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Abstract: The remaining useful life (RUL) prediction is important for improving the safety, supporta-
bility, maintainability, and reliability of modern industrial equipment. The traditional data-driven
rolling bearing RUL prediction methods require a substantial amount of prior knowledge to extract
degraded features. A large number of recurrent neural networks (RNNs) have been applied to RUL,
but their shortcomings of long-term dependence and inability to remember long-term historical
information can result in low RUL prediction accuracy. To address this limitation, this paper proposes
an RUL prediction method based on adaptive shrinkage processing and a temporal convolutional
network (TCN). In the proposed method, instead of performing the feature extraction to preprocess
the original data, the multi-channel data are directly used as an input of a prediction network. In
addition, an adaptive shrinkage processing sub-network is designed to allocate the parameters of the
soft-thresholding function adaptively to reduce noise-related information amount while retaining
useful features. Therefore, compared with the existing RUL prediction methods, the proposed method
can more accurately describe RUL based on the original historical data. Through experiments on
a PHM2012 rolling bearing data set, a XJTU-SY data set and comparison with different methods,
the predicted mean absolute error (MAE) is reduced by 52% at most, and the root mean square
error (RMSE) is reduced by 64% at most. The experimental results show that the proposed adaptive
shrinkage processing method, combined with the TCN model, can predict the RUL accurately and
has a high application value.

Keywords: remaining useful life; deep learning; temporal convolutional network; adaptive shrink-
age processing

1. Introduction

With the rapid development of computing methods and information technology,
modern production systems have become more complex [1]. In recent years, the prognosis
and health management (PHM) has been a common and effective way to improve the
work availability, safety, supportability, maintainability and reliability of modern industrial
equipment and reduce life cycle costs, and thus has received widespread attention from
both academia and the industry. Among the processes involved in the PHM framework,
the remaining useful life (RUL) prediction represents a key task for PHM [2] and forms
the basis for the decision-making of management activities. The purpose of the RUL
prediction includes predicting when a system or component will operate normally, warning
of impending failures, and helping to prevent industrial mishaps to a considerable extent.
Therefore, an efficient RUL prediction method is urgently needed in the industrial field.
Thus, the construction of an accurate RUL prediction model is essential to realizing the
above-mentioned tasks.

In the past decade, RUL prediction technology has made great progress, mainly
including model-based methods, data-driven methods and hybrid methods [3,4]. Among
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them, model-based methods usually need to establish failure degradation models for
research objects, and generally do not have generalization. Due to the complexity of
working conditions, the complexity of mechanical equipment and the different degradation
mechanisms, the process of obtaining failure models is complex, and the prediction effect
is difficult to guarantee [5]. The data-driven method is useful to explore the relationship
with the remaining life from the data collected by sensors through machine learning
and statistical methods [6]. Traditional data-driven methods (such as support vector
machine [7], neural network [8], etc.) have achieved some results in residual life prediction.
However, with the complexity and integration of mechanical equipment, the collected
sensor data are becoming larger and larger and it is difficult to obtain the characteristic
relationships contained therein, so there are certain errors in the accuracy of residual life
prediction results.

Deep learning has a strong nonlinear mapping ability and feature extraction ability,
and it is increasingly used in the field of RUL prediction and health monitoring [9]. In RUL
prediction, recurrent neural network and its improved variants have been widely used.
For example, Senanayake et al. [10] used an autoencoders and RNN to predict bearing
RUL. Luo et al. [11] used a BiLSTM model to predict the degradation trend of roller bearing
performance, and verified the effectiveness and robustness of the proposed method through
experiments. Zhang et al. [12] proposed a novel bidirectional gated recurrent unit with
a temporal self-attention mechanism (BiGRU-TSAM) to predict RUL. Zhang et al. [13]
proposed a dual-task network based on a bidirectional gated recurrent unit (Bi-GRU) and
a multi-gate mixture of experts (MMoE), which can simultaneously evaluate the health
status and predict the RUL of mechanical equipment. These methods solve the difficult
problem of unpredictable RUL under specific conditions. However, RNN and its variants
can capture potential time patterns based on cyclic recursive structure, but it is difficult
to design and train due to its complex internal structure. In addition, the problem of
gradient explosion and gradient disappearance often leads to the low accuracy of RNN
training [14]. The emergence of convolutional neural networks (CNN) makes the prediction
method of time series data no longer limited to RNNs [15]. CNN has the advantage of
parallel computing, and when the receptive field increases, the network model can obtain
more historical information; therefore, it has also been widely used and has achieved very
good results. For example, in Ge et al. [16], a short-term traffic speed prediction method
based on graph attention convolution network was proposed, and good prediction results
were obtained. Li et al. [17] proposed a CNN-based RUL prediction method trained with a
cycle-consistent learning scheme to align the data of different entities in similar degradation
levels. Lin et al. [18] proposed a trend attention fully convolution network (TaFCN) to
further improve the prediction performance. However, when CNN processes long time
series, it often needs a deeper structure to obtain enough receptive fields, which will reduce
the training efficiency.

