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Abstract: The use of machine learning (ML) techniques in affective computing applications focuses
on improving the user experience in emotion recognition. The collection of input data (e.g., physi-
ological signals), together with expert annotations are part of the established standard supervised
learning methodology used to train human emotion recognition models. However, these models
generally require large amounts of labeled data, which is expensive and impractical in the healthcare
context, in which data annotation requires even more expert knowledge. To address this problem, this
paper explores the use of the self-supervised learning (SSL) paradigm in the development of emotion
recognition methods. This approach makes it possible to learn representations directly from unlabeled
signals and subsequently use them to classify affective states. This paper presents the key concepts
of emotions and how SSL methods can be applied to recognize affective states. We experimentally
analyze and compare self-supervised and fully supervised training of a convolutional neural network
designed to recognize emotions. The experimental results using three emotion datasets demonstrate
that self-supervised representations can learn widely useful features that improve data efficiency, are
widely transferable, are competitive when compared to their fully supervised counterparts, and do
not require the data to be labeled for learning.

Keywords: self-supervised learning; representation learning; emotion recognition; physiological
signals; wearable sensors

1. Introduction

Emotion recognition remains one of the most researched topics in the area of affective
computing [1]. In this research area, many systems have been developed to model and
interpret the affective states of humans [2–4]. As emotion is considered a physiological
and psychological expression associated with individuals’ moods and personalities, these
systems use sensing technologies, usually micro-sensors integrated into wearable devices,
and computational models generated from machine learning techniques are used to analyze
the physiological signals and infer or quantify human emotions [5].

A wide variety of physiological signals can be collected non-invasively from wearable
devices, such as electrocardiography (ECG), electroencephalography (EEG), galvanic skin
response (GSR), temperature (TMP), and electromyography (EMG) signals. Due to the
large amount of data that can be obtained by these devices, the complexity to infer affective
states from these signals still represents a challenge. Different machine learning (ML)
models based on different algorithms, such as k-nearest neighbors (k-NN) [6], support
vector machines [7], and deep neural networks [8], have been evaluated for this task.

In most existing solutions, supervised machine learning has been the conventional
training paradigm for the models proposed for emotion recognition systems [9]. Despite
high classification performance rates, these models require a large amount of annotated
data, so the cost of annotating the data becomes a major bottleneck for the development of
pattern recognition systems, especially in healthcare, where data annotation requires even
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more specialized knowledge (e.g., physicians), and recent privacy concerns hinder the use
of real user data.

These needs have motivated research in which learning about data representations
is performed in a self-supervised manner [10]. The area of self-supervised learning (SSL)
describes a class of methods that allow networks to take advantage of unlabeled training
data and learn to extract meaningful representations without any manual annotation [11].
The self-supervised learning approach has shown promising results when applied to
images [12] and text [13]. In this learning approach, a part of the neural network input is
used as a supervising element; the result of which is a model or representation that can be
used for solving the original modeling problem.

The representations obtained in this way have demonstrated more effective, general-
izable, and transferable results for final tasks for which labeled data are limited or costly
to obtain. This makes the self-supervised learning task a promising approach for solving
problems in healthcare, in which the volume of unlabeled data generated by numerous
medical devices and services is immeasurable. Despite this, SSL has been little explored in
healthcare, especially for emotion recognition.

In this paper, an overview of the main concepts in the field of emotion recognition,
including how emotions are represented and measured, is provided. A description of
the main physiological signals and techniques that are often applied to infer affective
states is also supplied. Furthermore, a discussion on how the development of systems
in application domains with few labeled data moves towards the use of self-supervised
learning is presented. In order to expand the reader’s understanding of the employment
of self-supervised learning, an example of an application of self-supervised represen-
tation learning for emotion recognition is given. Self-supervised and fully supervised
training of a convolutional neural network designed to recognize emotions were experi-
mentally analyzed and compared, and the effectiveness of pre-training the network with
self-supervision to improve model capability was investigated. The experimental results
using three emotion datasets (AMIGOS [14], DREAMER [15], and SWELL [16]) demon-
strated that self-supervised representations learn widely useful features that improve data
efficiency, are widely transferable, and are competitive compared to their fully supervised
counterparts, as well as not requiring data to be labeled for learning.

In summary, our main contributions are as follows:

• A comprehensive review of recent research on supervised, semi-supervised, and
self-supervised learning in human emotion recognition using physiological
signals is presented.

• An ECG-based emotion recognition use case that implemented multi-task self-supervised
learning is proposed. A convolutional neural network is trained to learn generalizable
features without labeled data using the signal transformation recognition problem as
pretext tasks.

• In three publicly available datasets, the results show that our self-supervised model
is comparable to or better than an emotion recognition model learned through fully
supervised training (i.e., from scratch) for the same network architecture.

The remainder of the article is organized as follows. Section 2 presents a contextual-
ization of the emotion recognition area and the main physiological signals used. Section 3
describes the main machine learning approaches applied to the emotion recognition prob-
lem. A review of recent works applying deep learning in the area of affective computing
is presented in Section 4, including works applying self-supervised learning. In Section 5,
the methodology of self-supervised learning is explained in more detail, and an example
application of this approach for emotion recognition is presented. In addition, the super-
vised and self-supervised approaches are compared, and the achieved performances are
analyzed. Finally, in Sections 6 and 7, the advantages and limitations of the self-supervised
approach are discussed, and possible future work is presented.
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2. Emotion Recognition

Emotions are affective states that influence behavior and cognitive processes. They
appear as a result of external or internal stimuli and are accompanied by physical and
physiological reactions. In the following sections, the definition of emotions, models for
representing emotions, as well as the main characteristics of the physiological signals used
to measure affective states are presented and briefly described.

2.1. Defining Emotions

Human emotions are complex and multifaceted phenomena. This is due to the numer-
ous proposed theories and perspectives by which emotions are studied [17]. In general,
emotions have been described as a response to events or stimuli, have a short duration,
and correspond to a coordinated set of responses, which include verbal, behavioral, physio-
logical, and neural responses [18,19].

Three distinct components can be observed in an emotional response: subjective
experiences, physiological responses, and behavioral responses. Emotions start from a
stimulus that produces a subjective experience, in which a wide variety of elements (e.g.,
culture, education, previous experiences, and personality) can determine a person’s per-
ception and responses. Subjective experiences can vary in intensity from person to person,
as well as provoking many emotions in a single individual. Based on subjective experience,
behavioral responses are the expressions of emotion, such as a smile, a laugh, a scream,
and other reactions. For example, fright in response to an unexpected and intense stimulus
is a universal reflex that involves multiple motor actions, which include tension in the neck
and back muscles and blinking of the eyes. The physiological responses, however, are the
results of autonomic nervous system reactions to emotional experiences. The autonomic
nervous system controls the body’s involuntary responses, such as breathing, heartbeat,
and pupil movement, among others. For example, in response to a stressful stimulus,
substances such as adrenaline and cortisol are rapidly released in the body and prepare the
individual for a “fight or flight” reaction.

