a factor for increasing the grid’s
reliability.

In an AMI communication network, positioning key devices (routers and gateways)
is a complex task. It initially requires knowledge about the positioning of smart meters
(SMs), distribution automation (DA) devices, and poles. Knowing the technical information
about the communication technology and the geographic area is also important. The
planning of an AMI network entails particular concerns regarding the costs and overall
performance of the communication network because the adequate positioning of key
devices can significantly reduce the total deployment cost. Therefore, when designing
an SG communication network, in addition to prioritizing smart meters’ connectivity, we
must also take into account the positions of distribution automation (DA) devices. The
communication network for managing DA equipment must have high performance and
reliability, and thus their connection to the backhaul network is a requirement.

Additionally, a more detailed evaluation of inter-device connections in the planning
stage helps to anticipate the occurrence of potentially unreliable links during the implemen-
tation phase. In our research, the interest is towards proposing a method for positioning
communication devices, presenting a good trade-off between network coverage and the
number of communication devices. The existing literature explores the theme by presenting
different techniques for ideal device placement. Still, rare are the references that explore
real large-scale scenarios or that explore the communication feasibility between meters
and key devices meticulously, considering the detailed topography between the devices.
Furthermore, we are not aware of device positioning methods that prioritize candidate
positions with DAs.

Thus, the main contributions of this work are the following:

• The presentation of an efficient AMI planning method with a large-scale focus: Four
real large AMI network scenarios, including urban and rural areas, are used in the
experiments to evaluate the method’s performance in large-scale projects. These sce-
narios include more than 230,000 smart meters. Experimentation with large-scale real
data is not common in the existing literature. We believe that exploring large scenar-
ios allows us to evaluate the proposed method under real conditions, verifying the
method’s behavior for regions with different concentrations of meters and poles which
demand a large coverage area and can present very different terrain characteristics.

• The use of a propagation model that does not depend on empirical terrain classification:
A detailed propagation model, including terrain diffraction loss, is applied for the link
budget calculation. Instead of using a standard and general link budget approach to
compute wireless link losses, the proposed method employs a detailed terrain profile
analysis between the smart meters and positions of routers and gateways, leading
to a more accurate link quality estimation. An additional experiment compares
AIDA (AI-driven AMI network planning with DA-based information and a link-
specific propagation model) to the classic Erceg-SUI/IEEE 802.16.3 Suburban Path
Loss model [6,7]. The analysis shows that AIDA with its proposed path loss model can
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propose topologies with fewer routers because it applies a detailed terrain profile in
the path loss link analysis. It is rare in the literature research that explores the complete
analysis of the topography profile for the path between the devices, mainly because of
the number of meters and poles to be evaluated. However, in our proposed method,
we make this viable using different strategies (heuristic and grid-based approaches) to
minimize the number of connections to be computed.

• The use of a heuristic approach based on a spanning tree and clustering, capable
of evaluating a smaller number of connections and resulting in efficient topologies
that use fewer routers and gateways: This research proposes a heuristic (AI-driven
approach) for planning key devices’ positioning in large-scale AMI wireless networks.
The strategy prioritizes using poles with DA devices to enable, whenever possible,
the positioning of routers and gateways in locations close to the backhaul network.
This applies a grid-based heuristic to determine the candidate positions, minimizing
the number of pole positions to be evaluated. In addition, a simplified mechanism
for the multihop connectivity analysis based on a minimum spanning tree (MST)
heuristic is employed to minimize the number of connections to be analyzed. The
selected strategies aim to balance complexity and final solution quality. Different
approaches are found in the literature to deal with the gateway positioning problem,
some combining different techniques. However, using a grid-based candidate position
selection that prioritizes the use of DA device positions, combined with an MST
heuristic to explore multihop and minimize the number of connections to be analyzed,
is not common.

The remainder of this article is organized as follows: Section 2 describes the architec-
ture of the AMI network and the application scenario. The related work is presented in
Section 3. The proposed strategy is detailed in Section 4. Section 5 presents the results of
the experiments, where different scenarios are used to evaluate the method’s applicability.
Section 6 reviews the research’s main objectives, evaluates the results, and presents our
future works regarding the method. Finally, the conclusions are drawn in Section 7.

2. Smart Grid Network Architecture

The two main components of a smart grid communication network are the AMI
network and the automation network. In both networks, we must establish two-way
communication with the control center for data acquisition and management purposes.
Using a standardized wireless communication architecture, the AMI network connects
smart meters, routers, and gateways. The automation network is mission-critical because
it connects DA devices to the smart grid communication infrastructure. The automation
network architecture is highly dependent on the correct positioning of the key devices.

2.1. General Network Architecture

This study considers the use of the Wi-SUN (Wireless Smart Utility Network) wireless
communication standard (Wi-SUN Alliance® [8]). The Wi-SUN standard implements a
mesh network architecture based on the IEEE 802.15.4g standard [9], using RPL (IPv6
Routing Protocol for Low Power and Lossy Networks, RFC6550) [10] as a routing protocol
at the network layer. The mesh network allows multihop communication between meters,
routers, and gateways.

The network planning involves many elements, including smart meters, gateways,
routers, poles, and backhaul network components, and it can be classified as an NP-hard
problem [11]. Additionally, a set of constraints is associated with the network design,
such as ensuring maximum throughput with the lowest possible latency at a reduced
cost. The network performance is highly dependent on the placement of key elements
for the communication process between the neighborhood area network (NAN) region of
the smart grid, the gateways, and the wide-area network (WAN) region, where the CC
is installed.
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Figure 1a presents an example of a smart grid scenario. Wireless communication
between the elements of the NAN region takes place according to the messaging protocol
used by the network. In this study, we consider using the RPL protocol, which allows the
existence of different routes intending to minimize the points of failure using alternative
parent nodes (backup nodes) for forwarding messages. Analyzing from the point of view
of each meter, different communication options are possible, either by connecting the meter
directly to a gateway, a router, or even using multihop forwarding messages through
other meters.

The smart meters, routers, gateways, and DA devices are in the NAN region. DA
devices include voltage regulators, and automatic reclosers, among other equipment. All
these elements must be connected to ensure communication with the backhaul network,
which connects the main communication elements and establishes a reliable two-way access
channel from NAN to the CC of the smart grid.

In a typical smart grid scenario, the correct positioning of communication key elements,
such as gateways and routers, assures communication between a large number of SMs and
the CC and between the CC and DA devices. In addition, it is essential to highlight that,
usually, these elements (smart meters and DAs) are dispersed over a large geographic area,
introducing complexity to the positioning planning.

In practice, gateways and routers are installed on poles. The installation is usually
done in areas with a high concentration of meters and equipment to be connected. A set
of candidate positions can be established from the set of poles. For the AMI planning and
key devices positioning, special preference must be given to the use of poles hosting DAs,
as they are usually already installed in the region and because of their importance in the
electrical infrastructure. In some cases, the DAs may already be interconnected via fiber
optic cable, thus reinforcing the use of these resources on a preferential basis.

2.2. Network Planning Constraints

The constraints presented in this section are based on directives for the implementation
and operation of the smart grid of a large electric power company in the state of Paraná, in
southern Brazil. The constraint list includes:

• The smart grid structure comprises two wireless networks (Figure 1b): the Backhaul
network and the AMI wireless network based on Wi-SUN technology. In addition,
the backhaul network is connected to an optical network (WAN backbone) at electric
substations.

• The wireless backhaul network is segmented into three virtual local area networks
(VLANs) with different traffic priorities. The first VLAN is for radio monitoring and
has the highest priority. The second VLAN is for the equipment automation of the
distribution power network and has the second highest priority. Finally, the third
VLAN is for the AMI communication traffic. This VLAN transports smart metering
data traffic from the Wi-SUN network and has the lowest priority. The AMI and DA
communication networks are separated by VLANs at each trunking point with the
physical network (substation, VHF stations, or branch) as this increases the security
level of the communication network as a whole.

• The main elements of interest in the AMI network topology for this research include
(i) smart meters, which measure energy consumption; (ii) AMI routers, with which
the meters connect and which are responsible for forwarding messages through the
network; and (iii) AMI gateways that accept connections from routers as well as
direct connections from meters and that, in addition to relaying messages, serves as a
communication interface between the AMI network and the Backhaul network.
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Figure 1. Smart grid scenario. (a) Overview of a smart grid scenario, highlighting the main elements
in the NAN and WAN regions considered in this research. (b) Diagram of Backhaul and AMI network
traffic flows to demonstrate the main elements in transferring information between endpoint devices
and the control center.

• Regarding the Backhaul network, the elements of interest for this study include the
Backhaul Routers, with which the DA devices are connected and which also allow the
connection of AMI gateways, and the Backhaul Gateway, which interfaces between the
Backhaul network and WAN network for forwarding messages to/from the control
center. In this study, when referring to routers and gateways, we are referring in a
simplified way to AMI Routers and AMI Gateways.

• The automation and metering communication network infrastructure are based on
the existence of poles, as it occurs in many companies worldwide. The advantage
of using the poles is based on the fact that they are part of the company’s asset list,
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minimizing the need to contract third-party infrastructure. In addition, poles offer the
supply voltage necessary for the setup and operation of the communication devices
and present a favorable height for the positioning of the routers and gateway devices.

• DAs are installed on poles and mainly in the overhead power network. Underground
power networks are restricted to small areas in Brazil, in some urban centers, and
they are treated as an exception (not in the scope of this study). Communication with
DA equipment uses distributed network protocol (DNP3) over an IP using pooling
and not unsolicited messages due to a limitation of the supervisory control and data
acquisition (SCADA) monitoring system.