The temporal convolutional networks (TCNs) have been the latest improvement in
the CNN structure, which extracts historical data using the dilated causal convolution
(DCC). The dilated causal convolution usually includes fewer layers than the classical
CNN but can capture the same receptive field. Therefore, TCNs have a better time series
prediction ability than CNNs [19]. In addition, TCN has no cyclic connection, which makes
it more efficient in training than RNN in computation. Recent studies have pointed out
the potential of TCN in prediction; for instance, Sun et al. [20] used a TCN to predict the
RUL of rotating machinery and Gan et al. [21] used a TCN to predict the wind speed
range of wind turbines successfully. However, the vibration signal we collected from the
sensor contains noise. In RUL prediction, TCN is often affected by noise when extracting
degradation features, which makes it impossible to accurately capture degradation features
from historical data, leading to low prediction accuracy. Moreover, due to the impact of
changes in working environment and load, the noise intensity will vary with time. The
question of how to adaptively solve the redundant information such as noise is particularly
important for RUL prediction.
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To solve these problems, this paper proposes a RUL prediction method based on
adaptive shrinkage processing and temporal convolution network (AS-TCN). Firstly, the
vibration signals monitored by multiple channels are directly used as the input of the
prediction network, without prior knowledge to extract features. Secondly, in AS-TCN,
TCN residual connection and dilated causal convolution are used to extract long-term
historical information, and an adaptive shrinkage processing sub-network is introduced to
adaptively eliminate different noises. Finally, the PHM2012 bearing data set and XJTU-SY
bearing data set are compared with the three most advanced methods, respectively. The
average MAE is reduced by 52% at most, and the average RMSE is reduced by 64%, which
verifies the effectiveness of the proposed method.

The main contributions of this paper can be summarized as follows:
(1) A new framework of RUL prediction based on AS-TCN is proposed. It can directly

use multi-channel monitored data as network input, without prior knowledge to extract
features and effectively capture the key degradation information of bearings, thus realizing
the end-to-end prediction process.

(2) Using a TCN network to build the main network can help it remember a large
amount of complete historical information, avoid the shortcomings of long-term depen-
dence and improve the accuracy of RUL prediction.

(3) Add an adaptive shrinkage processing subnet to the TCN block. The sub-network
can adaptively adjust the threshold of the soft threshold function to minimize the redun-
dant information related to noise while retaining the features that can better reflect the
degradation information.

The rest of this article is organized as follows. Section 2 briefly introduces the theo-
retical background of the TCN and adaptive contraction mechanism. Section 3 describes
the AS-TCN internal structure and implementation process. Section 4 verifies the RUL
predictive performance of the proposed rolling bearing method. Finally, Section 5 concludes
the paper and presents future work directions.

2. Theoretical Overview of TCN
2.1. Dilated Causal Convolution (DCC)

Causal convolution was first used in the WaveNets model [22] to learn the input
audio data before time τ to predict the output at time (τ + 1). The output at time τ can be
obtained only from the input data before time τ; namely, the prediction model at time τ
cannot rely on any future time step. Causal convolution adopts the method of unilateral
filling and ensures that the input size is consistent with the output size by performing the
zero filling on the input data and thus avoiding the leakage of information that never came
to the past [23].

Since there is no recurrent connection in casual convolution, a parallel input of time
series data can be adopted, so causal convolution has a faster training speed than RNNs,
particularly for the large sample time series [24]. However, when dealing with long se-
quence data, causal convolution requires a deeper network structure or a large convolution
kernel to enhance the receptive field of neurons in a neural network. For this reason, the
TCNs have been combined with the DCC technology. The dilated causal convolution has
been achieved by introducing the dilated convolution into the causal convolution so as to
increase the receptive field, which can be expressed as follows:

F(s) =
k−1

∑
i = 0

f (i)·xs−d·i (1)

where κ is the size of the convolution kernel, d is the dilation factor, (·) represents the
convolution calculation and subscript s− d·i indicates the past direction.

The DCC architecture with a kernel size of κ = 3 is presented in Figure 1. In the first
hidden layer, the dilation factor is one, indicating that one neuron is omitted between the
selected set of neurons. In the second hidden layer, with a dilation factor of two, three
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neurons are omitted between selected neurons. Each layer of TCN is a residual block, and
the dilation factor of the convolutional neurons in each residual block increases at a rate
of (2n − 1) from shallow to deep, ensuring a good performance of memorizing historical
information.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 18 
 

 

selected set of neurons. In the second hidden layer, with a dilation factor of two, three 

neurons are omitted between selected neurons. Each layer of TCN is a residual block, and 

the dilation factor of the convolutional neurons in each residual block increases at a rate 

of (2𝑛 − 1) from shallow to deep, ensuring a good performance of memorizing historical 

information. 

Padding=2

Padding=8

Padding=4

Hidden layer

Input layer

Hidden layer

Output layer

d=4

d=2

d=1

  

  

X2X1 X1 Xn–2 XnXn–1

y0 y1 y2 yn–2 yn–1 yn

 

Figure 1. The DCC architecture. 

2.2. Residual Module 

The TCN uses residual learning to simplify deep network training. He et al. [25] pro-

posed the residual modules for the first time and achieved promising results in speech 

recognition [26] and image processing [27]. The core idea has been to introduce a skip 

connection operation that skips one or more layers. Generally, residual learning refers to 

the process of undirect usage of a superimposed nonlinear layer to achieve the actual 

mapping; 𝐻(𝑋) the stacked nonlinear layers fit the residual map 𝐹(𝑋), and the original, 

required mapping of 𝐻(𝑋) is modified to 𝐹(𝑋) + 𝑋. In the residual connection, an iden-

tity skip connection that bypasses the residual layer is introduced. By establishing a cross-

layer connection between two layers that are apart, multiplexing of the output character-

istic map of a convolution layer is enhanced, which improves network performance. At 

the same time, the problem of gradient dissipation or gradient explosion caused by a large 

number of layers can be effectively avoided. The residual is mapped as follows: 

𝐹(𝑋) = 𝐻(𝑋) − 𝑋 (2) 

Batch normalization (BN) [28] has usually been required for deep network training. 

