
Citation: Younes, O.; Albalawi, U.

Securing Session Initiation Protocol.

Sensors 2022, 22, 9103. https://

doi.org/10.3390/s22239103

Academic Editor: Valderi R. Q.

Leithardt

Received: 27 October 2022

Accepted: 17 November 2022

Published: 23 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Securing Session Initiation Protocol
Osama Younes 1,2,* and Umar Albalawi 1,3

1 Faculty of Computer and Information Technology, University of Tabuk, Tabuk 47512, Saudi Arabia
2 Faculty of Computers and Information, Menoufia University, Shibin El Kom 32511, Egypt
3 School of Computing & Data Science, Wentworth Institute of Technology, Boston, MA 02115, USA
* Correspondence: o_younes@ut.edu.sa or usama_younas@ci.menofia.edu.eg

Abstract: The session initiation protocol (SIP) is widely used for multimedia communication as a
signaling protocol for managing, establishing, maintaining, and terminating multimedia sessions
among participants. However, SIP is exposed to a variety of security threats. To overcome the security
flaws of SIP, it needs to support a number of security services: authentication, confidentiality, and
integrity. Few solutions have been introduced in the literature to secure SIP, which can support these
security services. Most of them are based on internet security standards and have many drawbacks.
This work introduces a new protocol for securing SIP called secure-SIP (S-SIP). S-SIP consists of
two protocols: the SIP authentication (A-SIP) protocol and the key management and protection
(KP-SIP) protocol. A-SIP is a novel mutual authentication protocol. KP-SIP is used to secure SIP
signaling messages and exchange session keys among entities. It provides different security services
for SIP: integrity, confidentiality, and key management. A-SIP is based on the secure remote password
(SRP) protocol, which is one of standard password-based authentication protocols supported by
the transport layer security (TLS) standard. However, A-SIP is more secure and efficient than SRP
because it covers its security flaws and weaknesses, which are illustrated and proven in this work.
Through comprehensive informal and formal security analyses, we demonstrate that S-SIP is secure
and can address SIP vulnerabilities. In addition, the proposed protocols were compared with many
related protocols in terms of security and performance. It was found that the proposed protocols are
more secure and have better performance.

Keywords: SIP security; authentication protocols; key agreement; SRP analysis; VoIP

1. Introduction

Voice over internet protocol (VoIP) reduces telecommunication costs and provides
benefits to business that legacy telephone systems cannot. VoIP systems need efficient,
flexible and secure transmission and signaling protocols. The real-time transport protocol
(RTP) [1] is used for transmitting media streams such as voice and video over IP networks.
To initiate, preserve, and stop multimedia sessions among participants, VoIP services use
the session initiation protocol (SIP), which is a client/server text-based signaling proto-
col [2]. SIP has been used in different applications, such as video conferences, voice/video
distribution, and online games [3].

Due to the rise in VoIP applications, the issue of security in SIP has become pivotal [4,5].
According to the security analysis of [6,7], the major source of attacks on VoIP technology
is due to vulnerabilities of SIP. Although SIP is widely used as a signaling protocol, it
is vulnerable to several attacks, such as registration hijacking, impersonation, message
tampering, eavesdropping, and man-in-the-middle attacks. Such attacks degrade the trust
level of users to completely rely on VoIP technologies.

To avoid most SIP threats, the SIP protocol needs to support a number of security
mechanisms: authentication, confidentiality, integrity, and availability services [8,9]. Au-
thentication mechanisms are used to prevent different masquerading and spoofing attacks.
Attacks related to eavesdropping on signaling, media, or network management sessions

Sensors 2022, 22, 9103. https://doi.org/10.3390/s22239103 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22239103
https://doi.org/10.3390/s22239103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9437-223X
https://orcid.org/0000-0002-4852-3981
https://doi.org/10.3390/s22239103
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22239103?type=check_update&version=2

Sensors 2022, 22, 9103 2 of 30

can be avoided using confidentiality mechanisms. The lack of integrity mechanisms allows
malicious users to manipulate messages to perform different attacks such as replaying, mal-
formed message, and spoofing attacks [10]. Availability mechanisms protect the availability
of entities in VoIP systems. They can prevent different denial-of-service (DoS) attacks and
flooding attacks.

SIP security basically relies on well-known internet security standards that support
authentication, confidentiality, integrity, and/or availability [2], which are HTTP digest [11],
IP security (IPSec) [12], transport layer security (TLS) [13], and secure multipurpose internet
mail extensions (S/MIME) [14]. These standard security mechanisms are applied in existing
and widely used internet applications and services. However, none of these SIP security
solutions are a silver bullet; each of them has many demerits, which are discussed in
Section 2.

Numerous authentication and key agreement schemes have been proposed in the
literature for SIP. However, most of them did not support confidentiality, integrity, and/or
availability. These schemes can be divided into two groups: public key infrastructure
(PKI) mechanisms and PKI-free mechanisms. PKI mechanisms [15] can effectively pro-
vide mutual authentication and key agreements over public channels. However, these
approaches require users to store additional data (e.g., certificates) on their devices, which
are vulnerable to physical attacks. Additionally, cryptographic operations during authenti-
cation and key exchange processes are computationally expensive. PKI-free mechanisms,
which are also known as password-authenticated key exchange (PAKE) mechanisms, are
considered a promising alternative solution to these concerns [16]. PAKE mechanisms do
not require clients to store any secret information but rather allow them to authenticate with
a server by entering the user’s password. In addition, they are computationally lightweight
cryptographic protocols that make them suitable for VoIP systems.

PAKE schemes are divided into two categories: balanced PAKE (B-PAKE) and aug-
mented PAKE (A-PAKE). In balanced PAKE schemes, to authenticate a user, the server
stores a value derived from the user’s password, which is used to establish a common secret
key between the client and the server. However, these schemes cannot protect the password
if the server is compromised, because an attacker can use this value to impersonate the user
or the server.

A-PAKE authentication protocols can provide more security than B-PAKE protocols.
Nevertheless, they are also more complex and computationally expensive to implement.
Many A-PAKE-based authentication protocols designed for general client–server appli-
cations have been proposed in the literature: SRP [17], AugPAKE [18], OPAQUE [19],
Augmented-EKE [20], B-SPEKE [21], J-PAKE [22], and PAKE2+ [23]. The secure remote
password (SRP) protocol was introduced in [24] and is described as SRP-3 in RFC 2945 [25].
SRP-6 is a variant of SRP-3 that is more flexible and secure. As described in RFC 5054 [26],
it is used for password authentication in SSL/TLS. Additionally, it is included in IEEE
P1363 [27] and ISO/IEC 11770-4 standards.

According to the Stanford SRP homepage [28], “SRP is most widely standardized
protocol of its type, and as a result is being used by organizations both large and small,
commercial and open-source, to secure nearly every type of human-authenticated network
traffic on a variety of computing platforms”. The SRP protocol is currently at revision
6a [17,28]. Compared to other A-PAKE protocols, SRP is the more practical choice because
it has more available implementations, is built in integration with TLS [26], and is faster
and secure enough for common use [17]. Unfortunately, as we prove in Section 4, SRP-6a is
vulnerable to offline password guessing attacks, stolen verifier attacks, and Denning–Sacco
attacks. Many A-PAKE-based authentication schemes for SIP have been introduced in
the literature [29–52]. However, most of these schemes have security vulnerabilities, as
explained in Section 2.

To secure SIP, this work introduces a new protocol called secure-SIP (S-SIP). As ex-
plained in detail in Section 6, S-SIP thwarts most SIP attacks such as impersonation, replay,
man-in-the-middle, session teardown, registration hijacking, request spoofing, message

Sensors 2022, 22, 9103 3 of 30

tampering, and re-invite attacks. S-SIP consists of two protocols: the SIP authentication
(A-SIP) protocol and the key management and protection (KP-SIP) protocol. A-SIP is an
authentication protocol based on SRP. A-SIP is more secure and efficient than SRP. It not
only covers all the security flaws and weaknesses of SRP but also provides more functional-
ities. To stop impersonation and spoofing attacks, A-SIP is used to secure the registration
of the authenticated users to the proxy server and distribute the session keys. KP-SIP is
used to exchange session keys between clients and secure the signaling messages of SIP. It
provides confidentiality and integrity services for SIP. To evaluate the security attributes
of the proposed protocols, the ProfVerif [53] tool is used, which is one of the best tools for
automated security analysis of cryptographic protocols. The main contributions of this
work are as follows:

1. For the first time, we provide an informal security analysis for the SRP protocol.
2. Based on the SRP protocol, we introduce a new authentication scheme that overcomes

vulnerabilities and weaknesses discovered in SRP.
3. A new protocol is introduced to provide confidentiality and integrity services for SIP.
4. The security of the proposed protocols is formally and informally analyzed.
5. The proposed protocols are compared with many related protocols in terms of security

and performance.

The rest of the paper is organized as follows: The related work is discussed in Section 2.
In Section 3, basic concepts about SIP and SRP protocols are explained. Section 4 presents
informal security analysis of the SRP protocol. Section 5 explains the proposed protocol
S-SIP. The informal and formal security analyses of S-SIP are discussed in Sections 6 and 7,
respectively. Performance analysis and comparison are presented in Section 8. Finally,
some conclusions are drawn in Section 9.

2. Related Work

Many security mechanisms have been applied to protect SIP from various attacks.
These mechanisms can be divided into two categories: standard-based and research-based
solutions. These solutions are discussed in this section.

2.1. Standard-Based Solutions

To secure SIP, well-known internet security mechanisms were adopted. More specifi-
cally, the following internet security standards were usually used for securing SIP: HTTP
digest, TLS, IPSec and S/MIME.

(1) HTTP Digest

HTTP digest [11] is a simple challenge–response protocol that uses a shared secret
along with a username, a domain name, a nonce, and specific fields from the SIP message
to compute a cryptographic hash, which is used for entity authentication. An SIP server or
a client can challenge the request initiator to send a proof of its identity.

Although the HTTP digest protocol can offer one-way message authentication and
replay protection, it does not provide mutual authentication, message integrity or confi-
dentiality [8]. Therefore, it cannot thwart man-in-the-middle (MITM) and impersonation
attacks. Moreover, if short or weak passwords are used as a shared secret, the HTTP digest
protocol becomes vulnerable to offline dictionary attacks [9].

(2) Transport Layer Security

The transport layer security protocol [13] is defined in RFC 4346. TLS provides secu-
rity services at the transport layer of the internet architecture. TLS offers authentication,
integrity, and confidentiality services among SIP entities. It is widely used on the internet
today to secure web browsing. TLS is composed of two protocols: the TLS record pro-
tocol and the TLS handshake protocol. The TLS handshake protocol is used for mutual
authentication and to negotiate cryptographic properties of the respective session. The TLS
record protocol aims to maintain a secure connection between two end points. The TLS

Sensors 2022, 22, 9103 4 of 30

handshake has to be completed successfully before transmitting any data. SIP Secure (SIPS)
protocol [54] is a standard protocol for securing SIP based on TLS. It constructs TLS secure
tunnels among each hop in the path between end points.

TLS adopts PKI to ensure confidentiality of all transmitted data, and to verify and
authenticate the validity of each party in the context of public and private keys. Unfor-
tunately, PKI is vulnerable to MITM attacks [55,56]. In addition, maintaining many open
TLS connections simultaneously may significantly reduce the performance of SIP servers,
rendering them unable to process incoming requests due to resource exhaustion, making
servers more vulnerable to denial-of-service attacks [8,10,57,58]. Moreover, as we prove in
Section 4, the standard password-based authentication protocol (SRP) supported by TLS
(SRP-TLS) [26] is vulnerable to offline password guessing attacks, stolen verifier attacks,
and Denning–Sacco attacks. The proposed protocol (S-SIP) covers security flaws and weak-
nesses in SIPS. S-SIP does not depend on TLS. However, it is a redesign for SIP taking into
account its security requirements. In addition, the performance of the proposed protocol is
better than SIPS, as explained in Section 8.

(3) S/MIME

S/MIME [14] is a standard defined in RFC 3851. Multipurpose internet mail extensions
(MIME) and its security improvement S/MIME were originally designed for e-mail services.
Additionally, they are used by other text-based internet application protocols. S/MIME is
the de facto standard for securing emails by using a PKI infrastructure and X.509 certificates.
S/MIME supports the exchange of complex messages along with preserving a set of security
objectives, including confidentiality, integrity, and authenticity. S/MIME provides end-
to-end confidentiality for SIP messages, integrity protection for the body and identity
authentication for the sender of the message.

S/MIME has many limitations and drawbacks [57,59]. The complexity required to
implement S/MIME to protect SIP signaling messages can be a significant factor in limiting
its implementation in most environments. In addition, S/MIME encapsulates SIP messages
into the MIME body, which creates a considerable overhead and processing cost over
SIP messages. Moreover, due to the complexity of managing and distributing security
certificates, most commercial SIP clients do not support S/MIME.

(4) IPSec

IPSec [12] is an independent and general purpose network-level protocol in the inter-
net architecture designed by the Internet Engineering Task Force (IETF), which provides
protection to IP packets. Thus, protocols such as SIP and RTP can run over it without
any changes. IPSec can be used in a tunnel or transport mode to protect its payload.
It can provide confidentiality, integrity, and authentication services for media and SIP
signal messages by creating secure tunnels between end points. However, it has many
drawbacks [8–10,57]:

• Since IPSec is implemented at the operating system level or kernel layer, many SIP
clients do not support it. Thus, IPSec can be utilized to protect signaling traffic between
SIP servers but not between servers and clients.

• For applications working on top of IPSec, such as SIP, it is difficult to detect whether
IPSec has failed to be set up. As a result, there are advantages for security mechanisms
working at layers above the IP layer.

• Deploying IPSec in VoIP systems requires more effort because of its complexity and
infrastructure requirements compared to other protocols.

• It does not scale well for large, distributed networks and distributed applications.