• The management of the information flow from the endpoints to the control center
considers that data from the AMI elements (e.g., smart meters) and the DAs will share
the physical infrastructure of the Backhaul network. However, the information flows
through different VLANs and with different priorities, explained as follows: (i) The
energy consumption and voltage quality monitoring information from the meters is
usually obtained in the AMI network through a pooling mechanism controlled by the
control center, which uses an algorithm to make a scheduled pooling to distribute
the reading throughout the day and avoid congestion. This algorithm, in general,
can control the reading spatially (establishing different regions for the reading) and
temporally (to perform the reading of different areas in different periods). An example
of a scheduled smart meter reading algorithm is presented by the authors in [12];
(ii) Regarding the DAs (Backhaul network), they are considered high-priority devices;
thus, their status is read more frequently (high-frequency reading) as the control
center continuously monitors them and acts on them as quickly as required. Despite
this high-frequency reading, it is essential to highlight that the number of DAs in a
smart grid is considerably inferior to the number of smart meters. Thus, their traffic
represents a high frequency of readings but for a small number of elements.

• Finally, the AMI network function is not restricted to metering and billing. It comprises
bidirectional communication that allows a remote to switch off/reconnect consumers’
houses’ energy—in addition to supporting “last gasp” alarms informing the lack
of energy in consumers’ houses and being able to map the defective sections and
coordinate maintenance teams with greater assertiveness. The DAs communication
network (wireless backhaul network) is provided by a backup energy system (batteries)
to enable maneuvers even during shutdowns.

3. Related Work

In this section, we present different AMI planning strategies for key device positioning
found in the literature. They relate to the smart grid scenario and explore diverse techniques
to define the ideal placement of gateway devices in the communication network.

3.1. Approaches for Key Devices Positioning

The state-of-the-art literature explores many strategies for positioning routers and
gateways in the smart grid wireless communication scenario. In this section, we analyze
different selected references, especially to identify the authors’ research context and the
algorithmic approach explored to deal with the positioning problem.

The authors in [13] propose an algorithm to determine the optimal location of concen-
trators in smart grids, based on the ZigBee Mesh IEEE 802.15.4 communication protocol in
the final access and Global Packet Radio Service (GPRS) communication in the concentrator
of the mesh network, directly connecting to the utility’s head–end system (backhaul). They
assume a smart grid architecture with neighborhood area network (NAN) in which the
meters are located, wide area network (WAN) where the collectors are positioned (usually
installed on street light poles), and including a head–end system, the layer in which the
network management is performed. Then, they present a proposal for a methodology for
positioning concentrators in a Mesh network (in this case, a ZigBee network) based on the
position of poles available in the region, aiming to optimize the network’s performance.
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Then, all available poles become candidate positions for the concentrator installation. Ad-
ditionally, they set a goal to find the minimum hops between meters and concentrators,
aiming to find the shortest path that minimizes the cost of routes. Furthermore, they use
different algorithms to establish the best route between two points. In this case, they use
Dijkstra, Bellman–Ford, and BFS (Breadth-First Search). In situations where they define that
more than one concentrator must be positioned, they use k-means to form clusters, having
candidate positions (poles) as centroids. The proposed algorithm includes the following
steps: obtaining the geographic coordinates of the meters and poles; if more than one
concentrator must be positioned, they suggest the use of clustering (k-means) to define the
centroid’s position; the next step is choosing the position for the concentrator on one of
the candidate poles; applying a shortest path algorithm (BFS, Dijkstra, and Bellman–Ford);
evaluating the number of hops; changing the position of the concentrator; choosing as the
final position the one with the least number of hops.

In [14], the authors used the K-means-Dijkstra approach proposed by [13] to minimize
the number of hops in the network. Additionally, they explored the recursive algorithm
proposed by [11] to optimize the positioning of concentrators in smart grids aiming, among
other factors, to balance the number of meters connected to the concentrators (load balanc-
ing) and the maximum number of hops.

According to the authors in [11], in a network with many hops, a significant delay at
each hop can occur due to wireless channel contention, packet processing, and queuing.
They clarify that the delay depends on the number of hops between the source and the
gateway. Thus, to minimize the delay, it is necessary to determine a cluster radius or
maximum depth of the tree that interconnects the communication network nodes (rooted in
the gateway) to ensure the quality criteria. To establish the position of gateways in wireless
mesh networks, they divide the set of nodes formed by the meters into disjoint clusters.
One node acts as a gateway in these clusters with the other nodes connected to it. A
gateway-rooted spanning tree is used to aggregate and secure message traffic/forwarding
in each cluster. The proposed algorithm is based on the dominant set (DS) concept, using
recursive approximations of the minimum DS problem. The algorithm uses an adjacency
matrix to represent the connectivity graph between network nodes. They consider nodes
that are one hop from each other as adjacent, and they use a greedy algorithm to select a
node v that will be the centroid of a cluster. Then, the algorithm assembles an additional
set with the candidate centroid and its neighbor nodes and analyzes whether the cluster
is viable. A cluster is considered viable if a spanning tree, rooted in v and covering all
cluster nodes, satisfies the cluster size and relay load constraints. It continues the iteration
(recursion) as long as there are nodes to be clustered. The recursive algorithm’s stopping
condition occurs when the next iteration’s cluster radius exceeds a specific maximum
radius R.

The authors in [15] highlight that, although many studies address the problem of the
optimization of device placement in wireless networks, few specifically address the location
of concentrators in AMI networks. Compared to the work by [13], they also consider
existing poles as candidate positions for installing concentrators. They aim to establish
the concentrator position that minimizes the number of hops, maximizes throughput, and
keeps delay within certain limits. To analyze the average throughput and delay, they use
an M/M/1/K queue model and present a set of formulas for calculating throughput. This
includes packet loss probability, service rate, time-of-service with no errors, the packet error
rate at the physical layer, and traffic at a given node. For the delay analysis, they consider
the queue size, the waiting time, the end-to-end delay, and the end-to-end average delay. A
similar study is presented by [16], proposing a channel-aware optimal location approach
for the data concentrator unit placement in smart grids.

For the positioning of concentrators in problems of smart grid networks expansion, the
authors in [17] used mixed-integer non-linear programming (MINLP) and mixed-integer
linear programming approaches (MILP) to minimize network congestion by optimizing
residual buffer capacity by positioning data concentrators and network routing. They pro-
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posed an approach for adding new devices to AMI networks that are already in operation,
maximizing the quality of service (QoS) performance for customers, providing redundant
connectivity in cases of security threat or interruption in power supply, and assisting in
network expansion. They suggest using the path loss propagation model to identify the
communication radius around data concentrators and analyze different restrictions to
establish the best position for this type of equipment.

The authors in [18] proposed using clustering techniques for the problem of data ag-
gregation points (DAPs) positioning in NAN to minimize the distance between DAPs and
SMs, dividing the neighborhoods into subnetworks. With this, they also seek to reduce the
number of hops to up to 3 hops. Furthermore, they introduced a new metric called coverage
density, which defines whether the planning done for a given zone ensures the necessary
coverage. The authors cite that the problem of positioning DAPs is an underexplored
topic in the domain of smart grids. The methods used by the authors include Haver-
sine distance, Floyd–Warshall (FW) algorithm to find the (shortest path) route between
a given node and another node in the network, and the k-Medoids clustering algorithm,
which takes into account the distance between smart meters and the transmission range of
the meters.

Minimizing the distance between data aggregation points (DAPs) and smart me-
ters served by them can be the requirement of a device placement problem. About this,
the authors in [19] used a network partitioning approach, using a clustering algorithm
clustering-based DAP placement algorithm (CDPA) that performs the clustering aiming to
minimize distance. The authors also used the Floyd–Warshall algorithm for the shortest
path search and the distance between nodes as information considered by the method.

In [20], the authors discussed the positioning of access points (APs) in smart grids with
a communication network implemented with a power-line communication (PLC) network.
First, they establish an optimization model for the location of the AP that minimizes the cost
of installing APs, while satisfying the constraints of reliability, network delay, and resiliency.
Then, they propose an improved genetic algorithm (GA) to solve the optimization problem.
As for the aspects of design constraints, they mention (a) the minimization of the cost of
building the network, mainly the costs of installing the APs, (b) the maximization of the
average level of reliability under normal operating conditions, (c) to ensure that the ENs
(end-nodes) are always connected to at least one AP to keep the network running at a
proper level even if a link becomes unavailable (i.e., ensuring that the network reliability
remains above a predefined threshold), and (d) reduction in the communication delay to
meet application requirements. The algorithm used to solve the planning problem is an
improved GA. The density function is introduced based on the standard GA to avoid the
local optimum and maintain population diversity.

The analysis of the topologies of a power grid and the communication network can be
done together, as demonstrated by the authors in [21]. This study has as its main objectives
to establish the coordinates of the DAPs and to minimize the total average delay of the
system, considering the volume of data traffic and the minimization of costs. They aim to do
this without compromising QoS. This is achieved by focusing on the idea of aggregating and
compressing the data associated with the same power feed in the appropriate DAP before
being sent to the utility center (UC). The authors point out that having smart meters fed by
different feeders of the energy network, connecting to the same DAP in the communication
network, can lead to inefficient data aggregation. Therefore, the problem of positioning
DAPs should not consider the communication network isolated from the electrical network.
The authors formulate the problem as a mixed-integer non-linear optimization problem,
and the optimization is done with a genetic algorithm.

Network latency minimization is a common need in different studies and is addressed
by [22]. The authors formulated a DAP problem and then used a clustering approach
to network partitioning to minimize the maximum latency of data propagation between
each DAP and the associated meters. They used a Dijkstra algorithm to calculate the
shortest path between two nodes and consider the Haversine distance between the elements.
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Then, they used a clustering-based DAP placement (CDP) approach. The main network
characteristics the authors considered include the number of meters, the position of meters,
the transmission range, and the number of DAPs.

Gateway positioning taking energy efficiency into account is explored by the authors
in [23]. For the gateway positioning, they use an optimization method mainly based on
distance (Euclidean and Manhattan), also considering the distance between coordinating
devices (CDs) and gateways, the throughput, power consumption, load balancing, and link
capacity. The method is performed in two stages: in the first stage, the candidate position
selection is made using the Euclidean Distance, and in the second stage, the Gateway
location selection is made using the Manhattan distance.