The BN uses the mean and standard deviation of small batches to adjust the intermediate 

output of a network, which improves the stability of the intermediate output and mini-

mizes overfitting. The activation function and BN have usually been added after the con-

volution operation in the conventional CNN structure. Many studies on primitive resid-

ual networks have analyzed how the combination of activation function and BN at differ-

ent locations affects the network performance [29]. The results have shown that the fully 

pre-activated structure is superior to other structures in reducing overfitting and improv-

ing the generalization ability of the network. Therefore, this study aims to achieve full pre-

activation of the residual connection by adding the activation function and BN before the 

dilated causal convolution. The improved residual structure is presented in Figure 2. 

Figure 1. The DCC architecture.

2.2. Residual Module

The TCN uses residual learning to simplify deep network training. He et al. [25]
proposed the residual modules for the first time and achieved promising results in speech
recognition [26] and image processing [27]. The core idea has been to introduce a skip
connection operation that skips one or more layers. Generally, residual learning refers
to the process of undirect usage of a superimposed nonlinear layer to achieve the actual
mapping; H(X) the stacked nonlinear layers fit the residual map F(X), and the original,
required mapping of H(X) is modified to F(X) + X. In the residual connection, an identity
skip connection that bypasses the residual layer is introduced. By establishing a cross-layer
connection between two layers that are apart, multiplexing of the output characteristic map
of a convolution layer is enhanced, which improves network performance. At the same
time, the problem of gradient dissipation or gradient explosion caused by a large number
of layers can be effectively avoided. The residual is mapped as follows:

F(X) = H(X)− X (2)

Batch normalization (BN) [28] has usually been required for deep network training.
The BN uses the mean and standard deviation of small batches to adjust the intermediate
output of a network, which improves the stability of the intermediate output and minimizes
overfitting. The activation function and BN have usually been added after the convolution
operation in the conventional CNN structure. Many studies on primitive residual networks
have analyzed how the combination of activation function and BN at different locations
affects the network performance [29]. The results have shown that the fully pre-activated
structure is superior to other structures in reducing overfitting and improving the general-
ization ability of the network. Therefore, this study aims to achieve full pre-activation of
the residual connection by adding the activation function and BN before the dilated causal
convolution. The improved residual structure is presented in Figure 2.
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2.3. Adaptive Shrinkage Processing

Shrinkage processing refers to soft thresholding, which is a function that shrinks
input data in the direction of zero to retain negative or positive characteristics and sets
the characteristics approaching zero to zeros. In this way, it has been proven that useful
information can be well preserved and noise related features can be eliminated [30]. The
soft-thresholding function is given by Equation (3), where y and x are the output and input
features, respectively, as shown in Figure 3a; they are two soft threshold functions with
different thresholds. The boundary in the soft-thresholding function is controlled by a
threshold τ, whose value in the interval of [−τ, τ] is set to zero. The soft-thresholding
function can adjust the threshold value τ to shrink, as shown in Figure 4. Meanwhile,
the soft-thresholding function’s derivative is defined by Equation (4) and presented in
Figure 3b, where it can be seen that the derivative of the soft-thresholding function is either
zero or one. Therefore, using the soft-thresholding function is beneficial to prevent gradient
and exploding.

so f t(x, τ) = y =


x + τ, x < −τ

0, |x| ≤ τ
x− τ, x > τ

(3)

δy
δx

=


1, x < −τ
0, |x| ≤ τ
1, x > τ

(4)
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Figure 4. The shrinkage processing results.

To detect the degradation information of equipment comprehensively, this study uses
the operation-to-failure data collected by different sensors as a network training dataset.
However, due to environmental impact, changes in operating conditions, performance
degradation and other factors, the noise level also changes. Therefore, when the signal
samples are converted into the feature map through the stack layer, it is necessary to
customize the threshold of the feature map. To this end, an adaptive shrinkage training
subnet is constructed in the TCN framework. This subnet adaptively adjusts threshold τ
during training by optimizing operations with the purpose of minimizing deviations from
basic facts and model output.

The working mechanism of the adaptive shrinkage processing is illustrated in Figure 5.
Suppose that the input tensor is α, having M rows and N columns; namely, N characteristic
graphs are used to calculate the absolute value of the input layer tensor one by one, and
then the average value of each column is calculated in the global average pooling layer;
the average value has one row and N matrices, and it is represented by β and processed
by the full connection (FC) layer and the BN layer in turn. The activation function of the
last FC layer is set to the “Sigmoid” function so that the shape invariant γ is in the range
of [0, 1]. Through the process of multiplying β and γ by elements, each feature map has its
own threshold vector [τ1, τ2, . . . τn], as the result of adaptive shrinkage. Finally, the input
feature and soft threshold vector realize shrinkage processing via Equation (3).
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2.4. AS-TCN Block

The AS-TCN block consists of DCC and an adaptive shrinking sub-network. After a
series of operations, the input data, which represent a picture with redundant information
and degradation features, are input to the TCN block, and different thresholds are obtained
by the adaptive shrinkage subnetwork for different features. Next, the soft threshold
function is used to eliminate redundant information to retain degenerate features. Moreover,
the TCN block uses an identity path to reduce the difficulty in model training. The internal
details of the DCC sub-network stacked with custom layers are presented in Figure 6. The
LeakyRELU activation function is used at the cost of gradient sparsity, so the module is
more robust in terms of optimization [31].
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3. AS-TCN-Based RUL Prediction Method
3.1. RUL Prediction Process