2.2. Research-Based Solutions

Numerous security schemes have been introduced in the literature for securing SIP.
However, most of them are only concerned with SIP authentication. The following discusses
the most significant SIP authentication schemes.

Sensors 2022, 22, 9103 5 of 30

In [29], Yang et al. proposed an authentication scheme based on the Diffie–Hellman
key exchange protocol. Later, Huang et al. [30] identified that Yang et al.’s protocol was
insecure against offline password guessing attacks. Therefore, they presented an improved
scheme. Later, it was demonstrated that Huang et al.’s scheme could not thwart offline
password guessing attacks [31].

Based on Yang et al.’s study, in [32,33] authentication schemes for SIP were proposed
based on ECC [34]. However, Yoon et al. [35] showed that these schemes were susceptible
to offline password guessing, Denning–Sacco, and stolen verifier attacks. To overcome
these weaknesses, Yoon et al. proposed an enhanced authentication scheme for SIP with
more security. Unfortunately, Pu [36] showed that the scheme of Yoon et al. was still prone
to offline password guessing and replay attacks.

To reduce the high computational cost, Tsai [37] suggested an efficient authenticated
key agreement scheme adopting only one-way hash functions and exclusive-OR operations.
Nevertheless, in [38] it was proven that Tsai’s scheme could not provide perfect forward
secrecy and was vulnerable to offline password guessing attacks, Denning–Sacco attacks,
and stolen-verifier attacks. Thus, Yoon et al. [38] proposed an enhanced scheme to overcome
the shortcomings of Tsai’s scheme. The proposed scheme was based on the elliptic curve
discrete logarithm problem (ECDLP). However, Xie [39] demonstrated that Yoon et al.’s
scheme could not resist offline password guessing and stolen-verifier attacks. Then, he
proposed an improved scheme to overcome the weaknesses of the scheme introduced
in [38]. Nevertheless, Farash and Attari [40] demonstrated that the scheme introduced
in [39] was still insecure and vulnerable to offline password guessing and impersonation
attacks. To avoid these vulnerabilities in Xie’s scheme, they presented an improved scheme.
Based on the work introduced in [40], Zhang et al. [41] proposed an authentication scheme
for SIP.

Lu et al. [42] found that Zhang et al.’s scheme was insecure against insider attacks and
could not provide proper security. To overcome the weaknesses of Zhang et al.’s scheme,
Lu et al. proposed an improved authentication scheme. They demonstrated that their
scheme was resistant to possible known attacks. In [43] the authors stated that Lu et al.’s
scheme was prone to user and server impersonation attacks. Therefore, they proposed
an enhanced scheme that resists these attacks. Nevertheless, the authors in [44] found
that the work introduced in [43] was still vulnerable to the attacks that appeared in Lu
et al.’s scheme. Meanwhile, they indicated that Lu et al.’s [42] scheme was insecure against
impersonation and identity guessing attacks.

In [45], to overcome vulnerabilities in previous schemes, Zhang et al. developed an
authentication and key agreement scheme for SIP using a smart card. In addition to the
password, the smart card is used as a second authentication factor. The authors showed
that their scheme was efficient and secure against several attacks. Irshad et al. [46] proved
that Zhang et al.’s scheme could suffer from impersonation attacks. Consequently, they
suggested an improvement for Zhang et al.’s authentication scheme. However, Arshad
and Nikooghadam [47] proved that the scheme introduced in [46] could not prevent user
impersonation attacks.

In [48], Tu et al. developed an authentication scheme that had low computational costs,
based on Zhang’s scheme [45]. Chaudhry et al. [49] showed that Tu et al.’s scheme [48] was
not immune to server impersonation attacks and replay attacks. Thus, they developed a
lightweight authentication and key agreement protocol for SIP. However, Nikooghadam
et al. [50] performed cryptanalysis on Chaudhry et al.’s scheme and showed its weakness
against password guessing attacks. They developed an enhanced scheme to overcome this
weakness. Later, Ravanbakhsh et al. [51] demonstrated that the work introduced in [50]
was insecure because it did not provide perfect forward secrecy. Thus, they presented a
two-factor authentication and key agreement scheme for SIP networks and showed that it
was resistant against various active and passive attacks. Nevertheless, it was proven that
Ravanbakhsh et al.’s scheme [51] did not provide perfect forward secrecy [52].

Sensors 2022, 22, 9103 6 of 30

Few studies have been introduced in the literature that provide confidentiality, in-
tegrity, and authenticity services for VoIP systems. The most recent and significant studies
are discussed in the following. In [60], the authors studied security threats and attacks
in internet protocol multimedia subsystem (IMS) networks. In addition, they presented
a framework model for protecting messages exchanged between users and for user au-
thentication using IPsec and HTTP digest protocols on every single gateway router. HTTP
digest provides user authentication and a limited degree of integrity protection. The IPsec
protocol protects confidentiality and integrity at the network layer. However, as explained
in Section 2.1, HTTP digest and IPsec protocols have many drawbacks.

In [61], Farley et al. presented a system called VoIP Shield to mitigate MITM and
replay attacks. The VoIP Shield consists of two shields with a pre-distributed shared key;
one of the shields is connected to the client and the other is connected to the proxy server
to protect VoIP traffic exchanged between them. For message authentication, the shields
use a simple hash-based message authentication code scheme. However, the VoIP Shield
did not support any scheme for entity authentication or key distribution and management
which made it vulnerable to many VoIP attacks.

Basem et al. [62] provided a multilayered security solution based on different open-
source applications: Snort, IPtables, SnortSam, and OpenVPN tunnel. The design provided
reliable and secure VoIP services for users to prevent denial-of-service and eavesdropping
attacks. Signaling messages were protected using the OpenVPN tool which transmits traffic
over TLS-based VPNs. The Snort tool was used for detecting security violations and attacks.
However, as explained in Section 2.1, the TLS protocol has many drawbacks. In addition,
intrusion detection and prevention tools or techniques affect the system’s performance.

3. Background
3.1. Session Initiation Protocol

SIP has been standardized by the IETF [2]. It is an application layer signaling protocol
for setting up, modifying and terminating multimedia IP sessions, including VoIP telephony,
video, streaming media, and instant messaging. SIP is a text-based protocol based on the
HTTP protocol, which defines two types of messages: SIP requests and responses. The SIP
protocol follows the client/server model whose basic components are [9]:

(1) User Agent Client and Server:

An SIP user agent is a logical network endpoint used to create or receive SIP messages
and thereby manage an SIP session. The user agent itself has a client element, called the
user agent client (UAC), and a server element, called the user agent server (UAS). The
UAC is responsible for creating requests and the UAS processes and responds to each
request generated by a UAC. The SIP user agent (UA) can be lightweight clients suitable
for embedding into end-user devices such as mobile handsets; alternatively, they can be
desktop applications (e.g., softphones).

(2) Registrar Server

The SIP registrar server is responsible for user registration. It has a database containing
the location and user’s preferences as indicated by the user agents. The registrar server
accepts SIP registration requests and binds the information it receives (the SIP address and
associated IP address of the registering device).

(3) Proxy Server

The proxy server is an intermediary entity that acts as both a server and a client
for the purpose of making requests on behalf of other clients. A proxy server primarily
plays the role of routing. Its job is to ensure that a request is sent to another entity (proxy
server) closer to the targeted user agent. Users in an SIP environment are identified by
SIP uniform resource identifiers (URIs). The format of an SIP URI is similar to an e-mail
address, generally consisting of a username and a domain name.

SIP is designed to be simple and easy to use. It defines six main types of messages,
namely INVITE, ACK, BYE, CANCEL, OPTIONS, and REGISTER. Figure 1 shows an

Sensors 2022, 22, 9103 7 of 30

example of a call flow from one UA (UA1) to another (UA2) [2]. A session is initiated
when UA1 sends an INVITE message to the appropriate proxy server indicating that UA1
wishes to communicate/talk with UA2 [9]. Immediately, the proxy server sends a response
message (TRYING) to UA1 to acknowledge that the INVITE message is handled and
attempts to resolve the called user’s location and sends the request to UA2. UA2 sends
a response (RINGING) when their telephone begins to ring. Finally, when UA2 receives
the request and picks the call, it sends the OK message to the proxy server that forwards
it to UA1. Upon receiving the OK message, UA1 sends the ACK message to UA2. Upon
reception of the ACK message, UA2 establishes the connection with UA1. Then, media
streams are exchanged directly between them.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 30

The proxy server is an intermediary entity that acts as both a server and a client for

the purpose of making requests on behalf of other clients. A proxy server primarily plays

the role of routing. Its job is to ensure that a request is sent to another entity (proxy server)

closer to the targeted user agent. Users in an SIP environment are identified by SIP

uniform resource identifiers (URIs). The format of an SIP URI is similar to an e-mail

address, generally consisting of a username and a domain name.

SIP is designed to be simple and easy to use. It defines six main types of messages,

namely INVITE, ACK, BYE, CANCEL, OPTIONS, and REGISTER. Figure 1 shows an

example of a call flow from one UA (UA1) to another (UA2) [2]. A session is initiated when

UA1 sends an INVITE message to the appropriate proxy server indicating that UA1

wishes to communicate/talk with UA2 [9]. Immediately, the proxy server sends a response

message (TRYING) to UA1 to acknowledge that the INVITE message is handled and

attempts to resolve the called user's location and sends the request to UA2. UA2 sends a

response (RINGING) when their telephone begins to ring. Finally, when UA2 receives the

request and picks the call, it sends the OK message to the proxy server that forwards it to

UA1. Upon receiving the OK message, UA1 sends the ACK message to UA2. Upon

reception of the ACK message, UA2 establishes the connection with UA1. Then, media

streams are exchanged directly between them.

The session ends with a BYE request message which is routed directly from UA1 to

UA2 that sends a reply with an OK message, as shown in Figure 1A. In some cases, it may

be useful for proxy servers in the SIP signaling path to see all messages exchanged

between the endpoints for the duration of the session. In these cases, the proxy servers

insert a record-route field in the INVITE and OK messages, which enforces the BYE and

OK messages to be routed through the proxy servers [2], as shown in Figure 1B. If there

are more than one proxy server between UA1 and UA2, all SIP messages received from

user agents are routed through the proxy servers.

(A) (B)

Figure 1. An example of a SIP call: (A) without the record-route option; (B) with the record-route

option.

3.2. Secure Remote Password Protocol

The SRP protocol is an A-PAKE protocol proposed in [24]. It is also known as SRP-3

and described in RFC 2945 [25]. SRP-6 [28] is a variant of SRP-3 that is included in IEEE

P1363 [27] and ISO/IEC 11770-4 standards. Additionally, it is described in RFC 5054 for

strong password authentication in SSL/TLS [27]. The SRP protocol is currently at revision

6a [17,28].

SRP is suitable for secure password verification and session key generation over an

insecure communication channel. The protocol allows the participants to establish secure

Figure 1. An example of a SIP call: (A) without the record-route option; (B) with the record-
route option.

The session ends with a BYE request message which is routed directly from UA1 to
UA2 that sends a reply with an OK message, as shown in Figure 1A. In some cases, it
may be useful for proxy servers in the SIP signaling path to see all messages exchanged
between the endpoints for the duration of the session. In these cases, the proxy servers
insert a record-route field in the INVITE and OK messages, which enforces the BYE and
OK messages to be routed through the proxy servers [2], as shown in Figure 1B. If there are
more than one proxy server between UA1 and UA2, all SIP messages received from user
agents are routed through the proxy servers.

3.2. Secure Remote Password Protocol

The SRP protocol is an A-PAKE protocol proposed in [24]. It is also known as SRP-3
and described in RFC 2945 [25]. SRP-6 [28] is a variant of SRP-3 that is included in IEEE
P1363 [27] and ISO/IEC 11770-4 standards. Additionally, it is described in RFC 5054
for strong password authentication in SSL/TLS [27]. The SRP protocol is currently at
revision 6a [17,28].

SRP is suitable for secure password verification and session key generation over an
insecure communication channel. The protocol allows the participants to establish secure
sessions without actual exchange of a password or any other information that can be
derived from the password. Furthermore, being an augmented PAKE protocol, the server
does not store any password-equivalent data. Therefore, the SRP protocol allows a client
and a server to authenticate each other without transmitting a password or trusting a
third party.

The main goal of SRP is to establish a key agreement between two parties in a
client/server model to authenticate themselves in a manner similar to Diffie–Hellman
key exchange. Figure 2 shows the operation of the SRP-6a protocol between client C and
server S. Additionally, Table 1 shows the notation used in this section and Sections 4 and 5.

Sensors 2022, 22, 9103 8 of 30

In SRP, all computations are performed in a finite Galois Field GF(p) defined by a large
prime p and a base element g that generates a large multiplicative subgroup of order q. The
prime number p must be large enough so that computing discrete logarithms modulo p
is infeasible. In addition, all computations are performed modulo p. This means that gx

should be read as gx mod p.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 30

sessions without actual exchange of a password or any other information that can be

derived from the password. Furthermore, being an augmented PAKE protocol, the server

does not store any password-equivalent data. Therefore, the SRP protocol allows a client

and a server to authenticate each other without transmitting a password or trusting a third

party.

The main goal of SRP is to establish a key agreement between two parties in a

client/server model to authenticate themselves in a manner similar to Diffie–Hellman key

exchange. Figure 2 shows the operation of the SRP-6a protocol between client C and server

�. Additionally, Table 1 shows the notation used in this section and Sections 4 and 5. In

SRP, all computations are performed in a finite Galois Field ��(�) defined by a large

prime � and a base element � that generates a large multiplicative subgroup of order �.

The prime number � must be large enough so that computing discrete logarithms

modulo � is infeasible. In addition, all computations are performed modulo � . This

means that �� should be read as �� ��� �.

Figure 2. The secure remote password protocol SRP-6a.