The positioning of gateways to increase the capacity of the backhaul network by
minimizing the average number of hops (ANH) is addressed by the authors in [24]. The
study has applications in 5G ultra-dense networks but is included in our analysis because
of our interest in controlling the number of hops. The methods used by the authors include
clustering (using k-means and k-medoids algorithms) and the Dijkstra algorithm, used to
find the average number of hops and to associate small cells with gateways (by identifying
the shortest path). The network characteristics evaluated by the proposed method include
the number of hops, the throughput, and the number of simultaneous transmissions.

The concept of gateway node placement problem (GNP) was explored by [25] to
establish the smallest possible number of gateways to satisfy QoS requirements in search-
and-rescue environments in a wireless mesh network (WMN). The authors treat the gateway
placement problem (GNP) in combination with the router placement problem (RNP). The
techniques considered by the authors include clustering strategies, area decomposition, and
a heuristic approach (heuristic graph clustering technique). The method proposed by the
authors is performed in two steps: the first step of the algorithm ensures that the calculated
placements of the router nodes for a given deployment region meet the objectives of the
RNP problem and its constraints. This means that the resulting WMN backbone network
configuration maximizes the network coverage while maintaining network connectivity
and minimizes the number of router nodes (RNs) used. The second step (GNP) ensures
that the number of assigned gateway nodes is minimal and the division of the network
topology graph into a set of disjoint clusters (subnets) satisfies three QoS constraints:
RQoS (maximum communication delay), LQoS (maximum relay load for each RN) and
SQoS (gateway throughput). The authors proposed the RRT-WMN algorithm (where
RRT = rapidly exploring random trees) and used it combined with a heuristic approach to
graph clustering. They used the RRT-WMN algorithm to resolve router placement. Then,
the resulting network topology graph, along with the QoS constraints, is used as input to
a graph clustering approach (which integrates the Weighted Recursive Dominating Set
algorithm). Among the characteristics considered by the methods are obstacles, signal
range, delay, load on routers, and throughput/gateway capacity. The authors highlight
that an important measure of WMN network performance is network connectivity, which
quantifies how well the routers are interconnected. They indicate that connectivity is even
more important than network coverage or customer coverage, as it ensures that the router
nodes are interconnected. In short, the GNP problem is about finding a minimum number
of GNs and their placements to ensure a sufficient level of QoS based on criteria that directly
influence network performance measures, such as communication delay, router load, and
the capacity limits of GNs.

Throughput optimization is the objective of the study by [26], which addresses gate-
way placement in WMN. They consider the number of gateways to be placed and the
interference model of the network. The method proposed by the authors can be extended to
multi-channel and multi-radio mesh networks. The authors proposed the positioning based
on a grid, evaluated different positions for the gateways, and selected the combination
that ensures the highest throughput. The proposed strategy is compared with random
placement and with fixed placement. According to the authors, the grid-based positioning
showed the best result in the experiments performed. Regarding the techniques, the authors
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use mixed-integer linear programming for the optimization/maximization of throughput
(routing problem), a greedy algorithm for interference-free link scheduling, and a grid-
based gateway placement scheme (which uses the linear programming method used for
throughput as an assessment tool) for position selection. For the positioning processing, the
main information considered by the method includes the analysis of: range (for interference
range analysis), achieved flow (relation between the flow obtained concerning the flow
demanded, treated as a constraint), and the total scheduled traffic.

Meta-heuristic approaches are explored by [27] for the positioning of gateways in
WMN. For this, they use Genetic Algorithm (GA) and Simulated Annealing (SA), consider-
ing the number of gateways and the number of hops that packets need to travel between
the source and the destination (router/gateway). They aimed to minimize the variation of
hops between routers and gateways (VAR-MR-IG-Hop) of the routers (MR, Mesh Routers)
to ensure that the gateways are properly positioned. In addition, the authors used the
Dijkstra algorithm to calculate the shortest path between each router and all gateways in
the network.

The authors in [28] discussed gateway positioning based on graph clustering and the
use of a repairing genetic algorithm (RGA) to work with such graphs, to repair unfeasible
solutions. RGA differs from GA by detecting and repairing unfeasible solutions generated
by crossover and mutation operations, in addition to being computationally efficient, with
reduced processing time compared to GA.

3.2. Comparative of Key Devices’ Positioning Approaches

In this section, we compare our study to the characteristics of selected references which
explore the key device positioning problem to highlight the main points of our research.

Table 1 aimed to present the comparison of the main characteristics of the method
proposed by this research to different approaches used by selected references found in
the literature that explore the gateway/router positioning problem. In addition, Table 1
highlights some of the innovative features of the method, such as its detailed topographic
profile analysis, the consideration of DA positions, and its experimentation with real
large-scale data.

Regarding the techniques applied by different references to solve the key devices
positioning problem (see Table 1), the use of heuristic algorithms [13,29–33] and cluster-
ing strategies [13,16,18,21,22,30–32,34] is common. This problem is generally classified
as an optimization problem because of the number of equipment, connection possibili-
ties, constraints, and objectives. Regarding the problem formulation, some authors cite
that this problem can be modeled as a linear/non-linear programming problem, as ex-
pressed by [17,21,29,30,32]. In addition, some authors classify the problem as a set covering
problem [29,31,33], or as a facility location problem [17,18,34]. Metaheuristic approaches, in-
cluding genetic algorithms, are also explored [21,34], demonstrating that various strategies
can be used to solve the problem.

Despite experiments considering real scenarios, it is common to observe simulations
using small datasets [13,16,18,22,33], or small synthetic datasets as in [17,21,35]. However,
large real scenarios with more than 230,000 smart meters are used in our experiments
to evaluate our proposed method, checking whether the average received power values
calculated for the links are within the established threshold.

Most strategies presented in Table 1 employ simplified propagation models to evaluate
the potential wireless connection between the devices during the planning process. Usually,
they do not consider terrain-specific information to estimate the signal loss from an SM to
another coordinate (another SM or a candidate position) but assume a general scenario for
the region, classifying it as hilly or flat, with moderate or heavy vegetation, or indicating
that the region is an urban, suburban, or rural area. Some of them model the planning
process as a simple distance-based clustering problem. In practice, some deployment
scenarios can be challenging by presenting dense and sparse regions with irregular terrain
profiles in suburban, urban, or dense urban scenarios. In these cases, despite demanding
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greater computational complexity to be solved, the optimal placement of devices can
effectively reduce deployment costs.

Table 1. Selected references about key devices positioning in SG.

References
This
Study

[22] [21] [18] [35] [29] [30] [13] [31] [32] [33] [16] [34] [17]

Heuristics approach X X X X X X X
Metaheuristics
approach

X X

Network partitioning
approach

X X

Clustering-based
approach

X X X X X X X X X X

Linear/non-linear
programming
modeling

X X X X X

Set covering problem X X X
Facility location
problem

X X X

Routeing assignment
problem

X

Analytical model X
Propagation model
w/detailed terrain
profile

X

Propagation model
w/simplified terrain
profile

X X X X X X X X

Poles as candidate
positions

X X X X X X X X

Prioritize poles with
DA devices

X

No. of SMs
(experiment w/real
data)

234,797 294 891 29,002 67 381 31

No. of SMs
(experiment
w/synthetic data)

348 81 N.A. * 17,121 24,011 8020 5000 275

* N.A.—not available.

Regarding the use of general propagation models to evaluate the path/diffraction loss
in an SG key device positioning problem, the authors in [17] present a work that explores the
placement of data concentrators for the expansion of smart grid communication networks
and use the Stanford University Interim (SUI) propagation model [7] to classify the terrain.
They select the most appropriate terrain type to evaluate path loss and establish the
communication range. According to [17], the SUI model presents the following types of
terrains: Category A (maximum path loss)—mountainous terrain with moderate-to-heavy
vegetation; Category B—flat terrain with moderate-to-heavy tree densities, or mountainous
terrains with light tree densities; and Category C (minimum path loss)—flat terrain and
light tree densities.

The authors in [29] evaluated the link quality between SMs and poles using the
link successful delivery rate (SDR). They applied the general extended Hata-SRD path
loss model presented in [36] which only considered three scenario classifications: rural,
suburban, and urban. In contrast, our study estimated the connectivity of an SM and a
candidate position using a more detailed approach. We employed a path loss model, which
includes link-specific terrain profile information to compute diffraction losses. This allows
a better estimate of the average link received power for the complete path between each
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SM and the CPs around it. In addition, we prioritize the use of poles with DAs for cost and
performance reasons, according to the constraints presented in Section 2.2.

3.3. Comments

Analyzing existing references in the literature on the key device positioning problem
helps to identify the different strategies evaluated by different authors in their research, the
difficulties encountered, and the successes achieved with the experiments. Each study has
its original purpose of proposing a method or approach that best helps solve the positioning
problem in different contexts. They may contain particularities specific to the study’s region
or the network technology used when the survey was developed.

The consulted references include recent works and older research chosen by their
relevance in the area. From them, it is possible to extract insights capable of helping in
developing new works, shortening distances, and, in a way, contributing to the creation of
new research that will be part of the so-called state of the art. Concepts such as candidate
positions, clustering and network partitioning approaches, techniques for finding the
shortest path in graphs, or the use of a grid to minimize the number of candidate positions
to be evaluated were identified in the consulted references and helped in the building of
strategies for the development of our research.

Among the positioning strategies, heuristic approaches are evidenced in several
studies. It is motivated by the complexity of the scenario involved (either by the number of
devices involved or by the high set of constraints associated with the problem) and by the
recognized fact that such strategies, if well implemented, ensure a final solution capable of
meeting all established requirements.