The RUL prediction process is illustrated in Figure 7, where it can be seen that data
collection is performed first, and then sensor signals from different channels are collected.
Next, the signals are standardized, and the preprocessed data are divided into test and
training sets. Then, the training set is used to train the network through a predefined
number of iterations. During the model training, the back-propagation method is used;
the Adam optimizer is employed to reduce the loss function value (loss), and the optimal
structural parameters are determined. After 200 iterations, the trained network model is
obtained.
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The trained network model is used to perform RUL prediction on the test set. The
simulation results are expressed according to the fit between the RUL predicted value curve
of the test set and the true value curve, and the absolute error (MAE) and mean square root
error (RMSE) are used as indicators to evaluate the prediction effect.

3.2. AS-TCN Prediction Model

The structure of the RUL prediction network based on the AS-TCN designed in this
paper is shown in Figure 8. The sensor data collected from the two channels, namely
the vibration signals in the x and y directions, are used as the network input. The two-
dimensional input tensor passes through the one-dimensional roll-up layer, the maxpool
layer, the dropout layer, three stacked TCN modules, the Global-Average-pool block and a
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full connection layer. The dropout layer is used to reduce overfitting, compare the network
output with the actual RUL value and back-propagate the error.
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Network parameters include trainable parameters (such as the weights and offsets
of convolution kernels) and untrained super parameters (such as the number and size of
convolution kernels). The super parameter needs to be set in advance, and its influence on
the network prediction effect and training time needs to be comprehensively considered.
After repeated experiments and comparisons, the final super parameter setting is shown in
Table 1. The Adam algorithm is selected as the optimizer during training, with a learning
rate of 0.001, and a total of 200 times of training.

Table 1. Structural parameters of the AS-TCN.

Layer Parameter

Conv 1D Kernel length = 12, channel = 16, stride = 4
Maxpooling 1D Kernel length = 4, channel = 16, pooling size = 4

Dropout Dropout rate = 0.3

AS-TCN Block 1 Kernel length = 3, channel = 12, dilation rate = 1, leaky rate = 0.2,
dropout rate = 0.3

AS-TCN Block 2 Kernel length = 3, channel = 6, dilation rate = 2, leaky rate = 0.2,
dropout rate = 0.3

AS-TCN Block 3 Kernel length = 3, channel = 4, dilation rate = 4, leaky rate = 0.2,
dropout rate = 0.3

Dense channel = 1

4. Experimental Verification
4.1. Case Study 1: PHM2012 Bearing Dataset
4.1.1. Dataset Introduction

The proposed prognostic method was validated using two accelerated rolling bearing
degradation test datasets. The bearing operation-to-failure dataset [32] released by the IEEE
PHM2012 Data Challenge was measured by the PRO-NOSTIA test rig, as shown in Figure 9.
The data were collected by two acceleration sensors in the horizontal and vertical directions,
separately; the sampling frequency was 25.6 kHz, and the data were recorded every 10 s
for 0.1 s, so the vibration data for each sampling included 2560 points. For safety reasons,
the experiment was stopped when the amplitude of the vibration data exceeded 20 g. The
measured bearing failure time was defined as the time when the amplitude was greater
than 20 g. The proposed prediction model was verified by using the operation-to-failure
data under conditions one and two, as shown in Table 2. The life cycle data of bearings 1-1
and 2-1 are shown in Figure 10.
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Table 2. Full-life table of rolling bearings under different working conditions.

Operating
Conditions Working Load Rotating Speed

(r/min)
Bearing
Number Actual Life (s)

Working
condition one

4000 N 1800

Bearing1-1 28,030
Bearing1-2 8710
Bearing1-3 23,750
Bearing1-4 14,280
Bearing1-5 24,630
Bearing1-6 24,480
Bearing1-7 22,590

Working
condition two

4200 N 1650

Bearing2-1 9110
Bearing2-2 7970
Bearing2-3 19,550
Bearing2-4 7510
Bearing2-5 23,110
Bearing2-6 7010
Bearing2-7 2300
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The server configuration used in the laboratory was as follows: the processor was an
Intel® Xeon E5 2696 v2 @ 2.5 GHz, the memory was 128 GB and the GPU was a Nvidia®

GeForce 3070Ti (8 GB); the operating system was Microsoft® Windows 10 (64-bit); and
the programming language was PythonTM3.9 based on the Tensor Flow-GPU 2.6.0 deep
learning framework.
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4.1.2. Data Preprocessing

Different operation settings may lead to different sensor values, and the obtained data
represent different physical characteristics. Therefore, in order to eliminate the impact
of data irregularities on the prediction effect, data normalization is carried out before
the model is trained and tested, and the minimum and maximum values of the data set
are converted to the range of [0,1] to improve the calculation speed of the model. The
calculation formula is as follows:

X̂i,j(t) =
Xi,j(t)− X j

min

X j
max − X j

min

(5)

where, X̂i,j(t) is the value obtained from the normalization of Xi,j(t) data, and Xi,j(t) is the

jth sensor data at the ith data point at time t. X j
min and X j

max are respectively the minimum
and maximum values of the data collected by the jth sensor. After the normalization of the
PHM2012 data set, the original data are segmented according to the sampling points, and
the input data of the network model are shown in Table 3.