The SRP protocol consists of three phases: registration phase, login phase, and

authentication phase. In the registration phase, the user of a client C must register their

password with the server �. The user freely chooses their identity �� and a password

��. Then, C generates a random password ���� and computes a verifier � and a secret

exponent �, as shown in Figure 2. Then, C sends �, �� , and ���� to � through a pre-

established secure channel. � stores � and ���� in its database indexed by ��.
In the login phase, the user tries to login into � over an insecure channel. C generates

a random number � ∈ [1, �) and computes the ephemeral public key � = �� . Then, C

sends �� and � to �. Upon receiving the message, using the client’s ��, � retrieves the

corresponding salt and the verifier �. Then, it generates a random number � ∈ [1, �) and

computes the ephemeral public key � = � · � + ��. Next, it sends back B and salt to �.

Client C Server S

Choose �� and ��
Random ����
� = H(����|����|��)
� = ��

(�|����|����)

Random � ∈ [1, �)

� = ��

(�||��)

� = H(����|����|��)
� = H(�||�)
�� = H((� − � · ��)�+�·�)
�1 = H(�|| �||��||����||�||�||��)

Verify �2

Random � ∈ [1, �)

� = (� · � + ��)
(�||����)

��

� = H(�|| �)
�� = H((� · ��)�)
Verify �1
�2 = H(�||�1||��)
 ��

Figure 2. The secure remote password protocol SRP-6a.

Table 1. Notations.

Notation Description

p Large prime number
g Primitive root modulo p (generator)

H(·) One-way hash function
PWC Password of client C
KY Session key of entity Y

KXY Session key shared between X and Y
a, b High-entropy random numbers
|| Concatenation operation
TSi Timestamp number i
LTi Lifetime number i
Ni Nonce number i
⊕ Bitwise XOR operation
↔ Secure channel
→ Common channel

IDC ID of entity C
E(K, [M]) Symmetric encryption of M with the key K

The SRP protocol consists of three phases: registration phase, login phase, and authen-
tication phase. In the registration phase, the user of a client C must register their password
with the server S. The user freely chooses their identity ID and a password PW. Then,
C generates a random password salt and computes a verifier v and a secret exponent x,

Sensors 2022, 22, 9103 9 of 30

as shown in Figure 2. Then, C sends v, ID, and salt to S through a pre-established secure
channel. S stores v and salt in its database indexed by ID.

In the login phase, the user tries to login into S over an insecure channel. C generates
a random number a ∈ [1, q) and computes the ephemeral public key A = ga. Then, C
sends ID and A to S. Upon receiving the message, using the client’s ID, S retrieves the
corresponding salt and the verifier v. Then, it generates a random number b ∈ [1, q) and
computes the ephemeral public key B = k·v + gb. Next, it sends back B and salt to C. Upon
receiving the message, C computes x, u, Kc, and V1, as shown in Figure 2. u is a parameter
that two parties can compute using the public outputs: A and B. Kc is the client key that is
simplified as:

Kc = H
(
(B− k·gx)a+u·x

)
= H

((
k·v + gb − k·gx

)a+u·x
)
= H

(
gb(a+u·x)

)
Additionally, S can compute their session key KS as:

KS = H
(
(A·vu)b

)
= H

(
(ga·gx·u)b

)
= H

(
gb(a+u·x)

)
Thus, at the end of the second phase, the client and server establish a common session

key KSC = KS = Kc.
In the last phase, the authentication phase, the two parties prove to each other that

their keys are identical using two verification massages, V1 and V2. First, C computes V1
and sends it to S, as shown in Figure 2. S receives V1 and computes V1∗ as:

V1∗ = H(p||g||ID||salt||A||B|| KS)

S checks if V1 = V1∗. If so, this means that Ks = Kc. Consequently, S computes V2 and
sends it to C, as shown in Figure 2. After receiving V2, C computes V2∗ = H(A||V1||KC).
If V2 and V2∗ match, the session key is verified and S and C authenticate each other. If the
verification of V1 or V2 fails, either C or S terminates the authentication process.

4. Security Analysis of SRP

The SRP-6a protocol does not have a proof model for security. Recently, a formal
analysis of SRP was introduced in [63]. The authors analyzed SRP-3 using a cryptographic
protocol shape analyzer (CPSA). They found that the structure of the protocol did not have
any major weaknesses such as leakage of secret keys. In addition, they indicated that SRP
could not resist malicious server attacks if the verifier v and the random number b were
revealed (not only v). However, they did not explain how to perform this attack. In this
section, we analyze SRP-6a informally. We found that it is vulnerable to offline password
guessing, Denning–Sacco, and stolen-verifier attacks, as explained below in detail.

4.1. Offline Password Guessing Attack

In remote user authentication schemes, the user is allowed to choose their password.
The user tends to choose a password that can be easily remembered for their convenience.
Therefore, most passwords have low entropy so they are vulnerable to password guessing
attacks. In this attack, an attacker intercepts authentication messages and stores them locally.
Then, they attempt to use a guessed password to verify the correctness of their guess using
these authentication messages. The SRP protocol is vulnerable to an offline password
guessing attack. An attacker can perform this attack for SRP-6a, shown in Figure 2, as
follows:

1. Assuming that the attacker masquerades as a fake server and persuades C to make an
authentication attempt.

2. C computes the ephemeral public key A and sends it with its ID to the attacker.
3. To capture salt of C, the attacker starts an authentication session with the actual server

S by sending A and ID, received from C, to S.

Sensors 2022, 22, 9103 10 of 30

4. S computes B and sends it to the attacker with the salt of client C.
5. The attacker generates a random number b, guesses any password PW∗, and computes

their own parameter x∗ = H(salt||ID||PW∗) and exponential residue B∗ = k·gx∗ + gb.
Then, they send B∗ and salt to the client C.

6. The client C computes the message V1 = H(p||g||ID||salt||A||B∗||Kc) and sends it to

the attacker, where Kc = H
(
(B∗ − K·gx)a+u∗ ·x

)
and u∗ = H(A||B∗).

7. The attacker imitates network failure or informs C that the password is not correct.
8. The long-term private password PW can be guessed by performing the following

offline password guessing attack:

(i) The attacker computes x∗ = H(salt||ID||PW∗), B∗ = k·gx∗ + gb, u∗ = H(A||B∗),
and v = gx∗ .

(ii) The attacker computes a modified server key as K∗S = H
((

A·vu∗
)b
)

=((
A·gx∗ ·u∗

)b
)

.

(iii) The attacker computes a modified message V∗1 =
(

p||g||ID||salt||A||B∗||K∗S
)

and checks if V1 = V∗1 .
(iv) If it holds, the attacker has guessed the correct secret password PW∗ = PW.
(v) If it is not correct, the attacker chooses another password from a dictionary

and repeatedly performs the above verification process starting from step i.

Compromising the user’s secret password PW enables the attacker to impersonate the
client or the server.

4.2. Stolen-Verifier Attack

In most existing password-based authentication schemes, servers are always the prime
targets of adversaries because the users’ verifiers (e.g., passwords) are stored in the server’s
database. In a stolen-verifier attack [64], an adversary who steals a password verifier from
the server can use it to impersonate a legitimate user. In fact, an adversary who obtains a
password verifier may further mount a password guessing attack.

In the SRP protocol, if the password verifier v, ID and salt of a user stored in the
server have been eavesdropped, the attacker can use v to masquerade as the original server
S and can obtain sensitive user information. Additionally, they can easily perform offline
password guessing attacks to extract the user’s password, which is used to impersonate
the client. An offline password guessing attack can be performed as follows:

1. The attacker chooses a secret password PW∗ from the password dictionary.
2. The attacker computes x∗ = H(salt||ID||PW∗) and v∗ = gx∗ and checks if v∗ = v.
3. If it holds, the attacker has guessed the correct secret password PW∗ = PW.
4. If it is not correct, the attacker chooses another password from the password dictionary

and repeatedly performs the above verification process.

Compromising the user’s secret password PW enables the attacker to impersonate the
client or the server. In addition, using the stolen password verifier v of client C, the attacker
executes the server spoofing attack as follows:

1. An active adversary AD may eavesdrop the communication flows between C and S
or persuade C to make an authentication attempt with his server.

2. When legal client C wants to login into server S, they send the request message
(A||ID) to AD.

3. AD generates a random number b and computes the ephemeral public key B = k·v + gb

using the stolen-verifier v for C.
4. AD sends B along with salt to C.
5. C computes his key Kc = ga·b+b·u·x and the verification message V1, as explained in

Section 3.2. Then, C sends V1 to AD.

Sensors 2022, 22, 9103 11 of 30

6. Upon receiving V1 from C, AD computes u = H(A||B) and the verification message

V2 = H(A||V1||KA), where KA = H
(
(A·vu)b

)
= ga·b+b·u·x = Kc, and sends it back

to C as evidence that they have the correct session key.
7. C verifies V2 as explained in Section 3.2. Because KA = Kc, C accepts V2 and trusts

AD as a server. Therefore, AD can obtain the client’s personal information.

As explained above, using the stolen user’s password verifier, the adversary can
impersonate the legal server and can easily find the user’s secret password PW using
a password dictionary attack. Therefore, the SRP-6a protocol is insecure against stolen-
verifier attacks.

4.3. Denning–Sacco Attack

The Denning–Sacco attack [41] occurs when an intruder obtains the session key from
an eavesdropped session and uses it either to gain the ability to impersonate the user
directly or to conduct a brute-force search against a long-term private key, such as the
user’s password. This attack arises from the fact that compromising a fresh session key
using an old key enables the protocol to be compromised.

In the SRP protocol, if the attacker can leak the session key KC from the client C, the
following Denning–Sacco attack is possible:

1. Assume the attacker intercepts the request message (A||ID) sent by C to S.
2. To capture salt, the attacker starts an authentication session with the actual server S

by forwarding parameters A and ID to S. S computes B and sends it to the attacker
with the salt of client C.

3. The attacker can masquerade as a fake server, randomly generate a number b, guess
any password PW∗, and compute his own parameters x∗ = H(salt, ID, PW∗) and
B∗ = k·gx∗ + gb. Then, they send B∗ and salt to C.

4. C computes the message V1 = H(p, g, ID, slat, A, B∗, KC) and sends it to the at-

tacker, where KC = H
(
(B∗ − K·gx)a+u∗ ·x

)
and u∗ = H(A, B∗).

5. Assuming that the attacker somehow obtained the shared session key KSC from the
client, password PW can be obtained by performing the following offline password
guessing attack:

(i) The attacker makes a guess for the secret password PW∗ from a password
dictionary.

(ii) The attacker computes x∗ = H(salt, ID, PW∗), u∗ = H(A, B∗) and K∗S =

H
((

A·gx∗ ·u∗
)b
)

and checks if KSC = K∗S.

(iii) If it holds, the attacker has guessed the correct secret password PW∗ = PW.
Otherwise, the attacker repeatedly performs the verification process.

Finally, the attacker can obtain the user’s secret password, which can be used to
impersonate the client or the server.

5. Secure SIP

To secure SIP, this work introduces a new scheme, called secure-SIP (S-SIP). S-SIP con-
sists of two protocols: the SIP authentication protocol (A-SIP) and the key management and
protection protocol (KP-SIP). S-SIP provides SIP with essential security services to protect
SIP messages against many attacks, which are authentication, integrity, confidentiality, and
key management. The authentication service is provided to SIP using the A-SIP protocol,
whereas the integrity, confidentiality, and key management services are provided using the
KP-SIP protocol. The A-SIP protocol is an authentication protocol that provides mutual
authentication for all entities in the VoIP system. KP-SIP is used to exchange session keys
and authentication tickets between entities and to secure SIP signal messages exchanged
between entities. The following explains these two protocols in detail.

Sensors 2022, 22, 9103 12 of 30

5.1. A-SIP Protocol

The A-SIP protocol is a novel mutual authentication scheme for the session initiation
protocol. It is a client/server protocol based on the SRP protocol. However, it overcomes
the flaws in the SRP protocol explained in Section 4. The A-SIP protocol is responsible
for authenticating entities before the actual communication takes place between them.
Figure 3 shows the proposed authentication protocol A-SIP. The used notations are listed
in Table 1. The A-SIP protocol uses a four-way challenge/response handshake technique to
provide mutual authentication. It consists of four phases: the setup phase, the login phase,
the authentication phase and the registration phase. This section explains these phases
in detail.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 30

protect SIP messages against many attacks, which are authentication, integrity,

confidentiality, and key management. The authentication service is provided to SIP using

the A-SIP protocol, whereas the integrity, confidentiality, and key management services

are provided using the KP-SIP protocol. The A-SIP protocol is an authentication protocol

that provides mutual authentication for all entities in the VoIP system. KP-SIP is used to

exchange session keys and authentication tickets between entities and to secure SIP signal

messages exchanged between entities. The following explains these two protocols in

detail.

5.1. A-SIP Protocol

The A-SIP protocol is a novel mutual authentication scheme for the session initiation

protocol. It is a client/server protocol based on the SRP protocol. However, it overcomes

the flaws in the SRP protocol explained in Section 4. The A-SIP protocol is responsible for

authenticating entities before the actual communication takes place between them. Figure

3 shows the proposed authentication protocol A-SIP. The used notations are listed in Table

1. The A-SIP protocol uses a four-way challenge/response handshake technique to provide

mutual authentication. It consists of four phases: the setup phase, the login phase, the

authentication phase and the registration phase. This section explains these phases in

detail.

Figure 3. A-SIP protocol.

(1) Setup Phase

In this phase, the user is registered to the remote server � as a legal user by executing

the following steps over a secure channel.

Figure 3. A-SIP protocol.

(1) Setup Phase

In this phase, the user is registered to the remote server S as a legal user by executing
the following steps over a secure channel.

1. The user of a client C freely chooses their identity IDC and password PWC. Then, C
selects a random password saltC and then computes a verifier v and a secret exponent
x as:

x = H(saltC||IDC||PWC)
v = gx

2. C establishes a secure connection with S and sends v, IDC, and saltC to S.
3. Upon receiving the message M1 = (v||saltC||IDC), S computes the password verifier

PWV as PWV = v⊕H(IDC||SP), where SP is the private secret for the server, which is
a random bit-string with high entropy. Finally, S stores PWV and saltC in its database
indexed by IDC.