Based on this, among the points that we defined as strategic to be explored by our re-
search, we included: (a) The experimentation of large-scale scenarios because we identified
many studies using reduced experimentation datasets; (b) A detailed assessment of the
topographical profile of the terrain for the calculation of losses, as we identify the existence
of works that either consider only the distance between elements, or path loss models that
use a general classification for the terrain under analysis; (c) Prioritization of the use of
pole positions that contain DAs installed, with the objective of stimulating the positioning
of key devices of the AMI network (in this case, routers and gateways) at points that will
be mandatorily served by communication elements of the Backhaul network (in this case,
positions that should provide for the installation of routers of the backhaul network) and,
therefore, minimize the number of devices to be installed, since both automation equipment
(DAs) and key devices of the AMI network can share the same equipment.

Finally, proposing a heuristic strategy for positioning aims to generate a method that
is easy to understand, capable of meeting the requirements of the problem, and obtaining a
solution with received power quality within established limits. Therefore, heuristics are
proper even for large-scale problems representing real smart grid scenarios.

4. Proposed Method

This study presents the method AI-driven AMI network planning with DA-based
information and a link-specific propagation model (AIDA) created for positioning gateways
and routers in the smart grid communication network, considering the position of poles
and DA equipment.

We consider the average link received power (LRP) for connectivity analysis. The LRP
is computed using a detailed propagation model, including diffraction loss. The diffraction
loss takes into account the topographic profile between the geographic coordinates of the
points in the link budget analysis. The Delta-Bullington method [37] is used to calculate the
diffraction loss using the characteristics of the terrain profile between the coordinates. The
method estimates the LRP based on the technical characteristics of the devices, including
transmission power, receiver sensitivity, and antenna gains.
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Regarding AI techniques, the proposed method explores unsupervised machine learn-
ing algorithms (clustering algorithms) and graph-processing algorithms (e.g., minimum
spanning tree). Furthermore, exhaustive search and greedy search algorithms are used.

4.1. Multi-Objective Function Optimization Problem

The method is characterized as a multi-objective function optimization problem and
aims to reach the six objective functions described in this subsection. The first objective
function aims to maximize the LRP value obtained for a connection between a smart meter
vi and a key device position k j (1):

maximize LRPvi→kj
, ∀ vi ∈ {V}, k j ∈ {K} (1)

where V = {v1, . . . , vu} is the set of smart meters and K is the set of key devices positioned.
To reduce the installation costs, the second objective function aims to minimize the number
of key devices positioned (2).

minimize |K| (2)

where K will be positioned in a subset of the set of candidate positions C = {c1, . . . , cz}.
Considering the key devices positioned, the third objective function aims to maximize the
number of key devices installed in poles with distribution automation, DA, equipment (3):

maximize |KDA| (3)

where KDA ⊆ K. Positioning a key device on poles with DA minimizes the setup cost,
as it ensures that the device will be installed at a point where the backhaul network has
already been configured. The fourth objective function maximizes the number of smart
meters connected to a key device to construct the set of connected SMs and to optimize the
use of each key device (4):

maximize |Vconkj
| (4)

where Vconkj
is equal to the number of smart meters vi ∈ {V} connected to a key device

k j ∈ {K}. The fifth objective function maximizes the average LRP value for the solution (5):

maximize

(
1
n

n

∑
i=1

LRPvi→kj

)
, ∀ vi ∈ {V}, k j ∈ {K} (5)

where n is the number of connected smart meters. The last objective function minimizes the
percentage of unconnected smart meters, Pu, evaluated at each iteration of the method by
the stopping criteria (6). The maximum percentage must be adjusted according to project
requirements, and it is set as a parameter for the method execution:

minimize Pu, ∀ vi ∈ {V}, k j ∈ {K} (6)

where Pu ≤ Pmax
u , and Pmax

u represents the stopping criteria.
The placement of routers and gateways is considered an NP-hard problem, charac-

terized by multiple objective functions, demanding complex resolution. The use of an
AI-driven heuristic approach (as proposed by this study) aims to reduce its complexity and
reach a solution for the problem in a reasonable processing time. Therefore, it is useful in
planning large-scale scenarios.

4.2. Candidate Positions

In the proposed strategy, we define candidate positions (CPs) as pole positions of
the electric power distribution network, including poles with distribution automation
equipment attached to them. They are called candidates because their promotion to a
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router or gateway position will depend on the existence of SMs connected to their position
at the end of the planning process.

First, the method prioritizes the selection of poles with DA devices, as these equipment
need to be directly connected to the backhaul’s communication network. After that, regular
poles are considered to connect the remaining smart meters.

Using poles as candidate positions is justified because these elements are part of the
energy distribution company’s asset list and can be easily configured to meet the technical
requirements for installing routers and gateways.

Considering the irregularity of the regions’ terrain and the high number of existing
poles in each city, the AIDA method uses a grid approach to make an optimized selection
of a subset of poles to minimize the computational effort required to choose the most ideal
coordinates for positioning the key devices. More details about this process are presented
in Section 4.4.3.

4.3. Link Received Power

The link received power (LRP) is used as the metric to establish the connection between
a smart meter and a candidate position. The LRP is computed based on the transmission
power, antenna gains, and channel path loss model. To estimate the link power loss (LPL),
we consider the link path loss and diffraction Loss.

The LPL considers the detailed terrain profile, which is constructed as follows: initially,
the coordinates and length of the path between the smart meter and the CP are identified;
the path is divided into 100 equidistant points, and the terrain elevation at each point is
obtained; with the elevation measurements and the position of each point, the detailed
profile of the terrain is obtained.

The use of a detailed terrain profile analysis avoids (or minimizes) the need for
empirical terrain classification, as it is very difficult (or imprecise) to define whether, for a
specific region, the terrain is, e.g., totally hilly or flat, or just 50% hilly with light or heavy
tree density, and so on.

The International Telecommunication Union (ITU) (https://www.itu.int/ (accessed
on 8 May 2022)) presents models for determining the diffraction losses of radio links in its
recommendations. The Delta-Bullington method is presented in ITU-R P.526-13 [37]. It aims
to determine the diffraction of a radio link considering the multiple obstacles determined by
the terrain profile between the transmitter and receiver points. The Bullington diffraction
loss for the path is given by (7):

LdB
b = LdB

uc + (1− e−LdB
uc /6)× (10 + 0.02× d) (7)

where LdB
uc is the knife-edge loss for the Bullington point, and d is the distance (in km)

between the transmitter and the receiver. The model includes three types of diffraction loss
(DL) (more details in [37]):

• Bullington DL for the actual path profile (LdB
ba ): For the calculation of LdB

ba , the Bulling-
ton method is applied using Equation (7) considering the actual terrain profile with
all its elevations. The obstacle that causes the greatest diffraction is considered for
the calculation.

• Bullington DL for a smooth path profile (LdB
bs ): This diffraction loss considers a terrain

without elevations. For the calculation of LdB
bs , the Bullington method is applied

using Equation (7) considering an equivalent obstacle with equivalent heights of the
transmitter and receiver antennas.

• Spherical-Earth Diffraction Loss (LdB
sph): This diffraction loss takes into account the

Earth curvature and it is calculated as the interpolated diffraction loss, given by (8):

LdB
sph =

[
1 − h/hreq

]
Ah (8)

where h is the smallest clearance height between the curved-earth path and the ray
between the antennas, hreq is the required clearance for zero diffraction loss, and Ah is

https://www.itu.int/
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the diffraction loss for the path using the modified Earth radius. If Ah is negative, the
diffraction loss for the path is zero, and no further calculation is necessary.

The link diffraction loss (LDL) for the general path is:

LDL (dB) = LdB
ba + max(LdB

sph − LdB
bs , 0). (9)

The path loss (PL) corresponds to the reduction in power density of a radio wave as it
propagates through the channel [38]. This signal attenuation is usually the result of physical
propagation phenomena such as reflection, refraction, diffraction, and scattering [39].
Considering the radios’ operating frequency, the diffraction phenomenon is particularly
relevant for precise path loss estimation. For the method proposed in this study, PL is
calculated considering the log-distance path loss model defined in Equation (10), where λ
is the wavelength, and d is the distance between transmitter and receiver, in meters. The
parameter β is the path loss exponent and d0 is the reference distance.

PL (dB) = 10 · log10

[(
4πd0

λ

)2
]
+ 10 · β · log10

(
d
d0

)
(10)

The link power loss (LPL) is given by Equation (11).

LPL (dB) = PL (dB) + LDL (dB) (11)

Finally, the link received power (LRP) between a smart meter (SM) and a router (RT)
and/or gateway (GW) is computed using (12):

LRP (dBm) =PSM
tx (dBm) + GSM

tx (dBi)

+ GRT/GW
rx (dBi)− LPL (dB) (12)

where PSM
tx is the SM transmission power, GSM

tx is the SM antenna gain, and GRT/GW
rx is the

router/gateway antenna gain. Equation (12) is also used to calculate the LRP for the link
between two smart meters.

4.4. AIDA Method

AIDA is an iterative method that aims to minimize the number of unconnected SMs at
every execution. A set of unconnected SMs is submitted to the method to be processed at
each iteration. After the current iteration is finished, the percentage of unconnected SMs (Pu)
is evaluated. A new iteration starts if this percentage is greater than the stopping criteria
(Pmax

u ), which establishes the maximum of unconnected SMs accepted by the simulation. A
list of remaining unconnected SMs is processed in the subsequent run. The AIDA method
includes the following steps (Figure 2):

4.4.1. Step 1—MST Computation

In this step, a single minimum spanning tree (MST) based on SMs geographic coor-
dinates is computed by an Euclidean minimum spanning tree (EMST) dual-tree Boruvka
algorithm [40]. The MST computation considers all the unconnected smart meters of
the iteration.