Table 3. The input data after data preprocessing of PHM2012 dataset.

Bearing Number [Samples, Samples
Point, Channel] Bearing Number [Samples, Samples

Point, Channel]

Bearing1-1 [2803, 2560, 2] Bearing2-1 [911, 2560, 2]
Bearing1-2 [871, 2560, 2] Bearing2-2 [797, 2560, 2]
Bearing1-3 [2375, 2560, 2] Bearing2-3 [1955, 2560, 2]
Bearing1-4 [1428, 2560, 2] Bearing2-4 [751, 2560, 2]
Bearing1-5 [2463, 2560, 2] Bearing2-5 [2311, 2560, 2]
Bearing1-6 [2448, 2560, 2] Bearing2-6 [701, 2560, 2]
Bearing1-7 [2259, 2560, 2] Bearing2-7 [2300, 2560, 2]

4.1.3. Evaluation Indicators

To extract the degradation features from the network model better, the horizontal and
vertical vibration signals were used as the network input data, 0.1 s of were divided into a
sample (i.e., input data were shaped X ∈ R2560×2). The percentage of remaining service life
during degradation was calculated by:

RUL =
yt

yi
× 100% (6)

where yi is the RUL of the total time step, and yi is the real RUL when the time step is t.
The performance of the prediction results could be evaluated by a variety of indicators.

To evaluate the prediction effect of the AS-TCN model, this paper used the mean absolute
error (MAE) and the root mean square error (RMSE) as indicators, which were respectively
calculated by:

MAE =
1
n

n

∑
i = 1
|yi − ŷi| (7)

RMSE =

√
1
n

n

∑
i = 1

(yi − ŷi)
2 (8)

where ŷi represents the prediction result at time i, yi represents the real value at time i and
n is the number of samples in the test set. The smaller the absolute value of the prediction
error was, the lower the MAE and RMSE values were.

4.1.4. Results Analysis

The ablation study was conducted to verify the effectiveness of the sub-network of the
AS-TCN model. To examine the effects of the structural parameters of the proposed model
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on the overall model performance, in the analysis, the key parameters of the AS-TCN were
modified, either replaced or deleted, while the other parameters were kept unchanged.
To further illustrate the advantages of the proposed technology, other advanced RUL
prediction technologies based on deep learning were added for comparison. Finally, five
methods were designed as follows:

(1) CNN. The conventional CNN model had no DCC and adaptive shrinkage process-
ing mechanism.

(2) AS-CNN. In this model, compared to the AS-TCN, only the TCN was replaced
with the traditional CNN, while the rest of the network parameters were kept the same.

(3) TCN. The AS-TCN is converted to TCN. The AS subnet is removed, and other
structural parameters remain unchanged. This model is used to evaluate the effectiveness
of the AS subnet.

(4) DSCN [33]. A new deep separable convolutional network (DSCN) of deep predic-
tion network is proposed, which is good to get rid of manual feature selection and learn
the RUL of degradation state prediction machine from the monitoring data.

(5) CNN BiGRU [34].The most advanced method proposed by Shang et al. [34].
We used cross validation to deeply evaluate the performance of AS-TCN and other

methods in RUL prediction. We divided the 14 data sets listed in Table 2 under two different
working conditions into two groups. The first group (i.e., the seven data sets under the
working condition one) used six data sets for model training, and used one of the remaining
data sets as a test data set to generate RUL prediction in the corresponding direction. For
example, six data sets other than the bearing 1-1 data set are used as the training set for the
first cross validation, and the bearing 1-1 data set is used as the test set to generate RUL
prediction of bearing 1-1, and so on.

The experimental results are shown in Tables 4 and 5. In Table 4, we compared the
MAE and RMSE of six different models. It can be seen that most of the proposed AS-TCN
methods are superior to other methods. Compared with the first three models designed
for ablation experiment, it is well verified that the AS subnet can improve the accuracy
of RUL prediction and TCN has a good ability to capture long time series. Table 5 shows
the mean values of the MAE and RMSE of several different methods. It can be seen that
compared with DSCN [33], MAE and RMSE decreased by 52% and 64%, respectively, and
RMSE decreased by 28% compared with CNN-BiGRU [34]. The smaller the MAE and
MRSE values, the more accurate the prediction results are. The results show that AS-TCN
is superior to other techniques in bearing RUL prediction.

Table 4. The evaluation indicators of the AS-TCN model and several comparison models.