(2) Login Phase

Sensors 2022, 22, 9103 13 of 30

In the login phase, the user tries to login into the proxy server S to access different
services over an insecure channel. As shown in Figure 3, the steps in this phase (messages
M2 and M3) are executed as follows:

1. C generates two random numbers a1 and a2 from the range [1, q). Additionally, it
computes two ephemeral public keys A1 = ga1 and A2 = ga2 .

2. C sends the request message M2 = (A1||A2||IDC) to the proxy server.
3. When S receives M2, it uses IDC to retrieve saltC and PWV . Using SP, S computes

H(IDC||SP), which is XORed with PWV to obtain v. Then, it generates a random
number b ∈ [1, q) and computes the ephemeral public key B1 = gb and private key
w = H

(
vb||A1||A2

∣∣∣∣∣∣saltC

)
. If S does not have credentials of C, it securely communi-

cates with the authentication/registrar server to get them.
4. S computes the second ephemeral public key B2 and the first challenge Ch1 as:

B2 = (A1·A2·v)b·w

Ch1 = H(w||B1||B2) (1)

5. S sends the message M3 = (B1||B2||Ch1||saltC) to C.

(3) Authentication Phase

In the authentication phase, based on pre-shared parameters in the preceding phases,
S and C verify the identity of each other. If they succeed, they generate and share a
unique session key. Figure 3 shows the authentication phase between C and S (messages
M4 and M5). The authentication procedure is performed on a common channel in the
following steps:

1. Upon receiving the message M3, C computes x and w as:

x = H(saltC||IDC||PWC)

w = H
(

Bx
1 ||A1||A2

∣∣∣∣saltC
)
= H

(
gx·b||A1||A2

∣∣∣∣∣∣saltC

)
= H

(
vb||A1||A2

∣∣∣∣∣∣saltC

)
Then, it computes the first challenge Ch1 using Equation (1).

2. C checks that the received challenge Ch1 is equal to the computed challenge. If not
true, C terminates the session with S and does not complete the authentication process.
Otherwise, C starts to compute the second challenge.

3. C computes the public key A, the session key KC, and the second challenge Ch2 as:

A = (A1·B1·v)a2·w

KC =

(
B2

Ba2 ·w
1

)a2

=

(
(A1·A2·v)b·w

Ba2 ·w
1

)a2

=

(
(A1·ga2 ·v)b·w

gb·a2 ·w

)a2

=

= (A1·v)a2·b·w = g(a1+x)a2·b·w (2)

Ch2 = H(H(p||g||saltC)⊕ H(IDC||B1)⊕ H(A||B2||w))

4. C generates a nonce N1, which is a random number that is difficult for an opponent
to guess and represents a unique identifier for this transaction. C encrypts N1 and
Ch2 using KC to construct the first authenticator Auth-C1 = E(KC, [Ch2||N1]) that
represents the client authenticator. The subsequent message (response) received from
S must contain the hash of the nonce N1.

5. C sends the challenge message M4 = (Auth-C1||A) to S
6. When S receives the message, it computes its session key KS as:

KS =

(
A

Ab·w
2

)b

=

(
(A1·B1·v)a2·w

Ab·w
2

)b

=

(

A1·gb·v
)a2·w

ga2·b·w

b

Sensors 2022, 22, 9103 14 of 30

= (A1·v)a2·b·w = g(a1+x)a2·b·w (3)

From Equations (2) and (3), it is clear that KS = KC = KSC, where KSC is the shared
session key between S and C. Next, S decrypts Auth-C1 using KS to extract Ch2 and N1.
Then, it computes the second challenge Ch2∗.

7. S compares the second challenge Ch2 extracted from Auth-C1 and the computed
challenge Ch2∗. If Ch2 6= Ch2∗, S aborts the session with C. Otherwise, S computes
the third challenge Ch3 = H(H(A||B2)⊕ H(Ch2||saltC))

8. S encrypts Ch3 and H(N1) using session KS to construct the server authenticator as:

Auth-C2 = E(KS, [Ch3||H(N1)])

9. After receiving the message M5 = Auth-C2, C decrypts the message using KC to
extract Ch3. Next, it verifies Ch3 and H(N1). If not correct, C terminates the sessions.
Otherwise, C assures that the message has been sent by S and the authentication is
successful. Using the nonce N1 assures C that this is a response for a fresh message
and helps prevent a replay attack.

(4) Registration Phase

This is the last phase in the A-SIP protocol. In this phase, the client registers its URI
address with the Proxy/Registrar SIP server at which the user can be reached. As explained
in Section 3, registration with a local server is essential to receive or make an SIP call. The
steps of this phase (messages M6 and M7) are as follows:

1. At the end of the authentication phase, C forms the S-Register message as

S-Register = E
(

KSC,
[

Register
∣∣∣∣∣∣H2(N1)

])
where Register is the standard SIP registration message and H2(N1) = H(H(N1)).

2. On receipt of the S-Register message, S decrypts the message to obtain the Register
message and checks H2(N1). The SIP server processes the Register message to register
the URI of the client C (URIc).

3. S sends the S-OK message to C, which is computed as:

S-OK = E
(
KSC,

[
OK
∣∣∣∣H3(N1)

∣∣∣∣TKTCS
])

TKTCS = E(KP, [URIC||IPS||TS1||LT1])

where OK is the standard SIP OK message, H3(N1) = H
(

H2(N1)
)
, and TKTCS is a

ticket that C uses for subsequent authentications to obtain VoIP services from S. This
is explained in detail in the next section.

4. When receiving the S-OK message from S, C decrypts it using the session key and
checks H3(N1). If correct, C accepts the authentication ticket TKTCS.

The ticket TKTCS contains the registered address of the client URIC and the network
address of the proxy server IPS. To prevent the adversary from reusing the ticket, it includes
a timestamp TS1, indicating the date and time at which the ticket was issued, and a lifetime
LT1, indicating the length of time for which the ticket is valid. In addition, the ticket is
encrypted using the private key of the server KP. Thus, it cannot be modified by C or by
an opponent. The ticket helps minimize the number of times that a user has to enter a
password. The ticket is reused for a single login session. For the lifetime of the ticket, C
can use the ticket for multiple accesses to the same proxy server, as explained in the next
section. If C moved to another region managed by another SIP server, it must register to
the new SIP server to obtain a new authentication ticket.

Sensors 2022, 22, 9103 15 of 30

5.2. KP-SIP Protocol

The KP-SIP protocol is used for key management between entities, and for protecting
SIP messages exchanged between different entities. Figure 4 explains the session example
using KP-SIP when a single proxy is involved. Tables 2 and 3 show the details of the
exchanged messages shown in Figure 4. The KP-SIP protocol is divided into two phases:
the call initiation phase (messages M1 to M10) and the call teardown phase (messages M11
and M12). Next, these phases are explained.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 30

includes a timestamp ���, indicating the date and time at which the ticket was issued,

and a lifetime ���, indicating the length of time for which the ticket is valid. In addition,

the ticket is encrypted using the private key of the server ��. Thus, it cannot be modified

by C or by an opponent. The ticket helps minimize the number of times that a user has to

enter a password. The ticket is reused for a single login session. For the lifetime of the

ticket, C can use the ticket for multiple accesses to the same proxy server, as explained in

the next section. If C moved to another region managed by another SIP server, it must

register to the new SIP server to obtain a new authentication ticket.

5.2. KP-SIP Protocol

The KP-SIP protocol is used for key management between entities, and for protecting

SIP messages exchanged between different entities. Figure 4 explains the session example

using KP-SIP when a single proxy is involved. Tables 2 and 3 show the details of the

exchanged messages shown in Figure 4. The KP-SIP protocol is divided into two phases:

the call initiation phase (messages M1 to M10) and the call teardown phase (messages M11

and M12). Next, these phases are explained.

(1) Call Initiation Phase

Let user agent C attempt to call user agent D, where C and D are registered with

proxy server S. Figure 4 shows the call flow. C initiates the session by sending the

S-INVITE� message to the proxy server. As shown in Table 2, S-INVITE� contains the

standard SIP invite message INVITE� and the ticket obtained from the proxy server in the

registration phase, the authenticator ���ℎ-�3, the timestamp and the message lifetime.

The message S-INVITE� is encrypted using the last shared session key ��� with S. The

authenticator ���ℎ-�3 includes the URI of C, the network address ��� of S, and the nonce

�2.

Figure 4. KP-SIP protocol.

After receiving the S-INVITE� message, S decrypts it using the last shared session

key with C. Then, it checks ��� and ��� to ensure that the lifetime of the message has not

expired. Then, it decrypts the ticket using its private key and verifies its validity using the

timestamp and the lifetime included in the ticket. In addition, it compares ���� and ���

Figure 4. KP-SIP protocol.

Table 2. Messages M1 to M7 of the KP-SIP protocol.

(M1) S-INVITEC = E(KSC, [INVITEc||Auth-C3||TKTCS|| TS2||LT2])
Auth-C3 = (URIC||IPS||N2)
(M2) S-INVITED = E(KSD, [INVITED||N3||TS3||LT3])
(M3) S-TRYINGC = E(KSC, [TRYINGC||H(N2)])
(M4) S-RINGINGD = E(KSD, [RINGINGD||H(N3)])
(M5) S-RINGINGC = E

(
KSC,

[
RINGINGC

∣∣∣∣H2(N2)
])

(M6) S-OKD = E
(
KSD,

[
OKD

∣∣∣∣H2(N3)
])

(M7) S-OKC = E
(
KSC,

[
OKC

∣∣∣∣H3(N2)
])

Table 3. Messages M8 to M12 of the KP-SIP protocol.

(M8) Auth-CD2 = E(KSC, [KCD1||URIC||URID||IPS||H4(N2)||N4||TS4
∣∣∣∣LT4])

(M9) Auth-CD1 = E(KSD, [KCD1||URID||URIC||IPS||H3(N3)||N4||TS5
∣∣∣∣LT5])

(M10) S-ACKC = E(KCD1, [ACK||KCD2||H(N4)])
(M11) S-BYE =

(
KCD2,

[
BYE

∣∣∣∣H2(N4)||TS6||LT6
])

(M12) S-OK =
(
KCD2,

[
OK
∣∣∣∣H3(N4)

])
(1) Call Initiation Phase

Let user agent C attempt to call user agent D, where C and D are registered with proxy
server S. Figure 4 shows the call flow. C initiates the session by sending the S-INVITEC
message to the proxy server. As shown in Table 2, S-INVITEC contains the standard SIP
invite message INVITEC and the ticket obtained from the proxy server in the registration
phase, the authenticator Auth-C3, the timestamp and the message lifetime. The message

Sensors 2022, 22, 9103 16 of 30

S-INVITEC is encrypted using the last shared session key KSC with S. The authenticator
Auth-C3 includes the URI of C, the network address IPs of S, and the nonce N2.

After receiving the S-INVITEC message, S decrypts it using the last shared session
key with C. Then, it checks TS2 and LT2 to ensure that the lifetime of the message has not
expired. Then, it decrypts the ticket using its private key and verifies its validity using the
timestamp and the lifetime included in the ticket. In addition, it compares URIC and IPS
included in authenticator Auth-C3 with those included in the ticket. If the ticket is valid,
IPS is correct, and URIC is correct and matches the registered URI of C, S authenticates
C and processes the SIP INVITE message. To prevent a replay attack, the S-INVITEC
message has a very short lifetime compared to the ticket lifetime. Additionally, to prevent
an opponent from replaying ticket TKTCS, it is encrypted with the S-INVITEC message
using the session key.

The server sends the S-INVITED message to D, encrypted by the session key KSD
shared between S and D. The S-INVITED message contains its lifetime LT3, timestamp TS3,
and nonce N3 to avoid a replay attack.

The server sends the S-TRYINGC message to C that contains the standard SIP TRYING
message and H(N2), which are encrypted using the session key KSC. S returns the hash of
N2 received in M1 to C to show the freshness of the reply. Every time C sends S-INVITEC,
it starts a timer. If C receives S-TRYINGC before the timer expires, the timer is stopped, and
the sender sends the next message. If the timer expires or N2 is not correct, C terminates
the session and initiates another session by sending the S-INVITEC message.

As shown in Figure 4 and Table 2, messages M4 to M7 consist of the standard SIP
RINGING or OK messages and the hash of the last received nonce

(
H j(N) = H j−1(N)) .

These messages are encrypted using the session keys shared between each user agent and
the proxy server to protect them from alteration or spoofing. Additionally, the nonce is
used to assure that the messages are fresh and have not been replayed by an adversary. D
sends the message S-OKD if it accepts the call. S forwards the SIP OK message to C using
the S-OKC message.

For mutual authentication between C and D, the server sends the authenticators
Auth-CD1 and Auth-CD2, as shown in Figure 4. For message integrity and mutual authen-
tication, the contents of Auth-CD1 and Auth-CD2 are encrypted using the shared session
key between each user agent and the server, as shown in Table 3. Auth-CD1 and Auth-CD2
contain a copy of the session key KCD1, which is used for protecting messages exchanged
directly between C and D. Additionally, they have several pieces of information: URI of C,
the network address of the server IPS, the hash of the last nonce exchanged with the server,
the nonce N4, the timestamp, and the lifetime of the message. As explained above, these
pieces are included to prevent spoofing and replaying attacks.

At the end of the call initiation phase, C sends the S-ACKC message to D. The contents
of this message are encrypted using the shared session key KCD1 sent by S in the authenti-
cators Auth-CD1 and Auth-CD2 in messages M8 and M9. The S-ACKC message contains
the standard SIP ACK message, the hash of N4 proposed by S in the authenticators. Addi-
tionally, it contains a new random session key KCD2 suggested by C. Encrypting the content
of the S-ACKC message using KCD1 and exchanging N4 assures mutual authentication and
prevents a replay attack. After receiving S-ACKC, D can extract and process the standard
SIP ACK message to start a media session with C. Protecting media streams is out of the
scope of the proposed work.