2.2. Emotion Representation Models

From a layman’s point of view, it is easy to determine whether someone is experiencing
or expressing a specific emotion (e.g., happiness, fear). However, determining or measuring
a person’s emotional state is one of the most debated problems of affective science [20].
This is because of the different perspectives of representing emotions. There are two
common perspectives for representing an emotion: dimensional and discrete. In the discrete
perspective, each emotion corresponds to a unique and universal profile in experience,
physiology, and behavior. Ekman [21] argued that all people in the world can express and
recognize their emotions using six basic emotions: sadness, happiness, surprise, fear, anger,
and disgust. Although many psychologists have accepted the theory of basic emotions,
there is no consensus on the precise number of basic emotions. Robert Plutchik [22],
for example, proposed eight primary emotions: anger, fear, sadness, disgust, surprise,
anticipation, confidence, and joy, and arranged them in a colored wheel, as shown in
Figure 1. Other research argues that other emotions can be considered from the intensity or
combination of the basic emotions. Zenonos et al. [23] presented an approach to distinguish
eight different emotions and moods (excited, happy, calm, tired, bored, sad, stressed,
and angry). In the view of some researchers, discrete models are unable to capture some
human emotions [24]. Despite this, discrete emotion models are widely used because of
their simplicity and high degree of interpretability.
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Figure 1. Plutchik’s color wheel showing the eight primary emotions.

In the dimensional perspective, there are some fundamental dimensions that orga-
nize emotional responses [25]. Dimensional studies of emotions originated from W. M.
Wundt [26], who proposed that emotions can be defined using three independent di-
mensions: pleasure–displeasure, excitement–inhibition, and tension–relaxation axes. J. A.
Russell [25] introduced a circumplex model, in which emotions can be distributed in a
circular dimensional space that is composed of two independent dimensions: arousal and
valence. The valence dimension indicates the perception of how positive or negative the
current affective state is. In the arousal dimension, the state is classified in terms of the level
of activation, i.e., it measures the intensity of the emotion. As shown in Figure 2, arousal
and valence represent the vertical and horizontal axes, while the center of the circle equals
a medium level of arousal and neutral valence. In this model, emotional expressions can be
illustrated at any level of arousal and valence or defined from four regions (quadrants).

Figure 2. Russell’s two-dimensional circumplex model showing the distribution of emotions.
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2.3. Measuring Emotions

Measuring emotions can be accomplished from the three components observed in
an emotional response. Subjective experience, for example, can be captured through
self-assessment questionnaires (self-reports). Specifically, self-reports of recent emotional
experiences are more valid than self-reports of experiences distant in time [27]. Figure 3
shows an example of a self-assessment manikin (SAM) questionnaire designed to capture
emotional experiences from a dimensional perspective (arousal, valence, and dominance).

Figure 3. Self-assessment manikin (SAM) questionnaire and its scales, respectively, valence, arousal,
and dominance.

Observing the behavior, emotions can be gleaned from vocal characteristics, facial
expressions, and body gestures. Human speech is one of the main forms of human ex-
pression [28]. In addition to conveying the desired information from the sound of words,
the speaker also shares information via tone of voice, energy, speed, and other acoustic
properties, which help the receiver gauge the intentions and emotions of that communi-
cation. On the other hand, facial expressions and body gestures are the most common
ways of identifying [29] emotion. Research from the literature supports the existence of a
universally recognized set of facial expressions for emotions such as happiness, surprise,
fear, sadness, anger, and disgust [29]. In addition, research based on body movement,
posture, and gestures have grown in recent years, given the possibility of recognizing
emotions at a distance.

Contrastingly, by observing the physiological responses of an emotional episode,
emotions can be obtained from physiological signals or indications of autonomic nervous
system activation [30]. Electroencephalography (EEG or EKG), electrocardiography (ECG),
electrodermal activity (EDA), galvanic skin response (GSR), and electromyography (EMG)
signals are the most common physiological signals that can be used to measure emotions.
The next section will discuss in more detail the inference of emotional states by means of
these signals.

2.4. Relationship between Physiological Signals and Emotions

Scientific studies related to the field of psychology point out that human emotions
and physiological responses are clearly interconnected [31,32]. For example, some neg-
ative emotional states, such as fear and anxiety, can lead an individual to exhibit strong
physiological indicators such as sweating, a dry mouth, or feeling unwell [8,33–35]. An-
other example is the state of happiness, in which the response pattern is characterized
by increased cardiac activity, vasodilation, increased electrodermal activity, and increased
respiratory activity [30].

The expression of emotions through physiological responses is a natural process, usu-
ally unconscious and controlled by the central nervous system, which makes it difficult
for the subject to fake or mask his/her emotional reactions. Thus, the inference of emo-
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tions through physiological signals has advantages compared to inference from subjective
experiences or behavioral responses [36,37].

Among the existing physiological signals, the main physiological signals and tech-
niques often applied to infer affective states are presented in detail below.

2.4.1. Electroencephalography

Electroencephalography (EEG) measures the electrical activity of the brain and is
indicated for identifying neurological changes [38]. Several features of the EEG signal, such
as the alpha and beta bands, are useful for identifying positive self-evaluative emotions such
as gratitude, inspiration, and pride; the theta and gamma bands are used to characterize
pleasure emotions such as amusement, interest, and joy [39]. For this reason, EEG signals
are used by many studies to detect an individual’s emotional responses to stimuli [40].
Krishna et al. [41], for example, proposed the use of EEG signals to identify the expressions
of emotion by physically disabled or immobilized people. Zhang et al. [42] proposed a
method for selecting the best channels of the EEG signal to identify the emotions of joy,
fear, sadness, and relaxation. Other studies seek to evaluate different emotions and discuss
which types of stimuli (visual, audio, or audiovisual) are best for establishing emotions
from EEG signals [43,44].

2.4.2. Electrocardiography

Electrocardiography (ECG) is a record of the electrical activity generated by the heart
during a time interval [45]. In the health field, it is an effective and non-invasive tool,
which, in addition to providing data to diagnose abnormalities present in the heart, can
also be used to identify the emotional states of individuals [46], since emotions can produce
variations in the signals of the ECG [37].