Test
Bearing Training Bearings CNN AS-CNN TCN DSCN [33] CNN-

BGRU [34] AS-TCN

MAE RMSE MAE RMSE MAE RMSE MAE RMSE RMSE MAE RMSE

Bearing 1-1 B1-2~B1-7 14.5 18.6 18.7 21.5 16.1 19.8 21.6 23.1 8.8 11 14
Bearing 1-2 B1-1,B1-3~B1-7 16.6 19.1 18 21.3 13.1 16.2 28.5 32.2 9.3 9.6 12.5
Bearing 1-3 B1-1~B1-2,B1-4~B1-7 30.7 33.7 20.5 23.9 11.2 12.8 18.7 22.4 10.3 6.2 8.1
Bearing 1-4 B1-1~B1-3,B1-5~B1-7 25.1 29 17.6 22.3 14.8 18.5 32.4 37.1 14.6 10.1 13.2
Bearing 1-5 B1-1~B1-4,B1-6~B1-7 11.2 14.7 12.5 16.8 11.7 14 28.2 33.5 12.5 8.2 12.2
Bearing 1-6 B1-1~B1-5,B1-7 12.2 15.1 10.8 13.7 10 13.1 13.5 15.6 16.4 7.1 9.4
Bearing 1-7 B1-1~B1-6 16.8 21.7 10.4 14.5 19.4 25.2 15.2 19.3 19.7 8.6 11.8
Bearing 2-1 B2-2~B2-7 29.2 35.9 19.3 24.7 25.1 31.9 7.2 8.4 20.4 17.1 21.8
Bearing 2-2 B2-1,B2-3~B2-7 31.5 38 21.8 26.3 22.5 25.9 16.1 19.3 18.7 7.1 9.9
Bearing 2-3 B2-1~B2-2,B2-4~B2-7 20.1 26.2 27.4 34.4 19.2 22.5 21.6 24.5 17 16.1 20.2
Bearing 2-4 B2-1~B2-3,B2-5~B2-7 13.2 15.1 9.2 12.1 10.8 11.9 28.4 31.2 35.4 8.7 11.5
Bearing 2-5 B2-1~B2-4,B2-6~B2-7 26.4 31.3 29.1 35.8 27.1 31.5 32.3 36.5 26.7 12.1 14.9
Bearing 2-6 B2-1~B2-5,B2-7 16.6 19.1 14.1 16.5 15.8 18.6 20.6 23.3 20 7.9 10.8
Bearing 2-7 B2-1~B2-6 37.5 43.2 27.5 34.1 26.2 31.7 12.6 13.9 35.4 17.1 20.1
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Table 5. Comparison of the average results of different methods under the PHM2012 dataset.

Method RMSE Value Difference MAE Value Difference

CNN 25.8 ↑12.2 21.5 ↑11.5
AS-CNN 22.7 ↑8.1 18.4 ↑8.4

TCN 21 ↑7.4 17.4 ↑7.4
DSCN [33] 24.3 ↑10.7 21.2 ↑11.2

CNN-BGUR [34] 18.9 ↑5.3 – –
AS-TCN 13.6 – 10 –

In order to more intuitively represent the MAE and RMSE of different methods, the
results in Table 4 are drawn as shown in Figure 11. The mean values of MAE and RMSE in
Figure 11 are smaller than those of other methods. For MAE, in all 14 experiments, except
for test bearing 2-1 and test bearing 2-7, it was significantly lower than other methods.
Figure 12 shows the RUL prediction curves of bearings 1-3 and 2-2. It is assumed that the
actual RUL defined by linear degradation is not exactly the same as the predicted RUL
results, but the technology proposed in this study can capture the degradation trend of
the bearings. Additionally, the predicted RUL result is within the 95% prediction interval
of the real RUL prediction fitting line. In conclusion, the AS-TCN method can effectively
predict RUL.
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Figure 12. RUL prediction results of the AS-TCN. (a) Bearing B1–3. (b) Bearing B2–2. 
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4.2. Case Study 2: XJTU-SY Bearing Dataset
4.2.1. Dataset Introduction

The XJTU-SY dataset was provided by Xi’an Jiaotong University and Changxing
Sumiao Technology Company [35]. The test bench is shown in Figure 13. The tests were
performed at two rotational speeds using LDK UER204 rolling bearings. The proposed
prognostic model was validated using the operation-to-failure data under different op-
erating conditions, as shown in Table 6. The run-to-fail vibration acceleration data were
acquired by the accelerometer on the bearing housing, and it included 32,768 data samples;
in 1.28 s, they were collected every 1 min with a sampling rate of 25.6 kHz. In this experi-
ment, horizontal and vertical vibration data were used for prognosis. For safety, when the
vibration amplitude exceeded 20 g, the accelerated degradation bearing test was stopped,
and the corresponding time was regarded as a failure time of the bearing. A photo of the
failed bearing is displayed in Figure 14. The horizontal and vertical vibration signals under
two different operating conditions are presented in Figure 15. Similar to the PHM2012
dataset, horizontal and vertical vibration signals were used, and the input data is shown
in Table 7. Data corresponding to the period of 1.28 s were divided into a sample; input
data were X ∈ R 32768×2, and the percentage of the output labeled RUL prediction result is
realized by Equation (6).
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Table 6. Full-life results of rolling bearings under different working conditions.

Operating
Conditions Working Load Rotating Speed

(r/min)
Bearing
Number Actual Life

Working
condition one

12,000 N 2100

Bearing 1-1 2 h and 3 min
Bearing 1-2 2 h and 41 min
Bearing 1-3 2 h and 38 min
Bearing 1-4 2 h and 2 min
Bearing 1-5 52 min

Working
condition two

11,000 N 2250

Bearing 2-1 8 h and 11 min
Bearing 2-2 2 h and 41 min
Bearing 2-3 8 h and 53 min
Bearing 2-4 42 min
Bearing 2-5 5 h and 39 min
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Table 7. The input data after data preprocessing of XJTU-SY dataset.