(2) Teardown Phase

In this phase, one of the user agents ends the SIP session by sending the S-BYE
message. The other user agent responds with the S-OK message. These messages include
the standard SIP BYE and OK messages. Additionally, to prevent a replay attack, the S-BYE
message includes the hash of the nonce received in the messages M10, the timestamp, and
the lifetime. The contents of these messages are encrypted using the last session key KCD2
shared between C and D.

Sensors 2022, 22, 9103 17 of 30

If the record-route option is enabled, the BYE and OK messages are routed through
proxy servers, as explained in Section 3. In this case, the BYE and OK messages are
encrypted using the session key exchanged between the user agents and the server (KSC
and KSD). If the messages exchanged between UA1 and UA2 are routed through multiple
SIP servers, as shown in Figure 5, we suppose that the connections between SIP servers are
protected using symmetric or asymmetric cryptography algorithms. In addition, routing
messages through servers owned by different telecoms/providers is out of scope this work.
KP-SIP can be extended to protect connections between different SIP servers.

Sensors 2022, 22, x FOR PEER REVIEW 17 of 30

authenticators Auth-CD1 and Auth-CD2 in messages M8 and M9. The S-ACK� message

contains the standard SIP ACK message, the hash of �4 proposed by S in the

authenticators. Additionally, it contains a new random session key ���� suggested by C.

Encrypting the content of the S-ACK� message using ���� and exchanging �4 assures

mutual authentication and prevents a replay attack. After receiving S-ACK� , D can

extract and process the standard SIP ACK message to start a media session with C.

Protecting media streams is out of the scope of the proposed work.

(2) Teardown Phase

In this phase, one of the user agents ends the SIP session by sending the S-BYE

message. The other user agent responds with the S-OK message. These messages include

the standard SIP BYE and OK messages. Additionally, to prevent a replay attack, the

S-BYE message includes the hash of the nonce received in the messages M10, the

timestamp, and the lifetime. The contents of these messages are encrypted using the last

session key ���� shared between C and D.

If the record-route option is enabled, the BYE and OK messages are routed through

proxy servers, as explained in Section 3. In this case, the BYE and OK messages are

encrypted using the session key exchanged between the user agents and the server

(��� and ���). If the messages exchanged between UA1 and UA2 are routed through

multiple SIP servers, as shown in Figure 5, we suppose that the connections between SIP

servers are protected using symmetric or asymmetric cryptography algorithms. In

addition, routing messages through servers owned by different telecoms/providers is out

of scope this work. KP-SIP can be extended to protect connections between different SIP

servers.

Figure 5. KP-SIP protocol with two proxy servers.

6. Informal Security Analysis

In this section, we prove that the proposed protocol S-SIP is secure and can withstand

various attacks and provide security requirements for SIP as follows. Similar to related

studies, we assume that the adversary/attacker �� can insert, capture, delete, or modify

any messages in the public insecure channel.

Media Session (RTP/SRTP)

UA C
Proxy
Server

S1
UA D

�

�

�

�

�

�
�

�

�

�

�

Proxy
Server

S2

SIP
Server

S3

Figure 5. KP-SIP protocol with two proxy servers.

6. Informal Security Analysis

In this section, we prove that the proposed protocol S-SIP is secure and can withstand
various attacks and provide security requirements for SIP as follows. Similar to related
studies, we assume that the adversary/attacker AD can insert, capture, delete, or modify
any messages in the public insecure channel.

6.1. Offline Password Guessing Attack

As explained in Section 4, to perform an offline password guessing attack, an active
adversary AD eavesdrops the communication flows between C and S and masquerades
as a fake server or client. AD tries to modify and intercept any message that can be
exploited to perform the attack. Then, the adversary goes offline and uses a dictionary to
test passwords against the intercepted messages. If AD tries to impersonate the server, the
attack is performed as follows:

1. During the authentication process, AD intercepts the request message M2 =
(A1||A2||IDC) sent by C to login to S.

2. The attacker forwards M2 to S to obtain saltC. Then, they generate a random number
b, guesses any password PW∗, and computes their own parameter as:

x∗ = H
(
salt∗C||IDC||PW∗

)
w∗ = H

(
gx∗ ·b||A1||A2

∣∣∣∣∣∣saltC

)
B∗2 =

(
A1·A2·gx∗

)b·w∗

Ch1∗ = H(w∗||B1||B∗2)

Sensors 2022, 22, 9103 18 of 30

Then, they send M3 = (B1||B∗2 ||Ch1∗||saltC) to C

3. Upon receiving M3, C computes x, w, and Ch1. Next it compares the received
challenge Ch1∗ and the computed challenge Ch1. If the guessed passwords PW∗ are
not correct, C detects that Ch1∗ 6= Ch1. Therefore, C terminates the connection with
the fake server.

As shown in the former steps, AD did not receive any message that can be used to
check the correctness of the guessed parameters. Therefore, AD cannot perform an offline
password guessing attack.

If AD tries to impersonate the client with user identity IDC, the attack is performed as
follows:

1. AD randomly generates a1 and a2 and calculates public keys A1 and A2 and then
transmits them to S with user identity IDC.

2. S randomly generates a random number b, calculates public keys B1 and B2, the secret
parameter w, and the challenge Ch1. Next, it sends B1, B2, saltC, and Ch1 to AD.

3. AD guesses any password PW∗ and computes other parameters:

x∗ = H(saltC||IDC||PW∗)
w∗ = H

(
Bx∗

1 ||A1||A2

∣∣∣∣∣∣saltC

)
A∗ =

(
A1·B1·gx∗

)a2·w∗

K∗c =
(

B2/Ba2·w∗
1

)a2

Ch2∗ = H(H(p||g||saltc)⊕ H(IDC||B1)⊕ H(A∗||B2||w∗))
Auth-C1∗ = E(K∗c , [Ch2||N1])

Then, AD sends the message M4 = (Auth-C1∗||A∗) to S.

4. Upon receiving M4, S encrypts the message using its key Ks =
(

A∗/Ab·w
2

)b
. If the

guessed password and secret key are wrong, S detects that Auth-C1∗ 6= Auth-C1.
Therefore, S does not respond to AD and terminates the session.

As clear in this attack, AD did not obtain any response message from the server that
can be used to perform an offline password guessing attack. As a result, impersonation
as a legal client or server does not enable the attacker to perform an offline password
guessing attack. Therefore, the proposed authentication protocol is not vulnerable to offline
password guessing attacks.

6.2. Denning–Sacco Attack

As explained in Section 4, a Denning–Sacco attack refers to obtaining a long-term
key such as the user’s password or the session key through an obtained old session key.
The attacker tries to guess either the user’s password or the session key using an old,
compromised session key. In the proposed protocol, as shown in Equations (2) and (3), the
session key is computed as

KC = KS =
(

B2/Ba2·w
1

)a2 =
(

A/Ab·w
2

)b

where w = H
(

Bx
1 ||ga1 ||ga2

∣∣∣∣saltC
)
. The random numbers a1, a2, and b are changed for

every session. Therefore, if a passive eavesdropper acquires an old session key, they are
not able to compute the server’s or client’s session key. In addition, the attacker cannot
perform offline password guessing attacks using the old session key due to the difficulty of
the computational Diffie–Hellman problem, which is computationally infeasible with large
random numbers.

Let the active eavesdropper AD acquire the session key KSC from the client. Let the
eavesdropper impersonate server S and perform a Denning–Sacco attack explained in
Section 4.3 as follows:

Sensors 2022, 22, 9103 19 of 30

1. During the authentication process, AD intercepts the request message M2 =
(A1||A2||IDC) sent from C to S. Then, they forward M2 to S to obtain saltC.

2. AD generates a random number b, guesses any password PW∗, and computes their
own parameter as:

x∗ = H(saltC, IDC, PW∗)
w∗ = H

(
gx∗ ·b||A1||A2

∣∣∣∣∣∣saltC

)
B∗2 =

(
A1·A2·gx∗

)b·w∗

Ch1∗ = H(w∗||B1||B∗2)

Then, they send M3 =
(

B∗1 ||B∗2 ||Ch1∗
)

to C.

3. To perform the brute-force attack using the compromised session key KSC, AD must

first compute the server session key as K∗S =
(

A/Ab·w∗
2

)b
. To compute K∗S, AD must

obtain A from C.
4. Upon receiving M3, C computes x, w, and Ch1. Next, it compares the received and

computed challenges (Ch1 and Ch1∗). If the guessed password PW∗ is not correct, C
detects that Ch1∗ 6= Ch1. Therefore, C terminates the connection with the server and
does not send the parameter A to AD.

In step 4, because the client closed the connection with AD, they could not obtain
A = (A1·B1·v)a2·w from C. AD cannot compute A or a2 using the public key A2 because
they have will face the difficulty of the discrete logarithm problem. Thus, the proposed
protocol is not vulnerable to Denning–Sacco attacks.

6.3. Stolen-Verifier Attack

As explained in Section 4, a stolen-verifier attack occurs when an adversary who steals
the password-verifier from the server impersonates a legitimate user in the authentication
process. Additionally, he may mount a guessing attack to retrieve the user’s password.

For the proposed protocol, the server stores ID and PWV = v ⊕ H(IDC||SP) for
each client in its database. Let an impersonator be the adversary who steals the password
verifier PWV and IDC of C from the database. Then, they try to perform an offline password
guessing attack. The adversary chooses a secret password PW∗ from a password dictionary.
Then, they compute x∗ = H(saltC, IDC, PW∗) and v∗ = gx∗ . Next, they try to guess the
private key of the server as S∗P to compute PW∗V = gx∗ ⊕H(IDC||S∗P). The process is
repeated if PW∗V 6= PWV . This attack is not feasible because SP has high entropy and
cannot be guessed. Therefore, AD cannot retrieve v or x from PWV . Thus, they cannot
compute the correct values for w∗ = H

(
gx∗ ·b||A1||A2

∣∣∣∣∣∣saltC

)
, B∗2 = (A1·A1·v∗)b·w∗ and

Ch1∗ = H(w∗||B1||B∗2). If AD sent an incorrect value of Ch1∗, C closes the connection
with AD. Therefore, the adversary cannot impersonate the server even if they have the
password verifier stored in the server. In addition, they cannot obtain any information
from the client to be exploited to perform an offline password guessing attack.

6.4. Perfect Forward Secrecy

Perfect forward secrecy means that if session keys of one or more entities are compro-
mised, the secrecy of old session keys established by the trusted entities are not affected.
It also means that a stolen session key does not help an attacker perform a password
guessing attack.

In the proposed protocol, as explained in Section 5, the session key KSC is computed
using random numbers (private keys) a1, a2, and b. These random numbers are changed
every session. Therefore, if KSC is compromised, adversary AD cannot obtain the session
keys of past sessions. In addition, as explained in Section 6.2, if the session key is com-
promised, the AD cannot perform offline password guessing attacks. Thus, the proposed
protocol has the properties of perfect forward secrecy.

Sensors 2022, 22, 9103 20 of 30

6.5. Impersonation Attack

In impersonation (spoofing) attacks, the adversary tries to masquerade as a legitimate
user or server. As explained in Section 6.1 in detail, for the proposed protocol, the adversary
cannot perform an offline password guessing attack because they are unable to impersonate
either the user or the server. The client or the server closes the connection with the other
party if one of the challenges, Ch1 or Ch2, or authenticators, Auth-C1 or Auth-C2, are not
valid. To impersonate the user, AD must obtain access to the user’s password. However, to
impersonate the server, AD must obtain access to the server’s secret SP. However, these
values are kept secret. Consequently, the attacker cannot impersonate the user or the
proxy server.

6.6. Replay Attack

A replay attack can be performed if the adversary replays any eavesdropped or
intercepted message to forge any legitimate participant. In the A-SIP protocol, the adversary
can replay the login request (M2) or replay (M3) to impersonate the user or the server.
However, as explained above, the adversary cannot generate authenticators, Auth-C1 or
Auth-C2, or the session key, KSC, as shown in Equations (2) and (3). This is because it is
not feasible to recover a1, a2, b, x, or v from A1, A2, A, B1, B2, and Ch1. Consequently, the
adversary fails to authenticate themselves to the client or the server by replaying the login
request. Therefore, a replay attack is not applicable for the A-SIP protocol. For the KP-SIP
protocol, this type of attack is not possible. This is because the identity of users is protected
by encrypting all messages using different session keys.

6.7. Session Teardown Attack

If the attacker discovers credential information from the INVITE message, they can
prepare a false BYE message to be sent to the proxy server or one of the user agents to
terminate the VoIP session. However, using the S-SIP protocol prevents this attack. User
agent C or D uses the session key (KCD2) generated during the authentication process to
encrypt the BYE message sent by the caller or callee user agents. Therefore, another party
(C or D) can verify the received message. The user agent decrypts the message using the
secured shared key KCD2. Then, checks N4. If correct, the client processes the BYE message
and terminates the session.

6.8. Registration Hijacking Attack

To perform this attack, the adversary must impersonate a valid user agent such as C.
The adversary sends an SIP registration message to the proxy server including the URI of
C. However, to do so, the adversary must be authenticated at the proxy server through the
authentication phase. Then, they encrypt the SIP registration message using the session key
and send it to the server. However, as explained in detail in Section 6.1, impersonation of a
valid user is not possible. Therefore, the adversary cannot authenticate themselves to the
proxy server and cannot obtain the session key. Thus, S-SIP is not vulnerable to registration
hijacking attacks.

6.9. Request Spoofing Attack

In this attack, the attacker sends a spoofed INVITE message to fool a legitimate
recipient who may believe that they are communicating with another known entity. With
the proposed solution, spoofing the S-INVITE message is not possible. Before transmitting
the INVITE message, any client must start the process of the mutual authentication phase. If
the authentication process fails, the client cannot obtain an authentication ticket or session
key. Therefore, because the client’s ticket and identity are encrypted using the shared
session key, the client cannot construct the S-INVITE message and cannot initiate an SIP call
using different identities. Thus, the proposed solution can resist a request spoofing attack.