The main parameters of the electrocardiography signal, such as the P, Q, and T waves,
QRS complex, and QT/QTc, are often used in the analysis of an individual’s cardiac activity.
Most of the studies related to ECG-based emotion recognition focus on the evaluation of
the duration and amplitude of the QRS complex [1]. For example, C. Jing [47] analyzed
features extracted from the QRS complex and showed that sadness can be recognized more
easily and accurately than the emotion of joy. Uyarel et al. [48] analyzed the dispersion of
the QT/QTc parameter and proved that this physiological measurement can be used as a
marker to recognize intense anger.

One disadvantage of using the ECG signal is that it is very sensitive to noise and is
usually obtained in clinical spaces when the patient is in a calm state.

2.4.3. Electrodermal Activity

Electrodermal activity (EDA) is the change in electrical properties of the skin with
respect to sweat excretion, obtained by the continuously varying electrical characteristics
of human skin [1]. By applying a small electric current, the variation of skin conductance
(SC) can be measured non-invasively. In addition, the galvanic skin response (GSR) is the
measurement of the variation in SC in response to sweat excretion activity. The GSR is often
referred to as EDA or SC [49]. This is a measurement that cannot be controlled voluntarily
and is established as an important variable for measuring emotional arousal [50].

Emotional changes induce sweat reactions, which are mainly noticeable on the surface
of the fingers and soles of the feet. The sweat reaction causes a variation in the amount of
salt in human skin, and this leads to a change in the electrical resistance of the skin [51].
The conductance of the skin is mainly related to the level of excitation: if the level of
excitation increases, the conductance of the skin also increases. For this reason, some
research seeks to use the EDA signal to identify diseases and changes in affective states
such as stress, excitement, frustration, anger, and pain [52–55]. Compared to EEG and
ECG, GSR requires a smaller quantity of electrodes for measurement, which facilitates the
use of wearable devices and the definition of emotional states when a person engages in
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normal activities [1]. However, like the other techniques, its accuracy is also affected by
motion artifacts.

2.4.4. Electromyography

Electromyography (EMG) is employed to measure muscle electrical activity for the
stimulation of a nerve or muscle [56]. EMG is used in many areas of science, includ-
ing in the assessment of neuromuscular health [57], assessment of muscle activation for
sports [58], gait analysis [59], assessment of muscle fatigue [60], in the actuation and control
of prostheses and exoskeletons [61], and in the field of psychology [62].

In the field of emotion recognition, EMG is used to find the relationship between
cognitive emotions and physiological reactions [63]. Most of the works using EMG for the
recognition of emotional reactions focus on the analysis of facial expressions. For example,
Kim et al. [64] explored the use of facial EMG and EEG signals for the classification of the
emotions of happiness, surprise, fear, anger, sadness, and disgust. Mithbavkar et al. [65]
developed a dataset for emotion recognition based on data collected through electromyo-
grams using dance to stimulate emotional responses such as astonishment, awe, humor,
and tranquility. While Wioleta [66] proposed feature extraction from EMG, blood pressure,
and GSR measurements for the detection of the emotional stages of happiness, sadness,
anger, hatred, and respect.

Just as in procedures that require contact measurement, such as EEG and ECG, EMG
affects people’s comfort levels and creates limitations for its continuous use. However, it is
a very good technique for detecting strong emotions, since drastic changes in valence and
intensity of arousal produce changes in facial expressions [67].

2.4.5. Heart Rate Variability

Heart rate variability (HRV) represents the variation in the time interval between
consecutive heartbeats [68]. Heart rate variability is regulated by the autonomic nervous
system, specifically by sympathetic nerves, which speed up the heart rate, and parasym-
pathetic nerves, which slow down the heart rate. Changes in heart rate are influenced by
emotions, stress, and exercise [68,69]. HRV measurements are used to monitor affective
states such as anxiety, anger, fear, stress, and relaxation [70] or aid in the detection or treat-
ment of psychiatric illnesses such as depression [71], anxiety [72], and drug addiction [73].
Thanapattheerakul et al. [74], for example, showed that feeling sad when induced by crying
tends to increase HRV. This feature of HRV shows that the intensity and context in which
stimuli are presented can affect the detection of emotional stages.

HRV measurements are commonly obtained from the ECG signal, which provides
information on the variation of the RR interval in relation to time. However, they suffer
from the sensitivity and noise problems already mentioned regarding the use of ECG. One
alternative that has been widely used, mainly by the immense proliferation of smartwatches,
is photoplethysmography (PPG). This technique is used to detect changes in blood volume
in microvascular tissues; its operation is via a photodetector and a light source, which
illuminates the tissue, and the photodetector measures the small variations in the reflected
light [68]. There are a variety of studies that prove the advantages of using this technique
for HRV signal extraction when compared to ECG [75,76]. Besides the usual PPG approach
already mentioned, there is also the remote one, by which it is possible to retrieve the
cardiovascular pulse waveform by measuring the variations in the light emitted remotely
in the environment by means of computer vision systems [68]. This approach increases the
comfort level of the person during the measurement procedure, but increases the noise in
the signal, thus requiring advanced signal processing and analysis systems.

Emotion recognition systems, such as those presented in this paper, can be used to infer
the emotional states of humans. Nonetheless, the analysis of high-dimensional patterns
and correlations of the above physiological signals would be practically impossible without
computers and computational methods such as machine learning [77].
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3. Towards Self-Learning Systems for Emotion Recognition

Inferring a person’s emotional state using physiological data collected from wear-
able devices is challenging. Typically, machine learning models are built from features
extracted from the raw data of the collected signals, which are usually determined based
on knowledge of the problem domain. For example, extracted statistical measures, such as
the kurtosis and asymmetry of the ECG signal, are used to detect stress [45].

This procedure of designing sophisticated feature extraction techniques or creating
them manually is called feature engineering and depends on an expert. Handcrafted
approaches of feature extraction are usually unable to extract high-level discriminative
information from raw data due to different problems such as learning variety from complex
data, overcoming the noises present in the signals, and dealing with high intra-class
diversity [78].

Deep learning provides a set of methods to overcome these limitations and is one of
the most successful approaches to learning high-level representation from complex raw
data, and it has recently made remarkable progress, especially in emotion recognition
applications [34]. In general, the methods used are based on supervised learning, in which
different architectures are trained, usually based on convolutional neural networks (CNNs)
and recurrent neural networks (RNNs) [5]. Nevertheless, the design of classification
methods based on this approach requires a large amount of data and annotations (labels)
for training the networks.

In a typical supervised learning setting, deep neural networks are dependent on the
training database (samples and labels), which means that performance and generalization
are typically limited by the size of the database. However, acquiring such a training
database can be expensive and time-consuming, especially in healthcare since labeling
samples requires even more specialized knowledge, and recent privacy concerns make it
difficult to use real user data.