Bearing Number [Samples, Samples
Point, Channel] Bearing Number [Samples, Samples

Point, Channel]

Bearing 1-1 [123, 32768, 2] Bearing 2-1 [491, 32768, 2]
Bearing 1-2 [161, 32768, 2] Bearing 2-2 [161, 32768, 2]
Bearing 1-3 [158, 32768, 2] Bearing 2-3 [533, 32768, 2]
Bearing 1-4 [122, 32768, 2] Bearing 2-4 [42, 32768, 2]
Bearing 1-5 [52, 32768, 2] Bearing 2-5 [339, 32768, 2]

4.2.2. Results Comparison

As in Experiment Case I, we used cross validation to deeply evaluate the RUL predic-
tion performance of AS-TCN and other methods. The data set division and experimental
results are shown in Table 8. From Table 8, we can see that AS-TCN is superior to other
methods in most bearing tests. Table 9 is the mean value of MAE and RMSE of several
different methods. It can be seen that, compared with the DSCN model [33], MAE and
RMSE values decreased by 48% and 42%, respectively. The results show that AS-TCN is
superior to other technologies in bearing RUL prediction.
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Table 8. The evaluation indicators of the AS-TCN network and several other networks.

Test Bearing Training Bearings CNN AS-CNN TCN DSCN [33] AS-TCN

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Bearing 1-1 B1-2~B1-5 20.8 23.9 9.1 12.9 35.7 40.8 21.6 23.1 6.0 8.8
Bearing 1-2 B1-1,B1-3~B1-5 19.6 26.1 20.7 25.3 31.1 37.2 28.5 32.2 13.2 15.4
Bearing 1-3 B1-1~B1-2,B1-4~B1-5 36.7 42.1 23.5 30.9 40.2 12.8 18.7 22.4 13.8 15.2
Bearing 1-4 B1-1~B1-3,B1-5 36.5 44.5 36.6 40.3 35.8 38.5 32.4 37.1 17.4 22.7
Bearing 1-5 B1-1~B1-4 43.7 52.8 29.5 36.8 33.1 38 28.2 33.5 19.1 24.8
Bearing 2-1 B2-2~B1-5 18.7 22.6 19.3 22.7 18.1 22.9 7.2 8.4 10.6 13.6
Bearing 2-2 B2-1,B2-3~B2-5 31.9 38 17.8 22.3 21.5 27.9 16.1 19.3 10.3 11.8
Bearing 2-3 B2-1~B2-2,B2-4~B2-5 18.1 24.2 11.4 14.4 13.2 14.5 21.6 24.5 9.0 14.1
Bearing 2-4 B2-1~B2-3,B2-5 20.2 45.1 26.2 32.9 18.8 22.9 28.4 31.2 15.3 19.1
Bearing 2-5 B2-1~B2-4 34.5 41.2 13.5 17.1 16.2 19.7 32.3 36.5 7.8 11.1

Table 9. Comparison of the average results of different methods under the XJTU-SY dataset.

Method RMSE Value Difference MAE Value Difference

CNN 36.1 ↑20.5 28.1 ↑15.9
AS-CNN 25.6 ↑10.0 21.1 ↑8.9

TCN 27.5 ↑11.9 25.3 ↑13.1
DSCN 26.8 ↑11.2 23.5 ↑11.3

AS-TCN 15.6 – 12.2 –

The results in Tables 8 and 9 are more intuitively expressed, as shown in Figure 16.
The average values of MAE and RMSE in Figure 12 are smaller than other methods. For
MAE and RMSE, in all 10 experiments, except for testing bearing 2-1, other methods are
significantly lower than other methods. Therefore, AS-TCN has more advantages in RUL
prediction. Figure 17 shows the RUL prediction curves of tested bearings 1-1 and 2-5. The
predicted RUL results are within 95% of the prediction interval of the real RUL prediction
fitting line, which proves that AS-TCN can capture the degradation trend of bearings well.
In addition, the AS-TCN method is verified on two different datasets, which shows that the
model has a good generalization ability.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18 
 

 

The results in Table 8 and Table 9 are more intuitively expressed, as shown in Figure 16. The 

average values of MAE and RMSE in Figure 12 are smaller than other methods. For MAE and RMSE, 

in all 10 experiments, except for testing bearing 2-1, other methods are significantly lower than other 

methods. Therefore, AS-TCN has more advantages in RUL prediction. Figure 17 shows the RUL 

prediction curves of tested bearings 1-1 and 2-5. The predicted RUL results are within 95% of the 

prediction interval of the real RUL prediction fitting line, which proves that AS-TCN can capture 

the degradation trend of bearings well. In addition, the AS-TCN method is verified on two different 

datasets, which shows that the model has a good generalization ability. 

Bearing1-1 Bearing1-2 Bearing1-3 Bearing1-4 Bearing1-5 Bearing2-1 Bearing2-2 Bearing2-3 Bearing2-4 Bearing2-5 Average

0

10

20

30

40

50

（
b
）

M
A

E

 CNN  AS-CNN  TCN  DSCN  AS-TCN

Bearing1-1 Bearing1-2 Bearing1-3 Bearing1-4 Bearing1-5 Bearing2-1 Bearing2-2 Bearing2-3 Bearing2-4 Bearing2-5 Average

0

10

20

30

40

50

60

(a
)

R
M

S
E

 CNN  AS-CNN  TCN  DSCN  AS-TCN

 

Figure 16. The MAE and RMSE comparison of the five different networks. (a) RMSE. (b) MAE. 

0 50 100 150 200 250 300 350
0%

20%

40%

60%

80%

100%

R
U

L

Time （minute）

（b）

 Actual RUL

 AS-TCN

 Fitting of AS-TCN

 95% Confidence Interval

 95% Prediction Interval

0 20 40 60 80 100 120
0%

20%

40%

60%

80%

100%

R
U

L

Time (minute)

(a)

 Actual RUL

 AS-TCN

 Fitting of AS-TCN

 95% Confidence Interval

 95% Prediction Interval

 

Figure 17. RUL prediction results of the AS-TCN. (a) Bearing B1–1. (b) Bearing B2–5. 