The goal of using an MST formed by SM coordinates (SM-based MST) is to obtain
the shortest path between a meter and its nearest neighbors. We can identify feasible
communication paths between these elements from the virtual connections obtained by
the MST. Doing so minimizes the number of analyses between each meter and the meters
around it, as it limits the analysis to the smart meters connected by the MST edges. This
strategy is useful for applying the method in large-scale scenarios.
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Figure 2. AIDA method.

4.4.2. Step 2—MST Edges LRP Calculation

When the SM-based MST is established, the LRP calculation is performed for all
MST edges. Based on technical information about the devices’ reception sensitivity, three
categories of LRP are established: (1) blue edges indicate high-quality links; (2) orange edges
indicate medium-quality links with uncertain connection possibility; (3) edges are classified
as red, indicating low-quality links, as they do not present conditions for connection.
Thresholds for high, medium and low-quality links are specified in Section 5. As shown in
Figure 3, the coloring of the edges allows the creation of a heatmap that helps to identify
the areas where the connection is feasible and where it is uncertain.

Equation (12) is considered for the LRP calculation. See Section 4.3 for more details.

4.4.3. Step 3—Candidate Positions Calculation

The set of candidate positions (CPs) for installing key devices is established based on
the positions of poles with and without DA devices. As mentioned before, the method
AIDA uses a grid approach to make the optimized selection of a subset of poles to minimize
the computational effort required to choose the most ideal positions for the placement of the
routers and gateways. In addition, we opted for the use of a grid to establish the uniform
coverage of the entire region. Usually, the territorial area of cities is irregular, presenting a
varied concentration (density) of poles and meters, including very dense urban and sparse
rural areas. Therefore, grid-based approaches presented good results in mesh network
scenarios, such as those evaluated by the authors in [26].

First, the region area is divided into a grid with the same horizontal and vertical
spacing, considering a theoretical transmission range for the routers/gateways devices.
Once the initial grid was established, the grid points are adjusted to the nearest positions
of poles available in the region (Figure 4), prioritizing the use of poles with DA (objective
function (3)).

The method tries to keep the grid points within a minimum separation distance
to minimize the allocation of candidate positions. Grid points that are too far from the
poles are discarded. The grid resolution is adjusted at each AIDA iteration to decrease
the distance between the points. Poles selected to be CP positions in previous iterations
are ignored.
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Figure 4. Initial grid and candidate positions placement.

4.4.4. Step 4—SM-Candidate Positions LRP Calculation

This step calculates the LRP values between each smart meter and the closest candidate
positions within a specific pre-established range.

Considering that the number of smart meters is usually high and knowing that the
candidate positions established for each iteration are dispersed throughout the region, the
AIDA method seeks to minimize the amount of LRP calculations between meters and CPs.
For this, it establishes a theoretical range and calculates the received power only for the
positions within that radius.

Initially, to identify the CPs within the meter range, the distances between each meter
and all the CPs of the iteration are calculated. After that, the LRP is calculated and stored
in an auxiliary structure only for the relationships in which the distance between the meter
and the CP is smaller than cr

j (which corresponds to the communication radius established
for the candidate positions). Table 2 describes cr

j and Table 3 presents the gateway/router
communication range considered by the method for the experiments.

In this step, only the LRP values are calculated for all the possible connections. How-
ever, no capacity check is performed regarding the number of connections to the CPs. The
capacity check is performed by the clustering processes defined in Step 5—SM Clustering
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(Section 4.4.5). For the LRP calculation, Equation (12) is considered. See Section 4.3 for
more details.

Table 2. Input and output parameters of the algorithms.

Parameter Description

V = {v1, . . . , vu} Set of smart meters, vi

C = {c1, . . . , cz} Set of CPs, cj, where cj =< cn
j , cr

j >

cn
j Number of SMs connected to cj

cr
j Communication range of cj

L Set of LRP values, lvi ,cj , for links vi ↔ cj

Vcon Set of SMs connected to CPs, < vi, cj, lmax
vi ,cj

>

M, N Subsets of L
Q Subset of C
lmin Minimum LRP value to establish a connection

nmax Maximum number of SMs per CP device

dist(vi, cj) Distance between SM vi and CP cj

cs CP selected to connect an SM vi

nv Counter of vi in the range of a CP cj

Table 3. Equipment and method parameters.

Parameter Description

Wi-SUN operating frequency 920 MHz

Smart meter transmission power (Ptx) 26 dBm

Smart meter antenna gain (Gtx) 2 dBi

Smart meter antenna height 1.5 m

Gateway/router antenna gain (Grx) 6.25 dBi

Gateway/router antenna height 7 m

Gateway/router communication range 3000 m

Gateway/router maximum connections (nmax) 2000

Minimum distance between Poles and DA Poles 1000 m

Minimum LRP to establish a connection (lmin) −95 dBm

Stopping criteria Pmax
u = 2%

Maximum number of hops (hmax) 7

High-quality (HQ) link criteria LRP ≥ −95 dBm

Medium-quality (MQ) link criteria −105 ≤ LRP < −95 dBm

Low-quality (LQ) link criteria LRP < −105 dBm

4.4.5. Step 5—SM Clustering

This step refers to grouping SMs to a particular candidate position. In this process,
LRP values calculated in the previous step are evaluated, as are the maximum accepted
connections of the CPs (the maximum amount of SMs that can be connected to a CP). A
connection can be established if the minimum LRP (lmin) is computed for an SM⇔ CP link.
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Two heuristic approaches are evaluated for clustering: bottom–up and top–down.
At each iteration of AIDA, both approaches are executed, and the one that results in the
smallest number of CPs will be taken as the basis for defining the list of SMs and poles for
the next iteration. Both approaches aimed to reach the objectives expressed by the objective
functions (1), (2), (4) and (5).

The clustering approaches are described as follows (see Table 2 for their input and
output parameters):

• Bottom–Up Approach (BU): In this approach (Algorithm 1), an exhaustive search
strategy is used to evaluate the LRP values calculated for the link between each smart
meter and the CPs in their range. An SM ⇔ CP connection is established with the
position with the highest LRP value. This aims to maximize the LRP value between
the smart meter and the router/gateway to which it will be connected.

• Top–Down Approach (TD): In this approach (Algorithm 2), a greedy search strategy
is used to connect the maximum number of SMs to each CP, presenting LRP ≥ lmin,
prioritizing the connection to the SMs with higher values of received power. This aims
to maximize the use of the CP, connecting to it as many meters as possible, limited to
nmax (see Table 2).

4.4.6. Step 6—Multihop Analysis

The bottom–up and top–down approaches establish the one-hop feasible connec-
tion between candidate positions and smart meters. Smart meters not connected by the
described approaches can then connect to a cluster of SMs using multihop connections.

The MST computed with the SMs positions is considered for the theoretical multihop
connection analysis. First, smart meters belonging to SMs clusters (i.e., SMs connected
to candidate positions) and their links with MST edges are identified. Then, for each
SM that already belongs to a cluster, a search is conducted for adjacent MST neighbors
(MST vertices) that are not yet connected but have enough received power to establish the
connection (i.e., MST blue edges, with LRP ≥ lmin). The search is made up to the maximum
hops (hmax) limit established by the method. Neighbors with LRP ≥ lmin are connected
to the SM cluster. When finding a neighbor with a received power value lower than the
minimum required, such a node is discarded. It remains unconnected because there are no
technical conditions for the connection.

Algorithm 1 Bottom–Up Approach (BU)

1: Input: V , C, L, lmin, nmax
2: Output: Vcon
3: Vcon ← {}
4: for all vi ∈ V do
5: K ← Select all cj ∈ {C | (cn

j < nmax) ∧ (dist(vi, cj) ≤ cr
j )}

6: lmax ← lmin
7: cs ← {}
8: for all ck ∈ K do
9: lcon ← {lvi ,ck |(lvi ,ck ∈ L)}

10: if lcon ≥ lmax then
11: lmax ← lcon
12: cs ← ck
13: end if
14: end for
15: if cs 6= {} then
16: Vcon ← Vcon ∪ {< vi, cs, lmax >}
17: cn

s ← cn
s + 1

18: end if
19: end for
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Algorithm 2 Top–Down Approach (TD)

1: Input: V , C, L, lmin, nmax
2: Output: Vcon
3: M← Select all vi, cj ∈ {L | lvi ,cj ≥ lmin}
4: Q ← Select distinct cj fromM
5: Vcon ← {}
6: while True do
7: K ← Select all cj, (count(vi) as nv) ∈ {M | nvz > nvz+1}
8: if K 6= {} then
9: si ← {k1 | k1 is the first cj of K}

10: N ← Select (vi, cj)n ∈ {M | (cj = si) ∧ (n ∈ {1, 2, .., nmax}) ∧ (dist(vi, cj) ≤
sr

i ) ∧ ((lvi ,cj)z > (lvi ,cj)z+1)}
11: M←M−N
12: Q ← Q− {si}
13: Vcon ← Vcon ∪ {< vi, si, lvi ,si > ∀ vi ∈ N}
14: else
15: exit
16: end if
17: if Q = {} then
18: exit
19: end if
20: end while

4.4.7. Step 7—Stop Iterations

For the AIDA method, a new iteration is counted for every method’s cycle execution
that includes steps 1, 2, 3, 4, 5, and 6 (Figure 2). The number of iterations executed by the
method depends on the number of iterations demanded to reach the expected smart meter
coverage, and it will vary according to the conditions of the region, its shape, the number
of poles, and the quantity and concentration of smart meters.

After each AIDA iteration, the method checks whether all the SMs are connected or
whether the stopping criteria (Table 3) have been reached. If the percentage of unconnected
SMs (Pu) is greater than the established (Pmax

u ), a new iteration must be performed to
minimize it (objective function (6)) and the Step 8—Adjust Grid, SM and CP Lists is
executed (see Section 4.4.8). Otherwise, the method may execute the gateway positioning
analysis (Step 9—Gateway Positioning, see Section 4.4.9).