Given these problems, current research focuses on developing methods that do not
require or only require few labeled data. This has led to advances in the field of machine
learning such as the introduction of transfer learning methods, semi-supervised learning,
and self-supervised learning [10].

Transfer learning is a popular approach for circumventing the limitation of labeled
datasets. Transfer learning attempts to improve traditional machine learning by transferring
the knowledge learned on one or more source tasks and using it to improve learning on a
related target task. To do this, the model is trained for a similar problem for which a labeled
database exists; hence, the knowledge gained serves as prior training for the target model.
In this way, transfer learning can help to reduce costs and, at the same time, improve
performance. Despite this benefit, this type of learning only works well if the original and
target tasks are related [79].

Another alternative adopted by designers of pattern recognition systems to overcome
data scarcity is to train the algorithm based on a combination of labeled and unlabeled
data; this approach is known as semi-supervised learning. Typically, this combination will
contain a very small amount of labeled data and a very large amount of unlabeled data.
The basic procedure involved is that, first, the developer clusters similar data using an
unsupervised learning algorithm and will then use the existing labeled data to label the
rest of the unlabeled data. In general, the unlabeled samples are assumed to belong to the
same or similar distributions as the labeled samples.

The area of self-supervised learning (SSL) describes a class of methods that allow
networks to take advantage of unlabeled training data and learn to extract meaningful
representations without any kind of manual annotation [11]. In this learning approach,
substitute tasks (also known as pretexts) are defined for which supervision can be acquired
from the data themselves. This makes the self-supervised learning task a promising
approach for solving problems in healthcare, since the volume of unlabeled data generated
by the numerous medical devices and services is enormous.
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Although SSL is a promising approach for learning representations from a huge
amount of unlabeled data, it has been little explored in the area of emotion recognition.
In the following section, a review of some recent works that propose deep neural network
architectures to recognize emotions using physiological data is presented.

4. Related Works

In many healthcare applications, data collection is becoming increasingly less ex-
pensive, mainly due to the employment of wearable devices; however, data annotation
still involves manual and skilled labor and is therefore expensive. In this section, recent
work to recognize emotions that uses large amounts of labeled physiological data (super-
vised approach) is presented, as well as work that attempts to reduce the cost of learning
new models using only a small proportion of labeled data (semi-supervised approach)
or employs a strategy by which the supervised task is created from the unlabeled data
(self-supervised approach).

4.1. Supervised Deep Learning

Supervised learning consists of learning models built from training samples for which
each sample has a label. This label is usually defined by an expert and is used by the model
to learn to make correct decisions. Although the process of data annotation and labeling is
costly, most emotion recognition work using physiological data adopts this approach.

Radhika and Oruganti [80] investigated the influence of multimodal data fusion on
convolutional neural network-based (CNN) models for subject-independent stress detection
via the physiological signals of electrocardiograms (ECGs) and electrodermal activities
(EDAs). The authors extracted features in the time and frequency domain from ECG and
EDA signals made available by the ASCERTAIN and CLAS datasets. Different stress
detection models were generated from the combination of the 50 most-relevant features.
The authors performed three sets of experiments on each database. On the ASCERTAIN
database, using a model built only with the characteristics extracted from the ECG signal,
they obtained 71% accuracy; with the model generated from the characteristics of the EDA
signal, they obtained 68.7% accuracy; using the characteristics extracted from the ECG and
EDA signals, they obtained an accuracy rate of 75.5%. On the CLAS database, the accuracy
rates were 71.8%, 64.4%, and 69.9% for the models generated with the ECG, EDA, and
ECG+EDA signals, respectively.

Hsu et al. [81] presented a method for human emotion recognition based on ECG
signals. The authors proposed a music induction method to induce the participants’ real
emotional states and collect the ECG signals. The physiological features of the ECG were ex-
tracted from the time and frequency domain. Then, the proposed method uses a sequential
forward floating selection-kernel-based class separability-based feature selection algorithm
and generalized discriminant analysis to select the most relevant features associated with
emotions and reduce the feature space, respectively. Positive/negative valence, high/low
arousal, and four types of emotions (joy, tension, sadness, and tranquility) are recognized
using least-squares support vector machine (LS-SVM) recognizers. Experimental results
with data from 31 participants showed that the proposed method obtained classification
rates of 82.78% for valence, 72.91% for arousal, and 61.52% for the four discrete emotions.

Montesinos et al. [82] proposed a multimodal machine learning method to recognize
acute stress based on biomarkers extracted from physiological signals, which were acquired
from the Shimmer3 ECG Unit wearable devices and the Empatica E4 wristband. Features
extracted from the physiological signals ECG, blood volume pulse (BVP), skin temperature
(SKT), respiration (RSP), and EDA were used to generate stress detection models using the
k-NN, decision tree, and random forest classifiers. Experimental results with 30 participants,
induced to stress and non-stress states, showed that it was possible to detect acute stress
episodes with an accuracy of 84.13% for an unseen test set using the proposed multimodal
machine learning and sensor data fusion techniques.
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Bobade and Vani [83] proposed stress recognition through physiological signals us-
ing shallow and deep machine learning algorithms. Data from different sensors such
as acceleration, electrocardiogram, pulse blood volume, body temperature, respiration,
electromyogram, and electrothermal activity data were used to classify three physiological
states: fun, neutral, and stress state. Evaluations of the methods treating the problem as
a binary problem (stress and non-stress) were also carried out. During the study, using
machine learning techniques, accuracies of up to 81.65% and 93.20% were achieved for
binary and three-class classification problems, respectively, and using deep learning, they
achieved accuracy up to 84.32% and 95.21%, respectively.

Yang et al. [84] proposed a platform to recognize emotions based on two input systems:
an emotion recognition system based on electroencephalogram (EEG) signals and a system
based on ECG and PPG. The first system has as the input the spectrogram features obtained
from the short-time Fourier transform of the EEG, while the second uses a multimodal
implementation based on the statistical and intrinsic features of the ECG and PPG signals
for the classification of three emotion states: happiness, anger, and sadness. The first model
was evaluated with the leave-one-subject-out technique and obtained 76.94% accuracy,
and the second with the subject-dependent technique showed 76.80% accuracy.

Behinaein et al. [85] proposed a novel architecture for stress recognition via ECG that
consists of a deep neural network with convolutional layers and a transformer mechanism.
In more detail, the architecture is made up of three subnets: a convolutional subnet,
a transform encoder, and a fully connected (FC) subnet. Experiments on two databases
using leave-one-subject-out validation demonstrated that, by fine-tuning the model with
only a fraction of the test data (10%), it achieved optimal results, an accuracy of up to 71.4%,
which is comparable to or better than state-of-the-art models for ECG-based stress detection.