Sensors 2022, 22, 9103 21 of 30

6.10. Message Tampering Attack

Message tampering attacks occur when an attacker intercepts and modifies packets
exchanged between SIP components. This attack is not available in the proposed solution.
As shown in Tables 2 and 3, the most sensitive information that the attacker needs to
perform this attack is protected by encryption using shared session keys between entities.

6.11. Man-In-The-Middle Attack

The MITM attack is one of the most serious threats to the security and trust of existing
VoIP protocols and systems. Using this attack, the attacker can easily wiretap, divert and
even hijack VoIP calls by tampering with VoIP signaling and/or media traffic. To execute
the MITM attack, the attacker masquerades as a client and an SIP server. However, as
explained in Section 6.5, the proposed solution prevents client or server impersonation
attacks. Thus, the proposed protocol is not vulnerable to MITM attacks.

6.12. Re-INVITE Attack

After a session is established between user agents, one of them can send a SIP Re-
INVITE message to modify the parameters of the session. Therefore, the attacker can
perform a DoS attack using the Re-INVITE messages by sending it to one of the user
agents. However, as explained above, the S-SIP protocol protects all SIP messages ex-
changed between user agents and prevents user impersonation attacks. Thus, it prevents
Re-INVITE attacks.

7. Formal Security Analysis

ProVerif [53] is a tool used for automatic verification of cryptographic protocols,
which is widely used to analyze the security of authentication and key agreement proto-
cols [49,65–68]. In this section, a simulation of the proposed protocols described in Section 5
is performed using ProVerif to illustrate its robustness and correctness under a formal and
automated threat model.

Based on the applied π calculus, ProVerif is used to verify key security requirements
such as authentication, secrecy, anonymity, and privacy. It can support modeling many
cryptographic primitives including one-way functions, encryption and decryption (sym-
metric and asymmetric), digital signatures, Diffie–Hellman key agreements and many more.
Moreover, ProVerif can simulate various attacks. A-SIP and KP-SIP protocols were verified
using ProVerif.

For the A-SIP protocol, the complete ProVerif model can be found in [69], and the
following explains the main parts of the model in detail, which are shown in Appendix A.
We initially defined two channels: a secure channel SCh that was used for secure com-
munication between the client and the server, and a public channel Ch that was used for
public/insecure communication between the client and the server. SCh was used in the
setup phase and Ch was used in the login, authentication, and registration phases. Then,
shared session keys, constants, variables, and types used in the proposed A-SIP protocol
were defined.

ProVerif defines cryptographic primitives as constructors, destructors and equations.
So, the needed constructors (functions) were defined, such as exp, xor, concat, sEnc, and
sDEC. Then, the required equations were defined to model the properties of exclusive-OR,
modular exponentiation, symmetric encryption, symmetric decryption, extract the first
concatenated values, and extract the second concatenated values. Next, four events (User-
Started, UserAuthed, ServerStarted, and ServerEnd) were defined to model the initiation
and termination of both client and server processes. The events were used to analyze the
security of the proposed protocol.

For A-SIP, we modeled all interactions between the client and the server using two
processes: one for the client (ProcessClient) and one for the server (ProcessServer). The
ProVerif script for A-SIP, which included these processes, can be found in [69]. To verify

Sensors 2022, 22, 9103 22 of 30

the model, the two participants could interact by establishing many sessions. Therefore,
these two processes were replicated for unbounded parallel executions as follows:

(∗ ======== \Main ======== ∗)}
process (!ProcessServer |!ProcessClient)

Finally, six queries were defined to verify the correctness of the proposed scheme and
session key secrecy. These six queries were applied in the main part.

(∗ ===== Queries ===== ∗)
query attacker(Kc).
query attacker(Ks).
query attacker(Ksc).
query attacker(Kp)
query id : bitstring; inj-event(UserAuthed(id)) ⇒ inj-event(UserStarted(id)).
query id : bitstring; inj-event(ServerEnd(id)) ⇒ inj-event(ServerStarted(id)).

ProVerif performed an unbounded number of executions for the model to verify the
authenticity and reachability. We executed the modeled processes in ProVerif 2.02. The
verification results are as follows:

1. Weak secret PWc is true.
2. Query not attacker(Kc[]) is true.
3. Query not attacker(Ks[]) is true.
4. Query not attacker(Ksc[]) is true.
5. Query not attacker(Kp[]) is true.
6. Query inj-event(UserAuthed(id)) ==> inj-event(UserStarted(id)) is true.
7. Query inj-event(ServerEnd(id)) ==> inj-event(ServerStarted(id)) is true.

When we defined the password as a weak secret, ProVerif tried to prove that the
attacker cannot distinguish a correct guess of the secret from an incorrect guess. Therefore,
result number 1 shows that the proposed scheme can suppress a password guessing attack.
The result numbers 2 to 5 verify that the session keys KC, KS, KSC, or KP were not revealed
to the adversary and that secrecy was maintained. The result numbers 6 and 7 show that
both ProcessClient and ProcessServer processes initiated and were completed successfully,
respectively, which illustrates the correctness of the proposed authentication protocol.

For the KP-SIP protocol, the complete ProVerif model can be found in [69]. In the
ProVerif script, seven queries were defined to verify the correctness of KP-SIP and the
session key secrecy. The seven queries were applied in the main part and are as follows:

(∗ ======== Queries ======== ∗)
query attacker(Ksc).
query attacker(Ksd).
query attacker(Kcd1).
query attacker(Kcd2).
query URIc : bitstring; inj-event(C_End(URIc)) ⇒ inj-event(C_End(URIc)).
query URId : bitstring; inj-event(C_End(URId)) ⇒ inj-event(C_End(URId)).
query id : bitstring; inj-event(ServerEnd(id)) ⇒ inj-event(ServerStarted(id)).

After performing an unbounded number execution for the model to verify the authen-
ticity and reachability, ProVerif showed the following verification results for the KP-SIP
model:

1. Query not attacker(Ksc[]) is true.
2. Query not attacker(Ksd[]) is true.
3. Query not attacker(Kcd1[]) is true.
4. Query not attacker(Kcd2[]) is true.

Sensors 2022, 22, 9103 23 of 30

5. Query inj-event(C_End(URIc_1)) ==> inj-event(C_End(URIc_1)) is true.
6. Query inj-event(C_End(URId_2)) ==> inj-event(C_End(URId_2)) is true.
7. Query inj-event(ServerEnd(id)) ==> inj-event(ServerStarted(id)) is true.

The result numbers 1 to 4 verify that the session keys KSC, KCD1, KSD, or KCD2 were
not revealed to the adversary and that secrecy was maintained. The result numbers 5 to 7
show that all processes for C, D and S initiated and were completed successfully, which
illustrates the correctness of the proposed protocol.

8. Performance Analysis
8.1. Performance Comparison

In this section, we compare the security features and performance of the proposed
scheme with other related schemes [39,41–43,45,48–51]. First, we compared the proposed
authentication protocol A-SIP with related protocols considering various security features.
Table 4 demonstrates the analysis of the security features for A-SIP in comparison with
the related works. The proposed protocol was secure against all mentioned attacks, and
can provide security requirements, including perfect forward secrecy and stolen-verifier
attacks. In other words, the proposed scheme provides a high level of security compared to
the related authentication protocols.

Table 4. Comparison of security features.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

[39] N Y Y Y N N Y Y Y Y Y N
[45] Y Y Y N N Y N Y Y Y Y Y
[41] Y Y Y N N Y N Y N Y Y Y
[42] Y Y Y Y N N Y Y N Y Y Y
[43] Y Y Y Y N N N Y Y Y Y Y
[48] Y Y Y N N N Y Y Y Y Y Y
[49] N Y Y Y Y N Y Y Y Y Y Y
[50] N Y Y Y Y N Y Y Y N Y Y
[51] Y Y Y Y Y Y Y Y Y N Y Y
SRP N N N Y Y Y Y Y Y Y Y Y

A-SIP Y Y Y Y Y Y Y Y Y Y Y Y
F1: offline password guessing attack resistance; F2: stolen verifier attack resistance; F3: Denning–Sacco attack
resistance; F4: replay attack resistance; F5: user impersonation attack resistance; F6: server impersonation attack
resistance; F7: privileged insider attack resistance; F8: MITM attack resistance; F9: providing mutual authenti-
cation; F10: providing perfect forward secrecy; F11: providing known key secrecy; F12: session-key temporary
information attack resistance. ‘Y’: scheme provides the feature; ‘N’: scheme does not provide the feature.

For performance comparison, the computational cost for each related authentica-
tion protocol was calculated using the primitive arithmetic and cryptographic operation
timings. Table 5 shows the notation used for different cryptographic operations and the
arithmetic mean and standard deviation of the computation cost of each operation. These
cryptographic operations were implemented using Python programming language using
the PyCryptodome 3.11.0 library on a personal computer with 8 GB RAM, an Intel Core
i5-10210U CPU @ 2.1 GHz, and a 64-bit Windows 10 Professional operating system. Each
operation was executed thousands of times until we obtained a 95% confidence interval
with 2% error.

To compute the computational cost of symmetric encryption and decryption, we used
AES with a 256-bit key and a message with a size of 512 bytes. For ECC point multiplication
and addition, the standard elliptic curve Secp256k1 was used, where the modulus p and
the order n were 256-bit numbers. This curve provides 128-bit security strength and is one
of the curves adopted by many applications, such as OpenSSH and Bitcoin.

In authentication schemes, the login and authentication phases are executed more
frequently than other phases that are performed only once. Therefore, the computational
costs of only the login and authentication phases were considered in the performance
comparison. A detailed performance evaluation of each related scheme is shown in Table 6.

Sensors 2022, 22, 9103 24 of 30

This table shows the arithmetic and cryptographic operations performed on both the
client side and the server side and the estimated computational cost for each protocol.
The timings in Table 6 were calculated using the primitive arithmetic and cryptographic
operation timings given in Table 5. The computational cost of lightweight operations, such
XOR and concatenation, were ignored.

Table 5. Mean and standard deviation for execution time for different cryptographic operations.

Symbol Operation Mean (µs) Stan. Dev. (µs)

TH One-way hash function (SHA-1) 16.5 4.8
TPM Elliptic curve point multiplication 32,646.2 365.5
TPA Elliptic curve point addition 838.7 26.5
TExp Modular exponentiation 345.4 34.8
TSED Symmetric Key encryption/decryption 157.5 12.8

TR Random number generation 17.4 1.6

Table 6. Comparison of the computational cost.

Schemes Side of Operations Operations Cost (ms) Total (ms)

[39]
Client 3TH + TR + 3TPM + TPA+TSED 99.001

197.620Server 2TH + 2TR + 3TPM + TSED 98.619

[45]
Client 6TH + TR + 4TPM + TPA 131.539

263.868Server 3TH + 2TR + 4TPM + 2TPA 132.329

[41]
Client 4TH + TR + 3TPM 98.022

196.044Server 4TH + TR + 3TPM 98.022

[42]
Client 4TH + TR + 2TPM 65.375

130.767Server 5TH + TR + 2TPM 65.392

[43]
Client 4TH + TR + 3TPM 98.022

163.381Server 3TH + TR + 2TPM 65.359

[48]
Client 4TH + TR + 3TPM + TPA 98.860

196.882Server 4TH + 2TR + 3TPM 98.022

[49]
Client 5TH + TR + 3TPM + TPA 98.877

197.265Server 5TH + 3TR + 3TPM + 2TSED 98.388

[50]
Client 5TH + TR + 2TSED 0.572

1.443Server 3TH + 2TR + 5TSED 0.871

[51]
Client 7TH + 2TR + 2TSED 0.465

1.527Server 5TH + 2TR + 6TSED 1.062

SRP
Client 5TH + TR + 3TExp 13.136

26.239Server 3TH + TR + 3TExp 13.103

A-SIP
Client 8TH + 2TR + 6TExp + TSED 26.363

44.002Server 7TH + TR + 4TExp + TSED 17.639

As shown in Table 6, the proposed scheme was fourth in terms of computational
cost. The authentication schemes introduced in [50,51] had the lowest costs. However, as
explained in Section 2, these schemes do not provide the perfect forward secrecy security
requirement.

8.2. S-SIP Overhead

To characterize the performance of the S-SIP protocol and to indicate its overhead
compared to SIP and related protocols based on TLS, we implemented an experimental
testbed shown in Figure 6 based on the scenario depicted in Figure 1A. The testbed was a
wide area network consisting of three 100 Mbps LANs. The user agents were connected to
the first and second LANs, whereas the proxy/authentication server resided on the third
LAN. As shown in Figure 6, the user agents and the server were connected through the
internet over 500 Mbps connections.

Sensors 2022, 22, 9103 25 of 30

Sensors 2022, 22, x FOR PEER REVIEW 25 of 30

Server 3�� + 2�� + 5���� 0.871

[51]
Client 7�� + 2�� + 2���� 0.465

1.527
Server 5�� + 2�� + 6���� 1.062

SRP
Client 5�� + �� + 3���� 13.136

26.239
Server 3�� + �� + 3���� 13.103

A-SIP
Client 8�� + 2�� + 6���� + ���� 26.363

44.002
Server 7�� + �� + 4���� + ���� 17.639

As shown in Table 6, the proposed scheme was fourth in terms of computational cost.

The authentication schemes introduced in [50,51] had the lowest costs. However, as

explained in Section 2, these schemes do not provide the perfect forward secrecy security

requirement.

8.2. S-SIP Overhead

To characterize the performance of the S-SIP protocol and to indicate its overhead

compared to SIP and related protocols based on TLS, we implemented an experimental

testbed shown in Figure 6 based on the scenario depicted in Figure 1A. The testbed was a

wide area network consisting of three 100 Mbps LANs. The user agents were connected

to the first and second LANs, whereas the proxy/authentication server resided on the third

LAN. As shown in Figure 6, the user agents and the server were connected through the

internet over 500 Mbps connections.