4.4.8. Step 8—Adjust Grid, SM, and CP Lists

AIDA is an iterative method and, after the execution of an iteration, if the established
percentage of unconnected SMs (Pmax

u ) has not yet been reached, some parameters must be
adjusted before starting another method execution.

The parameters to be considered in a new iteration include the list of SMs that remained
unconnected in the previous iteration and the list of CPs used. Regarding the calculation
of the CPs for the new iteration, the grid used to position the candidate positions must be
adjusted, usually adopting a new horizontal and vertical space between the grid points
that represents half of the value used in the previous iteration, resulting in a denser grid
(as indicated in Table 4). The information about the CPs used in the previous iterations is
important because, for the new iteration, the positions of poles previously considered as
CPs are ignored in new iterations.
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Table 4. Iteration parameters for grid and poles separation.

Parameter Iter. 1 Iter. 2 Iter. 3

Grid spacing (km) 5.0 2.5 1.25

Minimum distance between poles (km) 3.0 1.5 0.75

Minimum distance between poles and poles with DA (km) 1.0 1.0 1.0

4.4.9. Step 9—Gateway Positioning

In previous steps from the method, AIDA identified the best pole positions for in-
stalling routers and gateways. Initially, pole positions are selected with the help of a grid
and promoted to candidate positions. From these candidate positions, some positions are
selected as the most suitable for the positioning of key devices (i.e., routers and gateways).
This selection of CPs is made in Step 5—SM Clustering of the AIDA method (Section 4.4.5).
The CPs considered in the gateway positioning will be the ones computed by the SM
clustering approach (bottom–up or top–down) that effectively minimizes the number of
required CPs.

In the gateway positioning step, described in this section, the candidate positions
selected for a region (see example in Figure 5) are evaluated to determine whether they
will be considered as positions for installing routers or gateways. In principle, all selected
candidate positions are considered valid positions for router placement.

Subsequently, a clustering process is used to determine the set of routers that will be
connected to the same gateway. For this, the weighted K-means algorithm [41] is used to
select the list of routers that have to be included in the same cluster and to establish the
best position for the gateway on each cluster. Figure 6 illustrates the result of the clustering
process of this step. The input parameters of this clustering algorithm include the list of
selected CPs (already considered router positions), the number of meters connected to each
candidate position, and the maximum connections accepted by a gateway. The number of
meters connected to each CP defines the weight of each CP. The clustering process aims to
group to the same cluster a list of the closest CPs whose sum of meters connected to each
one does not exceed the limit of connections established for the gateway. This limit is a
parameter determined for the execution of the method (varying according to the technical
characteristics of the equipment).

In some situations, it may occur that a given group computed by the weighted K-
Means algorithm only contains one selected candidate position. This may happen because
the number of meters connected to the CP is equal to or near the limit of meters established
for the cluster. In this case, this position will be classified as a gateway. In other cases, the
group will be formed by a set of routers and a gateway (selected among the positions of
CPs in the cluster).

After this clustering process, the positions of the key devices are established, and the
AIDA method is concluded.

4.5. Computational Complexity

For the computational complexity analysis, more specifically, for the Time Complexity
analysis of the AIDA method, it is necessary to consider its main components, which include
the dual-tree Boruvka minimum spanning tree (Euclidean MST—EMST) algorithm, the
bottom–up (BU) and the top–down (TD) clustering approaches, the depth-first search (DFS)
algorithm to establish the MST multihop analysis, and the weighted K-means algorithm,
used for grouping routers and selecting gateway positions.
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Figure 5. Selected Candidate Positions.

Figure 6. Gateway positioning. The figure presents the different clusters computed by the Weighted
K-Means algorithm. Each group has a gateway positioned and can have zero or more routers.

The MST, the clustering algorithms (BU and TD), and the depth-first search algorithm
can be run over several iterations until the expected connectivity coverage for existing
smart meters is achieved. The weighted K-means algorithm, in turn, is executed only once
as the last step of the AIDA method.

According to the authors in [40], the EMST dual-tree Boruvka algorithm presents the
complexity, T(MST), established by (13):

T(MST) ≈ O(|V| × log |V|) (13)

where |V| corresponds to the total points of the MST, which is equal to the number of
smart meters.

To calculate the complexity of the bottom–up (BU) algorithm, we can observe the
existence of two nested loops (see Algorithm 1). The time complexity must be calculated
considering the number of meters |V|, which establishes the number of executions of the
main loop, the existence of the select code responsible for filtering candidate positions that
are within reach of each meter, and the execution of the inner loop, which identifies the
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ideal candidate position for connecting the meter under analysis. The complexity of the BU
algorithm, T(BU), can be established by Equation (14):

T(BU) = O(|V| × |C|) (14)

where |V| is equal to the number of meters and |C| is equal to the number of candidate
positions within the range of each SM, in the worst case.

For the top–down (TD) algorithm (see Algorithm 2), we can calculate the complexity
by observing the existence of one loop that uses a select instruction at each execution to
identify/update the list of CPs available for processing. In addition, another select function
is performed to update the list of possible connections between meters and CPs. Based
on this description, the complexity of the TD algorithm, T(TD), can be established by
Equation (15):

T(TD) = O(|C| × nmax) (15)

where |C| corresponds to the number of CPs (considered as the worst case), and nmax
indicates the maximum number of SMs per CP.

For the depth-first search algorithm used for the multihop analysis, the complexity
T(DFS) is computed as (16):

T(DFS) = O(|V|+ |E |) (16)

where |V| is the number of nodes (smart meters) and |E | is the number of edges (connections
between smart meters) of the MST.

The complexity of the weighted K-means algorithm, T(WK), is estimated with
Equation (17):

T(WK) = O(|C|2) (17)

where |C| is equal to the number of candidate positions selected to be grouped.
Considering the need for a small number of i iterations, the complexity of the AIDA

method (T(AIDA)) can be established as (18):

T(AIDA) = O(i×max{T(MST), T(BU), T(TD), T(DFS)}+ T(WK))

= O(i×max{N × log N, |V| × |C|, |C| × nmax, |V|+ |E |}+ |C|2)
= O(max{|V| × log |V|, |V| × |C|, |C| × nmax, |V|+ |E |})
= O(|V| × |C|)

(18)

The worst-case analysis of the method is very pessimistic, as it assumes that all smart
meters can reach all candidate positions. In practice, this situation is improbable since
the communication range of meters and routers is quite limited. However, an average-
case analysis is unfeasible due to the diversity of meter geographic concentration, terrain
profiles, the number of candidate positions, and aspects of communication devices that
change a lot from one scenario to another.

5. Experiments and Results

The experiments carried out in this study include real data from four regions in
the state of Paraná, located in the south of Brazil. The regions are urban areas with a
large concentration of smart meters and rural areas with dispersed smart meters. The
four selected regions were named Region A, Region B, Region C, and Region D. Table 5
presents details about these regions, including the total number of SMs, bounding box (BB)
area, SM density per km2, number of poles, and number of distribution automation (DA)
devices installed.
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Experiments were conducted using the parameters detailed in Table 3 that include
real equipment data (e.g., operating frequency, transmission power, antennas gains, and
height) and some quality criteria to be observed during the method execution, such as the
minimum LRP value to establish a connection, the maximum number of hops, and the
stopping criteria.

The parameters presented in Table 4 were considered to establish the candidate posi-
tions for each iteration of the method (Steps 3 and 8, described in Sections 4.4.3 and 4.4.8).

Table 5. Information about the regions used in the experiments.

Region No. of SMs BB Area (km2) SMs/km2 Poles DAs

A 150,951 4427.2 34.1 62,412 80

B 56,157 177.2 316.9 15,754 19

C 21,583 3001.8 7.2 26,005 39

D 6106 622.6 9.8 8250 10

Two different experiments were executed using the AIDA method:

• Case Study 1: Experiments with AIDA, using its link-specific propagation model;
• Case Study 2: Experiments with AIDA, using Erceg-SUI propagation model.

The experiments and results are presented as follows.

5.1. Case Study 1: Experiments with AIDA, Using Link-Specific Propagation Model

In this section, we describe the experiments with the AIDA method using its original
propagation model, which calculates losses considering the detailed terrain profile between
the communication devices in the analysis.

Figure 7 shows the result after each process iteration in region A (150,951 SMs). It
can be noticed that, at the end of each iteration (iterations 1, 2, and 3), the number of
unconnected SMs (points in black) decreases. The green points show the SMs connected
to the CP’s positions via one-hop or multihop connections. The figure also presents the
candidate positions available and the ones effectively selected to connect the SMs.

A summary of the regions A, B, C, and D results is presented in Table 6. For each
iteration, AIDA performs the processing with two approaches (bottom–up and top–down)
using the same set of SMs, i.e., the list of unconnected SMs resulting from the previous
processed iteration with the approach that used the smallest number of CPs.

Regarding the main characteristics of the two different approaches, it can be said that:
the BU approach prioritizes the connection of a smart meter with the candidate position
that presented higher LRP values, resulting in a final network topology that tends to present
a higher average LRP value when compared to the other approach; the TD approach, in
turn, prioritizes the use of fewer candidate positions than the BU approach, respecting
the minimum LRP value to establish the connections between candidate positions and
smart meters around them, reaching a final average LRP value slightly smaller than the
one obtained by the other approach.
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           (a) Iteration 1                                (b) Iteration 2                                 (c) Iteration 3

Legend: Unconnected SM
SM connected to a candidate position
SM connected via multihop

Candidate position with connected SMs
Candidate position 

Figure 7. AIDA iterations for Region A.

Table 6. Final results comparing bottom–up (BU) and top–down (TD) approaches.