Furthermore, Siddharth et al. [86] proposed a hybrid deep neural network for emotion
recognition from ECG and PPG signals. For this, features from these signals were extracted
and fused with deep-learning-based spectrogram features. Experiments showed that the
hybrid method can set up benchmarks for the AMIGOS and DREAMER datasets.

4.2. Semi-Supervised Learning

While labeling data is expensive, collecting physiological data to recognize emotions
is relatively easy and part of the clinical routine. The use of wearable health devices (e.g.,
fitness trackers, ECG monitors, blood pressure monitors, and biosensors) has further facili-
tated this collection process. Therefore, using these unlabeled data can not only improve
the performance of classifiers, but also decreases the cost of designing emotion recognition
systems. In this context, recent works have proposed semi-supervised methods for emotion
classification based on the combination of supervised and unsupervised approaches.

Zhang et al. [87] proposed a semi-supervised approach for recognizing emotions
using a deep recurrent autoencoder (AE). The method was trained in an unsupervised
manner, and its encoder component was trained simultaneously in a supervised manner.
The authors evaluated the proposed method using the SEED database and compared
the obtained results with other works in the literature. The evaluation showed that the
proposed method consistently achieved better results than other methods when few labeled
samples were used (3%, 5%, and 10%).

Peng et al. [88] proposed a self-weighted, semi-supervised classification (SWSC) model
that is capable of recognizing emotions from EEG signals. The SWSC incorporates a
self-weighted variable that assigns weights to features according to their relevance in
different emotion recognition sessions using combinations of labeled and unlabeled data.
Such an approach allows the proposed model to identify the frequency bands and EEG
channels, which are considered stable for affective pattern recognition. Experimental results
demonstrated that the self-weighting approach can effectively improve emotion recognition
performance, and it achieved an average accuracy of up to 81.52%.

Luo et al. [89] presented a model to recognize affective states (valence, arousal,
and dominance) based on a stacked denoising autoencoder (SDA) architecture with unsu-
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pervised pre-training followed by supervised fine-tuning. This semi-supervised learning
architecture is used to extract emotional data representations from physiological signals
without any human intervention. Experiments were conducted using manually extracted
features (handcrafted features) and with data augmentation. The results showed that the
proposed SDA overlaps with the other three deep network models evaluated.

4.3. Self-Supervised Learning

Self-supervised methods have been successfully employed in computer vision ap-
plications and have been the natural choice to deal with the scarcity of labeled data [10].
However, the use of transformations of physiological signals collected from different
sensors to automatically generate labels has been little explored in the area of emotion
recognition. Sarkar and Etemad [5] presented a self-supervised multitasking approach for
emotion recognition based on ECG signals. The proposed solution consists of two steps:
self-supervised training and an emotion recognition network. First, the network learns the
abstract high-level representations from the unlabeled ECG data. For this, the authors used
six different signal transformations for the collected ECG signals. Then, the six transformed
signals together with the original signals are used to train a convolutional neural network
to recognize the transformations. In the next step, the weights of the self-learning network
are transferred to an emotion recognition network, so that the convolutional layers are kept
frozen, and the dense layers are trained with labeled ECG data. Experimental results using
four datasets (AMIGOS, WESAD, DREAMER, and SWELL) showed that the proposed
model had higher accuracy rates compared to the same network when trained in a fully
supervised manner.

Zhang, Zhong, and Liu [90] proposed a framework for self-supervised data augmenta-
tion in order to recognize emotions from EEG signals. The framework, named GANSER,
is composed of a network based on an adversarial augmentation network (AAN) and a
multi-factor training network. The AAN employs a masking transformation operation
to mask parts of the EEG signals and force a generative adversarial network to generate
EEG signal samples based on the remaining parts. Then, the simulated EEG signals are
used in training emotion recognition models. The experimental results using three datasets
showed that the proposed framework solves the data sparsity problem and outperforms
the evaluated existing methods.

Rodriguez et al. [91] proposed a transform-based model to process ECG signals,
in which this mechanism is used to build contextualized representations of the signal, which
give more importance to the relevant parts to predict emotions. The authors employed
self-supervised learning to solve the problem with a small amount of labeled data. This
approach allowed several unlabeled datasets of the ECG signal to be used to pre-train the
emotion model, then the model was optimized for emotion recognition on the AMIGOS
database. The experiments indicated that the proposed model achieved better results when
compared to the works in the literature with the supervised approach using the same
database. The best result was obtained by pre-training the model to predict two classes:
88% accuracy for arousal prediction and approximately 83% for valence prediction.

5. Understanding Self-Supervised Learning with an Example

Self-supervised learning has become one of the main options for creating scalable
models in various application domains, including healthcare. The main advantage of the
self-supervised learning approach lies in the ability of a system to learn without manual
annotation. In this section, an example of an application of self-supervised representa-
tion learning for emotion recognition is described, with the goal of demonstrating the
advantages of developing future methods that apply this new approach.

5.1. Overview

Self-supervised learning is an innovation of unsupervised learning, which has recently
been studied with the goal of learning high-level representations from unlabeled data and
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alleviating the dependency of large labeled data. In this learning approach, the goal is
to learn a general-purpose representation based on a self-supervised deep network and
use that representation later to solve the target task. The process consists of two steps,
as illustrated in Figure 4.

Figure 4. Overview of the self-supervised approach for emotion classification. The idea is to train
a deep neural network to recognize signal transformations (i.e., pretext tasks), as shown in Step 1.
The learned knowledge is transferred to an emotion recognition model (Step 2) to improve the
detection rate.

The first step (1) consists of training the self-supervised deep network Mθ(.) designed
to solve multiple pretext tasks. Therefore, a set of distinct transformations is defined as
{Jt(.)}t∈T , where Jt(.) is a function that applies a particular signal transformation technique
t to time series (signal) x ∈ R2 to yield a transformed version of the signal Jt(x).

The network Mθ(.) has a common trunk (shared layers) and individual head for
each pretext task; it takes an input sequence and produces a probability of the signal
being a transformed version of the original, i.e., P(Jt|x) = Mθ(x). Therefore, given a set of
unlabeled signals, we can automatically construct a self-supervised labeled dataset
D = {{Jt(xi), True), (xi, False)}t∈T}m

i=1.
Hence, given this set of m training instances, the multi-task self-supervised training

objective that a model must learn to solve is:

min
θ
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where yt
i is the automatically generated label, Mθ(xt) is the predicted probability of x being

a transformed version t, θ are the network’s learnable parameters, mt represents the number
of instances for a task, and ψt is the loss-weight of task t.