The two user agents had the same specifications explained in Section 8.1. The server

was a PC that had an Intel core i7 2.4 GHz processor and 16 GB RAM with a Windows 10

Pro 64-bit operating system. The S-SIP protocol was implemented using Python. The user

agents and the server were implemented based on the scenario shown in Figure 1, where

exchanging RTP messages were not considered because it was out of the scope of this

work. In all experiments, for symmetric encryption and decryption, we used AES with a

256-bit key.

Figure 6. Testbed network architecture.

To compare between S-SIP and TLS-based techniques used to secure SIP, we suppose

that SIPS/TLS is used for securing SIP messages and SRP is used as a password-based

authentication protocol. We called this method as SRP–TLS. SRP–TLS was implemented

using Python, where TLS version 1.2 with cipher suit ECDHE-RSA-AES256-GCM-

SHA384 were used.

Because S-SIP and SRP–TLS use more messages than SIP, their overhead depends on

the message round trip time (RTT) between clients and the server. Therefore, we

Figure 6. Testbed network architecture.

The two user agents had the same specifications explained in Section 8.1. The server
was a PC that had an Intel core i7 2.4 GHz processor and 16 GB RAM with a Windows
10 Pro 64-bit operating system. The S-SIP protocol was implemented using Python. The
user agents and the server were implemented based on the scenario shown in Figure 1,
where exchanging RTP messages were not considered because it was out of the scope of
this work. In all experiments, for symmetric encryption and decryption, we used AES with
a 256-bit key.

To compare between S-SIP and TLS-based techniques used to secure SIP, we suppose
that SIPS/TLS is used for securing SIP messages and SRP is used as a password-based
authentication protocol. We called this method as SRP–TLS. SRP–TLS was implemented
using Python, where TLS version 1.2 with cipher suit ECDHE-RSA-AES256-GCM-SHA384
were used.

Because S-SIP and SRP–TLS use more messages than SIP, their overhead depends on
the message round trip time (RTT) between clients and the server. Therefore, we considered
two scenarios: small and large RTT. Thus, the server was placed in an area geographically
close or far from the user agents to represent these two scenarios.

The overheads of S-SIP and SRP-TLS were measured using two performance metrics:
the authentication and registration time TA and the call setup and teardown time TS. TA
is the time required to authenticate and register a user agent to the server. TS is the time
required to setup and tear down the call between the caller and callee.

For all measured performance metrics, experiments were repeated until we obtained
95% confidence intervals with 2% error. For S-SIP, SRP–TLS and SIP, the mean and standard
deviation were measured for each performance metric. To measure the actual overhead,
we suppose that SIP does not use any authentication mechanism. For small and large RTT
scenarios, the measured ping times between the user agents and the server were 32 and
227 ms, respectively. The results are shown in Table 7.

Table 7. TA and TS (ms) for protocols SIP, SRP-TLS and S-SIP.

RTT = 32 ms RTT = 227 ms

SIP S-SIP SRP-TLS SIP S-SIP SRP-TLS

TA (ms)
Mean 33.9 146.6 275.4 229.4 733.1 1389.1

Stan. Dev. 0.3 2.7 7.3 3.4 9.5 11.4

TS (ms)
Mean 152.3 171.9 166.9 1032.1 1149.5 1102.8

Stan. Dev. 2.5 3.6 6.8 12.4 14.8 14.2
Overhead (ms) NA 132.3 256.1 NA 621.1 1230.4

Sensors 2022, 22, 9103 26 of 30

Compared to TS, the overhead in TA was larger mainly due to the authentication
process and handshake mechanisms supported by S-SIP and SRP–TLS. For small RTT, the
total overheads of S-SIP and SRP-TLS were 132.3 and 256.1 ms, respectively, whereas for
large RTT, they were 621.1 and 1230.4 ms, respectively. In the case of small and large RTTs,
the total overhead of SRP–TLS was nearly double that of S-SIP. The main overhead in the
SIPS protocol was due to the TLS handshake phase and verification of digital certificates.
In addition, SIPS protocol constructs TLS secure tunnels among each hop in the path from
the client to the final recipient. Therefore, increasing the number of proxy servers between
user agents greatly increased the overhead of SIPS.

9. Conclusions

This work introduced a new protocol for securing SIP called S-SIP, which can thwart
most SIP attacks. S-SIP consists of two protocols: A-SIP and KP-SIP. The A-SIP protocol
is an authentication protocol that provides mutual authentication for SIP entities. The
KP-SIP protocol is used to secure SIP signaling messages and to exchange session keys
and authentication tickets between SIP entities. A-SIP is based on the SRP protocol, which
is one of the standard password-based authentication protocols supported by TLS. We
informally analyzed the security issues of SRP. We showed that it is vulnerable to offline
password guessing, stolen-verifier, and Denning–Sacco attacks. Therefore, we proposed
the A-SIP protocol to overcome these security flaws in SRP. In addition, through informal
security analysis, we showed that S-SIP can thwart many SIP-based attacks, such as session
teardowns, registration hijacking, request spoofing, message tampering, and re-invite
attacks. Additionally, we verified the security of S-SIP through formal analysis using
the ProVerif tool. Moreover, we compared A-SIP with multiple related authentication
schemes in terms of security and performance. Comparisons showed that A-SIP has more
security features and lower computational costs. SIPS is a standard protocol for securing
SIP based on TLS. To characterize the overhead of S-SIP compared to SIP and SRP–TLS,
its performance was analyzed. Compared to SIP, in the case of small and large RTTs, the
overheads of S-SIP were 132.3 and 621.1 ms, respectively. For SRP–TLS, for small and large
RTTs, the overheads were 256.1 and 1230.4 ms, respectively. The results showed that the
performance of S-SIP was better than SRP-TLS. In addition, increasing the number of proxy
servers between user agents greatly increased the overhead of SRP–TLS. As a future work,
KP-SIP can be extended to secure connections among SIP servers owned by the same or
different telecoms/providers.

Author Contributions: Methodology, O.Y.; Validation, U.A.; Formal and informal analysis, O.Y.;
Investigation, U.A.; Funding acquisition, U.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

ProVerif defines cryptographic primitives as constructors, destructors and equations.
Table A1 shows the constructors that we defined to model the proposed protocol. The
following shows the main parts of the ProVerif code that are explained in Section 7.

Sensors 2022, 22, 9103 27 of 30

Table A1. Constructors defined in the ProVerif model of A-SIP.

Constructor Function

h One-way hash function

mult Multiplication of two integers

mult3 Multiplication of three integers

div Integer division

concat Concatenation 2, 3, 4 or 6 values

exp Exponential operation

xor Exclusive-OR

sEnc Symmetric encryption

sDec Symmetric decryption

gKey Converting from the bitstring type to the key type

BitKey Converting from the key type to the bitstring type

getfirst Extract the first of concatenated values

getsec Extract the second of concatenated values

(∗ === channels ==== ∗)
free SCh : channel [private].
free Ch : channel.
(∗ Shared keys ∗)
free Kc : key [private].
free Ks : key [private].
free Ksc : key [private].
free Kp : key [private].
(∗ constants & Variables ∗)
const g : bitstring.
const p : bitstring.
const IDc : bitstring.
free IPs : bitstring.
free Sp : bitstring [private].
free Pwc : bitstring [private].
weaksecret PWc.
(∗ ==== Types ==== ∗)
type key.
(∗ ==== Functions ==== ∗)
fun h(bitstring) : bitstring.
fun mult(bitstring, bitstring) : bitstring.
fun mult3(bitstring, bitstring, bitstring) : bitstring.
fun div(bitstring, bitstring) : bitstring.
fun concat(bitstring, bitstring) : bitstring.
fun concat3(bitstring, bitstring, bitstring) : bitstring.
fun concat4(bitstring, bitstring, bitstring, bitstring) : bitstring.
fun concat6(bitstring, bitstring, bitstring, bitstring, bitstring, bitstring) :

bitstring.
fun exp(bitstring, bitstring) : bitstring.
fun xor(bitstring, bitstring) : bitstring.
fun sEnc (key, bitstring) : bitstring.
fun sDec (key, bitstring) : bitstring.
fun gKey(bitstring) : key.
fun BitKey(key) : bitstring.

Sensors 2022, 22, 9103 28 of 30

fun getfirst(bitstring) : bitstring.
fun getsecond(bitstring) : bitstring.
(∗ ======== Equations ======== ∗)
equation forall x : bitstring, y : bitstring; exp(exp(g, x), y) = exp(exp(g, y), x).
equation forall m : bitstring, k : key; sDec (k, sEnc (k, m)) = m.
equation forall m : bitstring, k : key; sEnc (k, sDec (k, m)) = m.
equation forall m : bitstring, k : bitstring; xor (k, xor(k, m)) = m.
quation forall m : bitstring, n : bitstring; getfirst (concat(m, n)) = m.
equation forall m : bitstring, n : bitstring; getsec (concat(m, n)) = n.
(∗ ==== Events ==== ∗)
event UserStarted(bitstring).
event UserAuthed(bitstring).
event ServerStarted(bitstring).
event ServerEnd(bitstring).
(∗ ===== Main ===== ∗)
process (!ProcessServer |!ProcessClient)
(∗ ===== Queries ===== ∗)
query attacker(Kc).
query attacker(Ks).
query attacker(Ksc).
query attacker(Kp)
query id : bitstring; inj-event(UserAuthed(id)) ⇒ inj-event(UserStarted(id)).
query id : bitstring; inj-event(ServerEnd(id)) ⇒ inj-event(ServerStarted(id)).

References
1. Schulzrinne, H.; Casner, S.; Frederick, R.; Jacobson, V. RFC 3550-RTP: A Transport Protocol for Real-Time Applications; IETF: Fremont,

CA, USA, 2003.
2. Rosenberg, J.; Schulzrinne, H.; Camarillo, G.; Johnston, A.; Peterson, J.; Sparks, R.; Handley, M.; Schooler, E. RFC 3261-Sip: Session

Initiation Protocol; IETF: Fremont, CA, USA, 2002.
3. Tam, K.; Goh, H. Session initiation protocol. In Proceedings of the 2002 IEEE International Conference on Industrial Technology,

2002, IEEE ICIT ‘02, Bangkok, Thailand, 11–14 December 2002; pp. 1310–1314.
4. Chiang, W.K.; Chang, W.Y. Mobile-initiated network-executed SIP-based handover in IMS over heterogeneous accesses. Int. J.

Commun. Syst. 2010, 23, 1268–1288. [CrossRef]
5. Cho, K.; Pack, S.; Kwon, T.T.; Choi, Y. An extensible and ubiquitous RFID management framework over next-generation network.

Int. J. Commun. Syst. 2010, 23, 1093–1110. [CrossRef]
6. Keromytis, A.D. A Look at VoIP Vulnerabilities. Usenix Secur. Artic. 2010, 35, 41–50.
7. Keromytis, A.D. A Comprehensive Survey of Voice over IP Security Research. IEEE Commun. Surv. Tutor. 2012, 14, 514–537.

[CrossRef]
8. Ahson, A.S.; Ilyas, M. Sip Handbook Services, Technologies, And Security of Session Initiation Protocol; CRC Press: Boca Raton, FL,

USA, 2009.
9. Ahson, A.S.; Ilyas, M. VoIP Handbook, Applications, Technologies, Reliability, and Security; CRC Press: Boca Raton, FL, USA, 2009.
10. Sisalem, D.; Floroiu, J.; Kuthan, J.; Abend, U.; Schulzrinne, H. SIP Security; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2009.
11. Franks, J.; Hallam-Baker, P.; Hostetler, J.; Lawrence, S.; Leach, P.; Luotonen, A.; Stewart, L. RFC 2617-HTTP Authentication: Basic

and Digest Access Authentication; IETF: Fremont, CA, USA, 1999.
12. Kent, S.; Seo, K. RFC 4301-Security Architecture for the Internet Protocol; IETF: Fremont, CA, USA, 2005.
13. Dierks, T.; Rescorla, E. RFC 5246-The Transport Layer Security (TLS) Protocol; IETF: Fremont, CA, USA, 2008.
14. Ramsdell, B. RFC 3851-Secure/Multipurpose Internet Mail Extensions (S/MIME) Version 3.1 Message Specification; IETF: Fremont, CA,

USA, 2004.
15. Nguyen, K.T.; Laurent-Maknavicius, M.; Oualha, N.J.A.H.N. Survey on secure communication protocols for the Internet of

Things. Ad Hoc Netw. 2015, 32, 17–31. [CrossRef]
16. Haase, B.; Labrique, B. Aucpace: Efficient verifier-based PAKE protocol tailored for the IIOT. IACR Cryptol. Eprint Arch. 2018,

2018, 286. [CrossRef]
17. Sebek, F.; Petri, O.; Sebek, F. A Comparison of the Password-Authenticated Key Exchange Protocols, SRP-6a and PAKE2+; Technical

Report; Kth Royal Institute of Technology, School of Electrical Engineering and Computer Science: Stockholm, Sweden, 2019.
18. Shin, S.; Kobara, K. Security Analysis of Password-Authenticated Key Retrieval. IEEE Trans. Dependable Secur. Comput. 2017,

14, 573–576.

http://doi.org/10.1002/dac.1115
http://doi.org/10.1002/dac.1073
http://doi.org/10.1109/SURV.2011.031611.00112
http://doi.org/10.1016/j.adhoc.2015.01.006
http://doi.org/10.46586/tches.v2019.i2.1-48

Sensors 2022, 22, 9103 29 of 30

19. Jarecki, S.; Krawczyk, H.; Xu, J. OPAQUE: An Asymmetric PAKE Protocol Secure Against Pre-computation Attacks. In Advances
in Cryptology—EUROCRYPT 2018, Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, 29 April–3 May 2018; Springer International Publishing: Cham, Switzerland, 2018.