Region A Region B Region C Region D
Metric BU TD BU TD BU TD BU TD
No. of iterations 3 3 3 3 2 2 2 2
No. of unconnected SMs 3 3 0 0 0 0 4 4
Percentage of connected SMs 99.998% 99.998% 100.0% 100.0% 100.0% 100.0% 99.934% 99.934%
No. of CPs selected for positioning gateways
and routers

294 249 58 44 190 169 48 44

No. of gateways ** 140 ** 44 ** 18 ** 7
No. of routers ** 109 ** 0 ** 151 ** 37
Average No. of SMs/gateway ** 1078.2 ** 1276.3 ** 1199.1 ** 871.7
No. of SMs/CP 513.4 606.2 968.2 1276.3 113.6 127.7 127.1 138.7
Average LRP for the links SM ⇔ SM and
SM⇔ CP (dBm)

−72.15 −73.43 −73.72 −79.14 −67.6 −72.86 −71.93 −75.57

% of high-quality links 99.883% 99.998% 99.407% 99.361%
% of medium-quality links 0.081% 0.002% 0.459% 0.573%
% of low-quality links 0.036% 0% 0.134% 0.066%
Max. No. of CPs in SM range * 15 12 10 5
Average No. of CPs in SM range * 5.8 6.2 4.3 1.9
Processing time (h:min:s) 15:47:44 03:52:07 00:55:04 00:14:19
Relative gain (Gr) 15.3% 24.1% 11.1% 8.3%

* For the 1st iteration, considering only high-quality links; ** Computed only for the approach that selected less
CPs positions.

Considering this, for the analyzed regions, the top–down approach presented better
results overall, especially regarding the number of CPs selected.

By evaluating the number of CPs demanded by each clustering approach (Table 6), we
notice that the top–down approach can reduce the number of selected key devices for all
the regions. Equation (19) defines the relative gain between the top–down (TD) and the
bottom–up (BU) approach regarding the reduction in the number of CPs.

Gr(%) =

(
1− CPTD

s

CPBU
s

)
· 100 (19)

Despite the bottom–up approach presenting (for all four regions) a better average
LRP for the links than the top–down approach, the gains in the number of CPs effectively
selected to install routers and gateways reflect cost minimization. In addition, the top–
down approach assures average LRP values that qualify the links in a high-quality (with
LRP ≥ lmin) threshold. Considering the gains in the number of CPs (15.3% for Region A,
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24.1% for Region B, 11.1% for Region C, and 8.3% for Region D), the average reduction in
the number of CPs (comparative gain) is 14.7%.

Regarding the number of CPs computed by the top-down approach, Region A de-
manded 249 positions. Regions B and D, in turn, resulted in the same number of candidate
positions used (44 positions), despite having very different amounts of SMs (56,157 SMs for
Region B and 6106 for Region D). This behavior is justified because Region B has a higher
concentration of SMs per km2. In contrast, region D has the geographically dispersed
meters, requiring the positioning of various key devices to ensure communication. For
Region C, a total of 169 devices was estimated as it is also a region with high sparsity
(7.2 SMs/km2).

Analyzing the first iteration of the method, the number of candidate positions with
which a meter has viable conditions for establishing a connection varied (on average)
from 1.9 possibilities for Region D to 6.2 possibilities (on average) for each SM in Region
B. For Region A, it was observed that an SM could establish a connection with up to
15 candidate positions.

5.2. Case Study 2: Experiments with AIDA, Using Erceg-SUI Propagation Model

In this section, we describe the additional experiments carried out to evaluate the
AIDA method using a general path loss model, which does not assess the particularities of
the terrain profile between specific smart meters and candidate positions.

For this, the method AIDA was adapted to use the Erceg-SUI propagation model
(SUI model), implemented as presented by the authors in [6,7] (IEEE 802.16.3c-01/29r4,
section Suburban Path Loss model). The Erceg-SUI model corresponds to a path loss model
computed by considering a general classification of the terrain in which the communication
devices are installed.

The Erceg-SUI model considers the existence of the following terrain types: Cate-
gory A—hilly/moderate-to-heavy tree density; Category B—hilly/light tree density or
flat/moderate-to-heavy tree density; Category C—flat/light tree density. Originally, the
model was specified based on data collection in 95 regions of the United States considering
a transmission frequency of 1.9 GHz. Thus, for its use in our experiments, frequency and
receiver antenna height correction factors were used as recommended in [7].

According to [6,7], the equation for calculating the Erceg-SUI model Path Loss is
expressed as (20):

PLSUI = A + 10γ log10(d/d0SUI ) + s; d ≥ d0SUI (20)

where A is the decibel path loss at distance d0SUI and s is the shadow fading variation about
the linear relationship. The authors in [6] call A the intercept value, and they choose a value
for d0SUI of 100 m. In addition, A = 20 log10(4 π d0SUI /λ), where λ is the wavelength in
m, γ is the path-loss exponent with γ = (a− bhb + c/hb) + xσγ for hb between 10 m and
80 m (hb is the height of the base station in m), and a, b, and c are constants dependent on
the terrain category, as shown in Table 7. The shadowing effect (s) follows a lognormal
distribution, and it is calculated using (21):

s = 10 x σγ log10(d/d0SUI ) + y µσ + y z σσ (21)

where x, y, and z are independent zero-mean Gaussian variables of unit standard deviation,
N[0, 1], as defined in [6]. The frequency and receiver antenna height correction factors are
calculated by Equations (22)–(24). Equation (22) defines the frequency correction factor,
where f is the frequency in MHz.

∆PL f = 6 log10( f /2000) (22)
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The ∆PLh (in dB) is the receiver antenna height correction term given by
Equations (23) and (24), where h is the height of the antenna, between 2 m and 10 m.

∆PLh = −10.8 log10(h/2); for Categories A and B (23)

∆PLh = −20 log10(h/2); for Category C (24)

The path loss with the application of correction factors is calculated as follows (25):

PLmodi f ied = PLSUI + ∆PL f + ∆PLh (25)

For case study 2 experiments, the AIDA method was adapted to use the modified path
loss presented by the Erceg-SUI model instead of the Delta-Bullington model. Experiments
were carried out using the top–down approach of the AIDA method, considering the four
regions previously used and performing an experiment for each region (A, B, C, D) and
each type of terrain (category A, category B, and category C) proposed by the SUI-model.

Table 7. Erceg-SUI model parameters.

Model Parameter Category A Terrain Category B Terrain Category C Terrain

a 4.6 4.0 3.6

b (in m−1) 0.0075 0.0065 0.0050

c (in m) 12.6 17.1 20.0

σγ 0.57 0.75 0.59

µσ 10.6 9.6 8.2

σσ 2.3 3.0 1.6

The results presented in Table 8 show that, in most cases, using the AIDA method, it
was possible to obtain a better average LRP value than that obtained with the SUI-model
(Figure 8). By evaluating the terrain in a more detailed way, it can even be said that the
particularities of the terrain between the devices are more faithfully evaluated, leading to an
LRP calculation that tends to be more accurate. An exception is Region B, which presented
better results for the Erceg-SUI path loss model. Region B has the highest smart meters
concentration per km2 (316.9 SMs/km2), where most of them are very close to each other.

Tests with the SUI-model path loss resulted in more unconnected smart meters be-
tween each AIDA iteration, generating the need to evaluate more connection possibilities
and demanding more processing time (Figure 9).

Using the AIDA method with its original propagation model (i.e., taking into account
the terrain profile), it was possible to observe a smaller number of candidate positions
selected for the installation of routers, suggesting that the topology computed by the AIDA
method with the original path loss/diffraction model can plan the smart meter’s coverage
with a lower number of routers (i.e., selected candidate positions, as shown by Figure 10)
and (in most cases) higher average LRP value, resulting in a more efficient solution.

By evaluating the number of CPs demanded by AIDA (Table 8, column AIDA (TD
approach)), we can notice that the method presented in this study can reduce the number
of selected CPs for all the regions when compared with the values calculated by the
approaches using Erceg-SUI path loss model. Equation (26) defines the average relative
gain between AIDA (executed using its link-specific propagation model) compared to the
use of AIDA executed using the Erceg-SUI propagation model. The gain is calculated
regarding the number of CPs selected by AIDA executed using each different propagation



Sensors 2022, 22, 9105 28 of 35

model. It aims to show the reduction in the number of candidate positions demanded to
connect the smart meters of the region when the original AIDA method is used.

GAIDA(%) =

[
1−

(
1
3

C

∑
t=A

CPsAIDA

CPsSUIt

)]
· 100 (26)

Using AIDA, the average relative gain regarding the number of selected CPs varied
from 40.562% for Region A to 43.273% for Region C.
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Figure 8. Average LRP values (in dBm) obtained by the AIDA method using its original path loss
model (AIDA/proposed PL model) compared to the values obtained by the AIDA method using
Erceg-SUI path loss model for the terrain Category A (AIDA/SUI–A), Category B (AIDA/SUI–B),
and Category C (AIDA/SUI–C). The chart compares the performance of AIDA for the Regions A, B,
C, and D, used in the experiments.
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Figure 9. Processing time (in hours) consumed for the execution of the AIDA method using its
original path loss model (AIDA/proposed PL model) compared to the values demanded by the AIDA
method using the Erceg-SUI path loss model for the terrain Category A (AIDA/SUI–A), Category B
(AIDA/SUI–B), and Category C (AIDA/SUI–C). The chart compares the performance of AIDA for
the Regions A, B, C, and D, used in the experiments.
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Figure 10. Number of CPs selected by the AIDA method using its original path loss model
(AIDA/proposed PL model) compared to the values selected by the AIDA method using the Erceg-
SUI path loss model for the terrain Category A (AIDA/SUI–A), Category B (AIDA/SUI–B), and
Category C (AIDA/SUI–C). The chart compares the performance of AIDA for the Regions A, B, C,
and D, used in the experiments.

Table 8. AIDA (TD approach, with its proposed PL model) results compared to the results of AIDA
using the Erceg-SUI path loss model.