With the model pre-trained in a self-supervised way, the second step (2) consists of
reusing the self-supervised representation to specialize a model for a target task. In the
following example, a deep neural network Nθ is designed to classify emotions. This
network has a common trunk architecture that was used in self-supervised learning and
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shares the same learned parameters. The common trunk (shared layers) is frozen, as with
most transfer learning methods, and only the head is trained from scratch.

The model is trained with the true emotion labels yi for emotion classification; it
takes an input sequence xi and produces a probability vector of emotion classes. Finally,
the training objective is minimizing the cross-entropy loss:

min
θ

C

∑
i=1

yi log Nθ(xi), (2)

where C is the total number of emotion classes.

5.2. Self-Supervised Task: Signal Transformations

Predicting the rotation of an image [92] or predicting a word by considering the
surrounding words [93] comprises some commonly used pretext tasks in the computer
vision and natural language processing fields, respectively. An example of a pretext task
for physiological signal applications is to differentiate the original signal from its perturbed
or transformed version. In this example, six signal transformations are used for self-
supervising a network. These signal transformations have already been used in human
activity recognition problems [94] and for emotions [5]. The transformations used in this
work are summarized in Table 1 below.

Table 1. Description of pretext tasks selected for the self-supervised model example.

Pretext Task Description Parameter

Noised This transformation adds random noise to the
original input signal.

Signal-to-noise
ratio 15

Scaled This transformation applies a change in the
magnitudes of the signal samples from the mul-
tiplication of a scalar value.

Scale factor 1.1

Negated This transformation applies a polarity shift of
the signal samples from the inversion function.

-

Horizontally flipped This transformation applies a change in the tem-
poral order of the samples from an inversion
function in time.

-

Permuted This transformation randomly perturbs sam-
ples within a time series by slicing and swap-
ping different segments of the time series to
generate a new one.

Permutation pieces 20

Time-warped This transformation locally extends or deforms
the time series by gently distorting time inter-
vals between values.

Stretch factor 1.05,
time warping

pieces 20

The main motivation for using the pretext tasks defined above is to allow the network
to capture the main characteristics of the signal. More specifically, for the network to
successfully recognize whether the signal is transformed or not, it must learn possible
distortions that the signal may suffer. In practice, this knowledge will be useful in the final
task of the self-supervised approach for detecting emotions.

5.3. Network Architecture and Implementation

A convolutional neural network model was implemented to learn to classify signal
transformations in the self-supervised pre-training phase. Figure 5 illustrates the common
trunk containing three blocks that contain two 1D convolution layers with feature mappings
of 32, 64, and 128, kernel sizes of 32, 16, and 8, respectively, and 1 stride. An L2 kernel
regularizer with a rate of 0.0001 was used in the convolution blocks and fully connected
dense layers. Global max pooling was used after the last convolutional layer to aggregate
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all high-level discriminative features. In addition, each specific path was composed of
two fully connected dense neural layers with 128 hidden units, followed by an output
layer with the sigmoid activation function for binary classification. In all layers (except
the output), ReLU activation was applied, and the network was trained with the Adam
optimizer, with a learning rate of 0.0001.

Figure 5. The architecture of the implemented convolutional neural network. The first stage is pre-
training with 7 simultaneous tasks. The second stage is supervised training from the representation
obtained in the self-supervised pre-training.

Table 2 summarizes the configuration parameters used to construct the self-supervised
CNN. In Step 2, the emotion recognition model uses the same configuration parameters
and layers as the self-supervised CNN, with the exception of the heads, which contain
dense neural layers that are fully connected and SoftMax activation.

The configuration of the neural network used to recognize emotions is summarized in
Table 3.

Table 2. Specification of the multi-task deep convolutional neural network that was implemented for
self-supervised pre-training.

Layer Specification Shape

Input - 2560 × 1

Shared layers

Conv block 1 2 × (Conv1D, 1 × 32, 32, ReLU) 2560 × 32
Maxpool, 1 × 8, Stride 2 1277 × 32

Conv block 2 2 × (Conv1D, 1 × 16, 64, ReLU) 1277 × 64
Maxpool, 1 × 8, Stride 2 635 × 64

Conv block 3 2 × (Conv1D, 1 × 8, 128, ReLU) 635 × 128
Global max pooling 1 × 128

Task-specific layers 2 × (Dense, 128 units) 128× 7 parallel tasks

Output Sigmoid 2× 7 parallel outputs
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Table 3. Convolutional neural network layer structure and parameters for fully supervised training,
as well as transfer learning settings/fine-tuning.

Layer Specification Shape

Input - 2560 × 1

Shared layers
Conv Block 1
Conv Block 2
Conv Block 3

Emotion recognition 2 × (Dense, 512 units) 512Dense layers

Emotion recognition output

AMIGOS [14]

Softmax

Arousal 9
Valence 9

DREAMER [15] Arousal 5
Valence 5

SWELL [16]
Arousal 9
Valence 9

Affective state 3

5.4. Datasets

Three public datasets (AMIGOS, DREAMER, and SWELL) were selected and combined
to evaluate the self-supervised learning approach. In general, the datasets contain sensor
data and are labeled with affective states. However, each one has distinct characteristics,
such as the equipment used to collect the signals, the collection protocol, the stimuli to
the participants (e.g., sound or audiovisual), and the emotion model (e.g., discrete or
dimensional), among other features. Table 4 presents a summary of the selected datasets
with emphasis on the number of classes per category of the available label.

Table 4. Summary of the datasets with their respective characteristics such as the number of classes
and attributes.

Dataset Class Group No. of Classes

AMIGOS [14] Arousal 9
Valence 9

DREAMER [15] Arousal 5
Valence 5

SWELL [16]
Arousal 9
Valence 9

Affective state 3

5.4.1. AMIGOS

The AMIGOS dataset [14] was collected to study each individual’s personality, mood,
and affective responses based on neurological and physiological signals by exposing
40 participants to multimedia content in two different contexts, alone and in a group of
4 people.

For the execution of this study, participants watched short and long video clips to
stimulate emotions. The short video clips had a duration of 250 s, while the long video clips
had a duration of 14 min. ECG signals were captured using Shimmer sensors at a sampling
frequency of 256 Hz. Three electrodes were installed on the body of each participant, one
on each arm and the third one on the inner part of the left ankle. A total of 16 short video
clips were shown to each participant, and 4 long video clips were shown to 37 participants,
17 alone and 20 in 5 groups of 4 people.