20. Bellovin, S.M.; Merritt, M. Augmented encrypted key exchange: A password-based protocol secure against dictionary attacks
and password file compromise. In Proceedings of the CCS93: 1st ACM Conference on Communications and Computing Security,
Fairfax, VA, USA, 3–5 November 1993; pp. 244–250.

21. Boyd, C.; Mathuria, A.; Stebila, D. Protocols for Authentication and Key Establishment; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2003.

22. Hao, F.; Ryan, P.Y.A. Password Authenticated Key Exchange by Juggling. In Security Protocols XVI, Proceedings of the 16th
International Workshop on Security Protocols, Cambridge, UK, 16–18 April 2008; Springer: Berlin/Heidelberg, Germany, 2008.

23. Yoneyama, K. Cross-Realm Password-Based Server Aided Key Exchange. In Information Security Applications; Springer:
Berlin/Heidelberg, Germany, 2011.

24. Wu, T.D. The secure remote password protocol. NDSS 1998, 98, 97–111.
25. Wu, T. RFC 2945-The SRP Authentication and Key Exchange System; IETF: Fremont, CA, USA, 2000.
26. Taylor, T.W.D.; Mavrogiannopoulos, N.; Perrin, T. RFC 5054-Using the Secure Remote Password (SRP) Protocol for TLS Authentication;

IETF: Fremont, CA, USA, 2007.
27. IEEE Std 1363.2™-2008; IEEE Standard Specification for Password-Based Public-Key Cryptographic Techniques. IEEE Computer

Society: Piscataway, NJ, USA, 2008; 140p.
28. Tom, W. Official Website for SRP. Available online: http://srp.stanford.edu/ (accessed on 7 March 2022).
29. Yang, C.-C.; Wang, R.-C.; Liu, W.-T. Secure authentication scheme for session initiation protocol. Comput. Secur. 2005, 24, 381–386.

[CrossRef]
30. Huang, H.-F. A new efficient authentication scheme for Session Initiation Protocol. In Proceedings of the 9th Joint International

Conference on Information Sciences (JCIS-06), Kaohsiung, Taiwan, 8–11 October 2006; Atlantis Press: Amsterdam, The Nether-
lands, 2006; pp. 402–404.

31. Jo, H.; Lee, Y.; Kim, M.; Kim, S.; Won, D. Off-Line Password-Guessing Attack to Yang’s and Huang’s Authentication Schemes for
Session Initiation Protocol. In Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, Seoul, Republic
of Korea, 25–27 August 2009; pp. 618–621.

32. Durlanik, A.; Sogukpinar, I. SIP authentication scheme using ECDH. Proc. World Acad. Sci. Eng. Technol. 2005, 8, 350–353.
33. Wu, L.; Zhang, Y.; Wang, F. A new provably secure authentication and key agreement protocol for SIP using ECC. Comput. Stand.

Interfaces 2009, 31, 286–291. [CrossRef]
34. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
35. Yoon, E.-J.; Yoo, K.-Y.; Kim, C.; Hong, Y.-S.; Jo, M.; Chen, H.-H. A secure and efficient SIP authentication scheme for converged

VoIP networks. J. Comput. Commun. 2010, 33, 1674–1681. [CrossRef]
36. Pu, Q. Weaknesses of SIP Authentication Scheme for Converged VoIP Networks. Cryptology ePrint Archive. Paper 2010/464.

Available online: https://eprint.iacr.org/2010/464 (accessed on 7 March 2022).
37. Tsai, J.L. Efficient nonce-based authentication scheme for session initiation protocol. Int. J. Netw. Secur. 2009, 8, 312–316.
38. Yoon, E.-J.; Shin, Y.-N.; Jeon, I.-S.; Yoo, K.-Y. Robust mutual authentication with a key agreement scheme for the session initiation

protocol. IETE Tech. Rev. 2010, 27, 203–213. [CrossRef]
39. Xie, Q. A new authenticated key agreement for session initiation protocol. Int. J. Commun. Syst. 2012, 25, 47–54. [CrossRef]
40. Farash, M.S.; Attari, M.A. An enhanced authenticated key agreement for session initiation protocol. Inf. Technol. Control 2013, 42,

333–342. [CrossRef]
41. Zhang, Z.; Qi, Q.; Kumar, N.; Chilamkurti, N.; Jeong, H.-Y. A secure authentication scheme with anonymity for session initiation

protocol using elliptic curve cryptography. Multimed. Tools Appl. 2015, 74, 3477–3488. [CrossRef]
42. Lu, Y.; Li, L.; Peng, H.; Yang, Y. A secure and efficient mutual authentication scheme for session initiation protocol. Peer-Peer Netw.

Appl. 2016, 9, 449–459. [CrossRef]
43. Chaudhry, S.; Khan, I.; Irshad, A.; Ashraf, M.U.; Khan, M.K.; Ahmad, H.F. A provably secure anonymous authentication scheme

for Session Initiation Protocol. Secur. Commun. Netw. 2016, 9, 5016–5027. [CrossRef]
44. Kumari, S.; Karuppiah, M.; Das, A.K.; Li, X.; Wu, F.; Gupta, V. Design of a secure anonymity-preserving authentication scheme for

session initiation protocol using elliptic curve cryptography. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 643–653. [CrossRef]
45. Zhang, L.; Tang, S.; Cai, Z. Efficient and flexible password authenticated key agreement for Voice over Internet Protocol Session

Initiation Protocol using smart card. Int. J. Commun. Syst. 2013, 27, 2691–2702. [CrossRef]
46. Irshad, A.; Sher, M.; Rehman, E.; Ch, S.A.; Hassan, M.U.; Ghani, A. A single round-trip SIP authentication scheme for Voice over

Internet Protocol using smart card. Multimed. Tools Appl. 2015, 74, 3967–3984. [CrossRef]
47. Arshad, H.; Nikooghadam, M. Security analysis and improvement of two authentication and key agreement schemes for session

initiation protocol. J. Supercomput. 2015, 71, 3163–3180. [CrossRef]
48. Tu, H.; Kumar, N.; Chilamkurti, N.; Rho, S. An improved authentication protocol for session initiation protocol using smart card.

Peer-Peer Netw. Appl. 2015, 8, 903–910. [CrossRef]
49. Chaudhry, S.A.; Naqvi, H.; Sher, M.; Farash, M.S.; Hassan, M.U. An improved and provably secure privacy preserving authentica-

tion protocol for SIP. Peer-Peer Netw. Appl. 2017, 10, 1–15. [CrossRef]

http://srp.stanford.edu/
http://doi.org/10.1016/j.cose.2004.10.007
http://doi.org/10.1016/j.csi.2008.01.002
http://doi.org/10.1090/S0025-5718-1987-0866109-5
http://doi.org/10.1016/j.comcom.2010.03.026
https://eprint.iacr.org/2010/464
http://doi.org/10.4103/0256-4602.62780
http://doi.org/10.1002/dac.1286
http://doi.org/10.5755/j01.itc.42.4.2496
http://doi.org/10.1007/s11042-014-1885-6
http://doi.org/10.1007/s12083-015-0363-x
http://doi.org/10.1002/sec.1672
http://doi.org/10.1007/s12652-017-0460-1
http://doi.org/10.1002/dac.2499
http://doi.org/10.1007/s11042-013-1807-z
http://doi.org/10.1007/s11227-015-1434-8
http://doi.org/10.1007/s12083-014-0248-4
http://doi.org/10.1007/s12083-015-0400-9

Sensors 2022, 22, 9103 30 of 30

50. Nikooghadam, M.; Jahantigh, R.; Arshad, H. A lightweight authentication and key agreement protocol preserving user anonymity.
Multimed. Tools Appl. 2017, 76, 13401–13423. [CrossRef]

51. Ravanbakhsh, N.; Mohammadi, M.; Nikooghadam, M. Perfect forward secrecy in VoIP networks through design a lightweight
and secure authenticated communication scheme. Multimed. Tools Appl. 2019, 78, 11129–11153. [CrossRef]

52. Nikooghadam, M.; Amintoosi, H. Perfect forward secrecy via an ECC-based authentication scheme for SIP in VoIP. J. Supercomput.
2020, 76, 3086–3104. [CrossRef]

53. Abadi, M.; Blanchet, B.; Comon-Lundh, H. Models and Proofs of Protocol Security: A Progress Report. In Computer Aided
Verification, Proceedings of the 21st International Conference on Computer Aided Verification, Grenoble, France, 26 June–2 July 2009;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2009; pp. 35–49.

54. Audet, F. The Use of the SIPS URI Scheme in the Session Initiation Protocol (SIP); RFC 5630; IETF: Fremont, CA, USA, 2009.
55. Abubakar, M.; Jaroucheh, Z.; Al Dubai, A.; Buchanan, B. Blockchain-Based Authentication and Registration Mechanism for

SIP-Based VoIP Systems. In Proceedings of the 5th Cyber Security in Networking Conference (CSNet), Abu Dhabi, United Arab
Emirates, 12–14 October 2021; pp. 63–70.

56. Aldahwan, N.; Alghazzawi, D. Use of Blockchain in Public Key Infrastructure (PKI): A Systematic Literature Review. Int. J.
Comput. Sci. Inf. Secur. 2020, 18, 106–111.

57. Johnston, A. SIP: Understanding the Session Initiation Protocol, 3rd ed.; Artech House: Norwood, MA, USA, 2009.
58. Kulkarni, L. VoIP Security: A Performance and Cost-benefit Analysis. Inf. Technol. Ind. 2021, 8, 34–42. [CrossRef]
59. Bates, R.J. Securing VoIP: Keeping Your VoIP Network Safe; Elsevier Inc.: Amsterdam, The Netherlands, 2015.
60. Omar, M.I.; Kiprut, C.W.; Kimwele, M.W. Securing the IP Multimedia Subsystem with IPsec and HTTP Digest. Int. J. Comput.

2017, 26, 117–128.
61. Farley, R.; Wang, X. VoIP Shield: A transparent protection of deployed VoIP systems from SIP-based exploits. In Proceedings of

the 2012 IEEE Network Operations and Management Symposium, Maui, HI, USA, 16–20 April 2012; pp. 486–489.
62. Basem, B.; Ghalwash, A.Z.; Sadek, R.A. Multilayer Secured SIP Based VoIP Architecture. Int. J. Comput. Theory Eng. 2015, 7,

453–462. [CrossRef]
63. Sherman, A.T.; Lanus, E.; Liskov, M.; Zieglar, E.; Chang, R.; Golaszewski, E.; Wnuk-Fink, R.; Bonyadi, C.J.; Yaksetig, M.;

Blumenfeld, I. Formal Methods Analysis of the Secure Remote Password Protocol. In Logic, Language, and Security; Springer:
Cham, Switzerland, 2020.

64. Arshad, H.; Nikooghadam, M. An efficient and secure authentication and key agreement scheme for session initiation protocol
using ECC. Multimed. Tools Appl. 2016, 75, 181–197. [CrossRef]

65. Chen, C.-M.; Xiang, B.; Wu, T.-Y.; Wang, K.-H. An Anonymous Mutual Authenticated Key Agreement Scheme for Wearable
Sensors in Wireless Body Area Networks. Appl. Sci. 2018, 8, 1074. [CrossRef]

66. Wu, F.; Xu, L.; Kumari, S.; Li, X.; Shen, J.; Choo, K.-K.R.; Wazid, M.; Das, A.K. An efficient authentication and key agreement
scheme for multi-gateway wireless sensor networks in IoT deployment. J. Netw. Comput. Appl. 2017, 89, 72–85. [CrossRef]

67. Abbasinezhad-Mood, D.; Nikooghadam, M. Efficient Anonymous Password-Authenticated Key Exchange Protocol to Read
Isolated Smart Meters by Utilization of Extended Chebyshev Chaotic Maps. IEEE Trans. Ind. Inform. 2018, 14, 4815–4828.
[CrossRef]

68. Abbasinezhad-Mood, D.; Nikooghadam, M. Design and hardware implementation of a security-enhanced elliptic curve cryp-
tography based lightweight authentication scheme for smart grid communications. Future Gener. Comput. Syst. 2018, 84, 47–57.
[CrossRef]

69. Younes, O. ProVerif Model for S-SIP Protocol. Available online: https://drive.google.com/drive/folders/1Bks5GwfWbt3v1
qgqKFH0mREgzhf3J3Bj?usp=sharing (accessed on 20 March 2022).

http://doi.org/10.1007/s11042-016-3704-8
http://doi.org/10.1007/s11042-018-6620-2
http://doi.org/10.1007/s11227-019-03086-z
http://doi.org/10.17762/itii.v8i2.80
http://doi.org/10.7763/IJCTE.2015.V7.1002
http://doi.org/10.1007/s11042-014-2282-x
http://doi.org/10.3390/app8071074
http://doi.org/10.1016/j.jnca.2016.12.008
http://doi.org/10.1109/TII.2018.2806974
http://doi.org/10.1016/j.future.2018.02.034
https://drive.google.com/drive/folders/1Bks5GwfWbt3v1qgqKFH0mREgzhf3J3Bj?usp=sharing
https://drive.google.com/drive/folders/1Bks5GwfWbt3v1qgqKFH0mREgzhf3J3Bj?usp=sharing

	Introduction
	Related Work
	Standard-Based Solutions
	Research-Based Solutions

	Background
	Session Initiation Protocol
	Secure Remote Password Protocol

	Security Analysis of SRP
	Offline Password Guessing Attack
	Stolen-Verifier Attack
	Denning–Sacco Attack

	Secure SIP
	A-SIP Protocol
	KP-SIP Protocol

	Informal Security Analysis
	Offline Password Guessing Attack
	Denning–Sacco Attack
	Stolen-Verifier Attack
	Perfect Forward Secrecy
	Impersonation Attack
	Replay Attack
	Session Teardown Attack
	Registration Hijacking Attack
	Request Spoofing Attack
	Message Tampering Attack
	Man-In-The-Middle Attack
	Re-INVITE Attack

	Formal Security Analysis
	Performance Analysis
	Performance Comparison
	S-SIP Overhead

	Conclusions
	Appendix A
	References