AIDA method using Erceg-SUI Path Loss Model
Region Metric AIDA (TD Approach) Category A Terrain Category B Terrain Category C Terrain

A

No. of iterations 3 3 3 3
No. of selected CPs 249 435 420 403
No. of unconnected SMs 3 30 17 11
Percentage of connected SMs 99.998% 99.980% 99.989% 99.993%
Average LRP (dBm) −73.43 −78.07 −76.91 −75.97
Processing time 15 h 47 min 44 s 21 h 25 min 45 s 20 h 53 min 23 s 20 h 51 min 25 s
AIDA Gain (GAIDA) 40.562%

B

No. of iterations 3 3 3 3
No. of selected CPs 44 74 76 75
No. of unconnected SMs 0 0 0 0
Percentage of connected SMs 100% 100% 100% 100%
Average LRP (dBm) −79.14 −79.01 −78.23 −77.63
Processing time 3 h 52 min 7 s 5 h 39 min 50 s 5 h 38 min 30 s 5 h 36 min 8 s
AIDA gain (GAIDA) 41.326%

C

No. of iterations 2 2 2 2
No. of selected CPs 169 298 304 292
No. of unconnected SMs 0 64 53 39
Percentage of connected SMs 100% 99.704% 99.754% 99.819%
Average LRP (dBm) −72.86 −78.24 −77.10 −76.06
Processing time 0 h 55 min 4 s 1 h 15 min 17 s 1 h 15 min 9 s 1 h 15 min 40 s
AIDA gain (GAIDA) 43.273%

D

No. of iterations 2 2 2 2
No. of selected CPs 48 78 85 84
No. of unconnected SMs 4 16 18 12
Percentage of connected SMs 99.934% 99.738% 99.705% 99.803%
Average LRP (dBm) −75.58 −81.90 −80.49 −80.05
Processing time 0 h 14 min 19 s 0 h 18 min 38 s 0 h 19 min 22 s 0 h 19 min 38 s
AIDA gain (GAIDA) 41.616%

In addition, it can be noticed (Figure 11) that the average number of smart meters per
selected CP is higher for the AIDA method. This suggests that AIDA can better utilize the
connection capacity of a candidate position as it demands a lower final amount of installed
routers/gateways compared to using the method with a general path loss model.
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Figure 11. Average number of smart meters (SMs) connected to each CP selected by the AIDA
method using its original path loss model (AIDA/proposed PL model) compared to the values
connected to the CPs by the AIDA method using Erceg-SUI path loss model for the terrain Category
A (AIDA/SUI–A), Category B (AIDA/SUI–B) and Category C (AIDA/SUI–C). The chart compares
the performance of AIDA for the Regions A, B, C, and D, used in the experiments.

6. Discussions and Future Work

In this section, we review the main objectives of the work and evaluate the results
obtained from the research.

The main research objectives include the following:

• The presentation of an efficient AMI planning method with a large-scale focus.
• The use of a propagation model that does not depend on an empirical terrain classification.
• The use of a heuristic approach based on a spanning tree and clustering, capable of

evaluating a smaller number of connections and resulting in topologies that use fewer
routers and gateways.

Regarding the applicability of the method in large-scale scenarios, experimentation
with real data from regions of Brazil totaling more than 230,000 smart meters demonstrated
that the proposed method effectively deals with datasets from regions with different degrees
of density of smart meters and poles, including high-density regions (such as dense urban
regions) and regions with high sparseness (rural regions or industrial areas). As observed
in Table 6, the processing times for the different real regions considered consumed from
14 min 19 s (for Region D) to 15 h 47 min 44 s (for Region A).

The use of a path loss model that calculates losses considering the particularities of
the terrain between the devices permitted the evaluation of the possibility of connection
more precisely, with the advantage of visualizing the connectivity condition for the entire
region (as can be seen with Figure 3). The average LRP values obtained in the processing of
each region evaluated (varying from −79.14 dBm for Region B to −72.86 dBm for Region
C, according to Table 6) show that the use of a detailed path loss model made it possible to
achieve an optimized result.

The implemented heuristic approach demonstrated efficiency for the different scenar-
ios evaluated as the number of candidate positions calculated for each region was enough
for the connection of the smart meters respecting the value of LRP established for the
experiments.

Using a grid strategy to select poles helps minimize the final number of installation
positions and optimizes the method’s performance by decreasing the number of connections
to be evaluated. For example, in Table 5, it is possible to observe that Region A has
62,412 poles. Despite this, we observed (Table 6) that the total number of poles selected
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for region A (for the installation of routers and gateways) is only 249 poles (using the
top–down clustering approach). It is important to highlight that, for Region A, the process
of candidate position calculation establishes 1245 poles to be evaluated (163 poles for the
first iteration, 289 poles for the second iteration, and 793 poles for the third iteration of
the method). Despite the region having 62,412 poles, only 1245 pole positions (1.995%)
were evaluated to establish the connectivity of the meters in the region. This type of
simplification reinforces the method’s applicability for large-scale scenarios since there
is a significant decrease in the number of calculations performed with the implemented
strategy.

The multihop analysis for connecting meters using a minimum spanning tree algo-
rithm also helps reduce the complexity of the problem and reduce the calculations to be
performed, as only a subset of possible connections between smart meters needs to be
evaluated.

Regarding scalability, it is possible to highlight that the method worked well regarding
the processing time, reaching shorter execution times when compared to usage scenarios
in which it was considered a simplified path loss model. In fact, the results in Table 8
demonstrate that with its original path loss model, AIDA presents a better processing time
than AIDA using the Erceg-SUI model that does not demand a detailed analysis of the
terrain characteristics.

Even with the results representing satisfactory values, it is important to highlight that
the method can be improved to reduce the processing time since processing bottlenecks
were identified and deserve improvements in future method updates. For example, for a
region with 2375 smart meters used in a special experiment for execution profile analysis,
from a total processing time of 244.0 s, the time consumed for the main processes was
as follows (Table 9): multihop connection analysis, 11.2 s; clustering with a bottom–up
approach, 4.4 s; clustering with top–down approach, 1.6 s. However, loading, selecting,
grouping, filtering, and saving datasets summed 169.5 s, especially due to the high volume
of disk I/O operations involved. The remaining 57.3 s of the required processing time were
consumed by smaller processes, such as calls to external functions (necessary to obtain
topographic profile data) and other processes inherent to the execution platform used.

Table 9. Processing time (execution profile analysis) for a special experiment using 2375 smart meters.

Process Execution Time (s)

Multihop connection analysis 11.2 s

Clustering with bottom–up approach 4.4 s

Clustering with top–down approach 1.6 s

Dataset load, select, filter, save processes 169.5 s

Miscellaneous 57.3 s

Total: 244.0 s

In summary, the results obtained with the AIDA method proposed by this study
indicate that the experiments carried out (considering case studies 1 and 2) were able
to obtain results with coverage and connection values within established values for all
evaluated regions. Even when comparing the AIDA method with its original loss model and
the AIDA method with a path loss model that does not use a detailed terrain analysis, the
results obtained (especially concerning the number of CPs selected) were better. Additional
experiments can be performed after the bottleneck mitigation and future modifications
expected for the path loss model used by the method.

Future work will consider the improvement of the link propagation model, including
the existing vegetation model, as well as the type of environment (e.g., urban, dense
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urban, rural area). Additional experiments may explore the use of AIDA in expanding and
optimizing already installed smart grid communication networks.

For rural or sparse regions with less DA equipment or no backhaul infrastructure
coverage, there may be a need to assess the network expansion to ensure integration
between the AMI and Backhaul networks. However, as these are particular situations, they
are not part of the scope of the current study and are reserved for future works.

7. Conclusions

This study presented the AIDA method for router/gateway placement in AMI plan-
ning that evaluates the LRP between SMs and key device positions, calculated based on
a detailed analysis of the terrain profile. In addition, the method presented the use of
an MST-based technique for the multihop connectivity analysis aiming to minimize the
number of connections to be analyzed.

The research explored using AI-driven heuristic approaches and clustering techniques
for the method implementation. To investigate the method’s capacity to deal with large-
scale smart grids, the experiments evaluated real data from cities in the south of Brazil
totaling over 230,000 smart meters. Experiments in four large-scale scenarios demonstrate
that the coverage and average LRP values computed by the AIDA method are within
established connection thresholds, suggesting topologies that consider the actual terrain
profile particularities and other system requirements.

Using a detailed terrain profile analysis to compute the path loss between devices
to be connected demonstrated viability even for the largest region evaluated (with over
150,000 smart meters). The AIDA method used two optimized strategies to minimize
the number of connections to be evaluated. First, it used a grid approach to select can-
didate positions. Second, it uses an MST to evaluate the multihop connections in cases
where the smart meter cannot directly connect to a router or gateway but through another
smart meter.

The AIDA method introduces two different smart meters clustering approaches:
bottom–up, which privileges the quality of links; and top–down, which focuses on de-
manding fewer devices. Furthermore, we presented the computational complexity (time
complexity) of these two clustering approaches and the method’s main components de-
scriptively to allow the reader to visualize the participation of each element in the execution
time of the method.

In the experiments, the top–down approach reduced by 14.7%, on average, the total
number of gateways and routers positioned compared to the bottom–up approach. Bottom–
up, in turn, presented a higher average LRP for the links, prioritizing the quality of the
links over cost minimization. Considering that both strategies can present results ensuring
high-quality links, both are applicable and may be selected according to the smart grid
scenario constraints and objectives, prioritizing the use of candidate positions with DAs.

In addition, experiments using a general path loss model (Erceg-SUI model) demon-
strated that the AIDA can reach solutions demanding fewer key devices yet ensuring LRP
values in the established threshold. In these experiments, AIDA used its proposed prop-
agation model, and presented an average relative gain regarding the number of selected
CPs varying from 40.562% to 43.273% when compared to AIDA using the Erceg-SUI model
as the propagation model. Furthermore, regarding the processing time, the AIDA method
with its original path loss model proved to be more efficient than when evaluated using the
general path loss model.
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