Regarding emotion labeling, internal labeling was performed, in which participants
self-rated their own affective states in arousal (1 to 9) and valence (1 to 9) scores at the end
of each video clip.
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5.4.2. DREAMER

The DREAMER database [15] consists of EEG and ECG signal data from 23 participants
collected during emotion arousal sessions. In the sessions, participants received audio
and visual stimuli in the form of film excerpts to produce 9 different affective responses,
amusement, excitement, joy, calm, anger, disgust, fear, sadness, and surprise. A total of
18 film clips were shown to each participant, each clip lasting 60 s. In addition, neutral
video clips were shown before each film segment to help participants return to a neutral
affective state.

Regarding emotion labeling, after each film excerpt, participants responded with their
self-assessments in arousal (1 to 5) and valence (1 to 5) scores.

For the execution of this study, ECG signals were collected using a SHIMMER ECG
sensor, at a sampling rate of 256 Hz. Three electrodes were installed on the body of each
participant, one on each arm and the third one on the inner part of the left ankle.

5.4.3. SWELL

The SWELL database [16] was compiled to study stress and user modeling. ECG
signals were collected from 25 participants while performing typical activities such as
writing reports, giving presentations, reading emails, and searching for information on the
Internet. At the same time, the work environment was altered to include stressful elements
such as interruptions by emails and demands regarding the length of time to complete
the activity.

For the execution of this study, three affective states were considered: neutral (activity
without interruption and without time constraints for completing the activity), time-based
stress (30 min for completing the activity), and interruption-based stress (sending a va-
riety of emails, some important and others irrelevant). In relation to emotion labeling,
participants reported their self-assessments in arousal (1 to 9) and valence (1 to 9) scores.

The ECG signal was collected using the Mobi TMSI device at a sampling rate of
2048 Hz with electrodes positioned around the heart. One was placed below the right col-
larbone and the other below the chest, with the ground electrode below the left collarbone.

5.4.4. Data Pre-Processing

To minimize the effects of variations and discrepancies present in the datasets three
pre-processing steps were performed on the data. First, the ECG signals present in the
SWELL database were re-sampled at 256 Hz so that the sampling rate was like those
adopted in the AMIGOS and DREAMER datasets. Next, a high-pass IIR (finite impulse
response) filter with a cutoff frequency of 0.8 Hz was used to eliminate low-frequency
signals, which are usually produced by electrode polarization. Finally, in the last step,
the user-specific z-score normalization of the signals was applied. As a result, the new
z-score distributions of the signals from each sensor were centered to have a mean of zero
and a standard deviation of one.

After pre-processing, the ECG signals were segmented into a fixed-size window of
10 s without overlapping data, thus avoiding any potential data leakage.

To implement, train, and evaluate the deep neural network architecture, the Tensor-
Flow 2 framework was used and run on a computer with an Nvidia Geforce 1080Ti video
card. In addition, the Adam optimizer with a learning rate of 0.001 and 128 batch size was
used. In the pre-training stage, 150 training epochs were run, while for the specialization
stage, 250 training epochs were run.

As in related work [5], a 10-fold cross-validation was applied to evaluate the model
performance for the three datasets. Metrics, such as the accuracy and F1-score, were used.
Furthermore, for comparison purposes, results from the same neural architecture trained
in a fully supervised manner are presented.
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6. Results

Table 5 presents the accuracy and F1-score results obtained in the self-supervised pre-
training stage of the implemented neural network. These results were obtained considering
the combination of training data from the three selected bases. The mean and standard
deviation values were obtained from 10-fold cross-validation. The results show that the
self-supervised training achieved average values of 99.88% and 97.84% for the accuracy
and F1-score, respectively, for all the pretext tasks. The lowest F1-scores were 94.27% and
95.03%, respectively, for the original and scaled pretext tasks.

Table 5. Accuracy and F1-score results for the pretext tasks selected for self-supervised training.

Pretext Task Accuracy F1-Score

Original signal 98.38%± 0.13 94.27%± 0.51
Noised 99.44%± 0.03 98.05%± 0.11
Scaled 98.59%± 0.09 95.03%± 0.30

Negated 99.88%± 0.04 99.59%± 0.15
Horizontally flipped 99.83%± 0.02 99.40%± 0.08

Permuted 99.69%± 0.04 98.94%± 0.16
Time-warped 99.88%± 0.03 99.58%± 0.12

Mean 99.88% ± 0.03 97.84% ± 0.21

Figure 6 shows the obtained values of the model loss function over the self-supervised
training for each fold (Figure 6a) and the obtained values of the F1-score on the test set for
each pretext task (Figure 6b). These results demonstrate that the model minimized the error
on the training set for the 10 folds over the 150 trained epochs. With respect to the accuracy,
the noised tasks and original signal did not converge quickly to their highest values, unlike
the other tasks.

(a) (b)
Figure 6. (a) Results of the loss functions obtained during the self-supervised training of the
implemented neural network. (b) Accuracy results obtained in the test set for each of the seven
pretext tasks.

Table 6 presents the results obtained individually for each of the datasets in the
model specialization step for emotion classifications. In addition, the results of the fully
supervised training for the same neural network model implemented are presented in
order to compare performances.
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Table 6. Accuracy and F1-score results for emotion classification of the self-supervised model
compared to fully supervised training of the same implemented neural architecture.

Dataset Group Class
Fully-Supervised Self-Supervised

Accuracy F1-Score Accuracy F1-Score

AMIGOS [14] Arousal 56.94%± 17.30 65.05%± 6.65 80.71% ± 1.79 78.62% ± 1.97
Valence 54.44%± 15.41 57.98%± 9.73 77.20% ± 1.06 74.17% ± 1.06

DREAMER [15] Arousal 42.51%± 3.63 38.60%± 3.39 69.44% ± 2.85 67.64% ± 4.55
Valence 32.80%± 2.06 32.04%± 2.63 66.62% ± 2.97 65.91% ± 2.96

SWELL [16]
Arousal 92.15%± 1.42 92.38%± 1.81 93.09% ± 0.99 93.17% ± 1.28
Valence 92.67%± 2.31 93.33%± 2.21 93.28% ± 1.09 93.80% ± 1.11

Affective State 89.89%± 0.89 89.59%± 1.05 91.09% ± 0.79 90.84% ± 0.81

The results demonstrate that the proposed self-supervised model is effective in emo-
tion classification for three emotion datasets evaluated when compared to the same neural
model trained in a fully supervised manner. For AMIGOS, the self-supervised model
obtained an accuracy of 80.71% and 77.20% for arousal and valence, respectively. Regard-
ing the F1-score, compared to the supervised model, the self-supervised model showed
a positive variance of 13.57% and 16.19% for arousal and valence, respectively. For the
DREAMER database, the accuracy results were 69.44% and 66.62% for arousal and valence,
respectively. However, the self-supervised model showed a positive F1-score performance
over the fully-supervised model of 29.04% and 33.87%, respectively, for arousal and valence.
Finally, for the SWELL database, both models achieved the highest accuracy values, with a
mean greater than 93%, 93%, and 901% for arousal, valence, and affective state, respec-
tively, and an F1-score greater than 93%, 93%, and 91% for arousal, valence, and affective
state, respectively.

Comparisons with Other Approaches

The tables below show the results of various state-of-the-art methods for emotion
recognition tasks reported on the AMIGOS, DREAMER, and SWELL datasets. These
results are not directly comparable with one another, nor are they directly comparable
with the proposed model. This is because all works used different experiment protocols,
such as different segment sizes, different pre-processing steps, different data separations,
independent and subject-dependent evaluations, etc. Nevertheless, to give a relative
summary of the performances achieved and to compare the proposed model as fairly
as possible with the other approaches, the self-supervised model was fully retrained
and evaluated for binary emotion recognition (high/low levels of arousal and valence).
Therefore, the labels used in the AMIGOS, DREAMER, and SWELL datasets were changed
using the mean value of the arousal scale rating and the mean value of the valence scale
rating as threshold values to determine a low or high level. The affective state labels used
in the SWELL dataset were changed to the no-stress state (“neutral” sessions) and stress
state (“time pressure” and “interruptions” sessions).

Table 7 presents the mean accuracies and mean F1 scores for the emotion classifiers
evaluated on the AMIGOS dataset. The proposed model achieved an F1-score of 85.29%
for arousal and 80.24% for valence. As a result, compared to supervised hybrid deep
learning [86], the model outperformed with a positive difference of 5.29% and 4.24%,
respectively. Compared to the SSL model by Sakar et al. [5], the model presented lower
F1-score values, with negative differences of 2.29% and 2.76% for arousal and valence,
respectively. Although both works used the same training approach, hyperparameter
optimization and fine-tuning were required to achieve the best classification performance.
It should be remembered that the goal of this study was not to determine the most effective
classification model, but to highlight the effectiveness of using SSL for emotion recognition.
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Table 7. Classification results reported by various state-of-the-art works on the AMIGOS dataset.

Study Approach Arousal Valence
Accuracy F1-Score Accuracy F1-Score

Hybrid Deep Learning [86] Supervised 81.89% 80.00% 82.74% 76.00%
Transformer [91] SSL 88.00% 87.00% 83.00% 83.00%
Proposed Model SSL 86.00% 85.29% 80.49% 80.24%

Table 8 presents the mean accuracies and mean F1-scores for the emotion classifiers
evaluated on the DREAMER dataset. The proposed model achieved an F1-score of 70.86%
for arousal and 68.49% for valence. Compared with the other studies, the proposed model
was significantly lower than the supervised hybrid deep learning model [86] and the SSL
model developed by Sarkar et al. [5]. This discrepancy is directly related to the way the
signal data were processed. In the hybrid deep learning study, features were extracted
from both the ECG signal and the PPG signal, as well as using a more robust architecture.
Moreover, Sakar et al. extracted features through two channels of ECG signals (right-arm
lead and left-arm lead). In our study, only one ECG channel (the right-arm lead) was used
to extract the self-supervised representation and train the emotion classifier model.

Table 8. Classification results reported by various state-of-the-art works on the DREAMER dataset.

Study Approach Arousal Valence
Accuracy F1-Score Accuracy F1-Score

Hybrid Deep Learning [86] Supervised 80.68% 77.00% 80.43% 78.00%
CNN [5] SSL 85.90% 85.90% 85.00% 84.5%

Proposed Model SSL 71.27% 70.86% 70.24% 68.49%

Finally, Table 9 presents the mean accuracies and mean F1-scores for the emotion clas-
sifiers evaluated on the SWELL dataset. The proposed model outperformed the supervised-
transformer-based study [85] for affective state classification and showed comparable
results to the SSL model by Sarkar et al. [5] for arousal, valence, and affective state.

Table 9. Classification results reported by various state-of-the-art works on the SWELL dataset.

Study Approach Arousal Valence Affective State
Accuracy F1-Score Accuracy F1-Score Accuracy F1 Score

Transformer [85] 1 Supervised − − − − 71.60% 74.20%
CNN [5] SSL 96.70% 95.40% 97.30% 96.9% 93.30%% 92.40%

Proposed Model SSL 96.94% 96.87% 95.58% 95.58% 95.10% 94.84%
1 Arousal and Valence results were not reported by the authors.

7. Discussion

In summary, the analysis above showed that the self-supervised approach can achieve
results that are on par with or better than fully supervised learning. The findings showed
that unlabeled data from three datasets merged to train a model to perform signal trans-
formation classification are able to produce a good and generalizable feature extractor.
With the transfer learning, this feature extractor can be reused to train specific models for
different target tasks, as shown in the case study for arousal, valence, and affective state.

We emphasize that self-learning can transfer knowledge, which is an important benefit
for training networks in real-world settings where there is little or no supervision to learn a
model of sufficient quality from scratch. However, a disadvantage would be an increase in
computational cost, because the pre-training step requires more time and computational
resources to generate the self-supervised training pseudo-labels. Future work to address
this issue has recently been investigated through the use of new training methods (e.g.,
self-adaptive training) [95].
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8. Conclusions

The problem of recognizing emotions has proven to be a challenging task given the
complexity found in the theoretical information on the subject, as well as the various
existing approaches and state-of-the-art techniques raised in this research. In this work,
a methodology for self-supervised training of deep neural networks for the problem at
hand was presented, as well as the advantages of applying this new approach to improve
classification rates and reuse the learned representation for new contexts (e.g., database,
sensors, representation models).

The self-supervised learning approach enables a representation (feature extractor)
to be created from large amounts of unlabeled data and the representation to be reused
to specialize models for new problems such as emotion recognition. The experimental
results showed that the pretext tasks applied in the pre-training of the neural network
were able to provide relevant information in order to obtain a high-level representation.
Moreover, the effectiveness of this learned representation was evaluated for the emotion
recognition problem via transfer learning and then compared with the fully supervised
training approach. We believe that the incorporation of new pretext tasks in the pre-training
of the representation extractor model is a promising future direction for self-supervised
learning and is beneficial for generalization and performance improvement in emotion
recognition problems, especially in those cases where there is a scarcity of labeled data.
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