5. Conclusions 

In the process involved in the prognosis and health management framework, the pre-

diction of remaining useful life (RUL) is a key task of PHM and is also the basis for deci-

sion-making on management activities. Therefore, this paper proposes a RUL prediction 

model for AS-TCN equipment to predict the RUL of rolling bearings. In addition, ablation 

experiments and comparisons with state-of-the-art models are conducted, and two exper-

imental cases are provided to verify the superiority of the proposed prediction method to 

the other methods. 

Based on the results, the following conclusions can be obtained: 

(1) Adding a DCC hierarchy with a residual block to the TCN module can be used to 

seize longer-time collection records. 

(2) The training subnet adopts an adaptive mechanism to learn the soft-thresholding 

function adaptively so as to reduce the information related to noise, retain degenerated 

features and extract the health status information of equipment. 

Figure 16. The MAE and RMSE comparison of the five different networks. (a) RMSE. (b) MAE.



Sensors 2022, 22, 9088 16 of 18

Sensors 2022, 22, x FOR PEER REVIEW 16 of 18 
 

 

The results in Table 8 and Table 9 are more intuitively expressed, as shown in Figure 16. The 

average values of MAE and RMSE in Figure 12 are smaller than other methods. For MAE and RMSE, 

in all 10 experiments, except for testing bearing 2-1, other methods are significantly lower than other 

methods. Therefore, AS-TCN has more advantages in RUL prediction. Figure 17 shows the RUL 

prediction curves of tested bearings 1-1 and 2-5. The predicted RUL results are within 95% of the 

prediction interval of the real RUL prediction fitting line, which proves that AS-TCN can capture 

the degradation trend of bearings well. In addition, the AS-TCN method is verified on two different 

datasets, which shows that the model has a good generalization ability. 

Bearing1-1 Bearing1-2 Bearing1-3 Bearing1-4 Bearing1-5 Bearing2-1 Bearing2-2 Bearing2-3 Bearing2-4 Bearing2-5 Average

0

10

20

30

40

50

（
b
）

M
A

E

 CNN  AS-CNN  TCN  DSCN  AS-TCN

Bearing1-1 Bearing1-2 Bearing1-3 Bearing1-4 Bearing1-5 Bearing2-1 Bearing2-2 Bearing2-3 Bearing2-4 Bearing2-5 Average

0

10

20

30

40

50

60

(a
)

R
M

S
E

 CNN  AS-CNN  TCN  DSCN  AS-TCN

 

Figure 16. The MAE and RMSE comparison of the five different networks. (a) RMSE. (b) MAE. 

0 50 100 150 200 250 300 350
0%

20%

40%

60%

80%

100%

R
U

L

Time （minute）

（b）

 Actual RUL

 AS-TCN

 Fitting of AS-TCN

 95% Confidence Interval

 95% Prediction Interval

0 20 40 60 80 100 120
0%

20%

40%

60%

80%

100%

R
U

L

Time (minute)

(a)

 Actual RUL

 AS-TCN

 Fitting of AS-TCN

 95% Confidence Interval

 95% Prediction Interval

 

Figure 17. RUL prediction results of the AS-TCN. (a) Bearing B1–1. (b) Bearing B2–5. 

5. Conclusions 

In the process involved in the prognosis and health management framework, the pre-

diction of remaining useful life (RUL) is a key task of PHM and is also the basis for deci-

sion-making on management activities. Therefore, this paper proposes a RUL prediction 

model for AS-TCN equipment to predict the RUL of rolling bearings. In addition, ablation 

experiments and comparisons with state-of-the-art models are conducted, and two exper-

imental cases are provided to verify the superiority of the proposed prediction method to 

the other methods. 

Based on the results, the following conclusions can be obtained: 

(1) Adding a DCC hierarchy with a residual block to the TCN module can be used to 

seize longer-time collection records. 

(2) The training subnet adopts an adaptive mechanism to learn the soft-thresholding 

function adaptively so as to reduce the information related to noise, retain degenerated 

features and extract the health status information of equipment. 

Figure 17. RUL prediction results of the AS-TCN. (a) Bearing B1–1. (b) Bearing B2–5.

5. Conclusions

In the process involved in the prognosis and health management framework, the
prediction of remaining useful life (RUL) is a key task of PHM and is also the basis
for decision-making on management activities. Therefore, this paper proposes a RUL
prediction model for AS-TCN equipment to predict the RUL of rolling bearings. In addition,
ablation experiments and comparisons with state-of-the-art models are conducted, and
two experimental cases are provided to verify the superiority of the proposed prediction
method to the other methods.

Based on the results, the following conclusions can be obtained:
(1) Adding a DCC hierarchy with a residual block to the TCN module can be used to

seize longer-time collection records.
(2) The training subnet adopts an adaptive mechanism to learn the soft-thresholding

function adaptively so as to reduce the information related to noise, retain degenerated
features and extract the health status information of equipment.

(3) The validity of the proposed RUL prediction method based on the AS-TCN is
verified by applying the rolling bearing to the test bench; the proposed method is compared
with several different methods. The experimental results show that the proposed AS-TCN
has excellent RUL prediction ability and thus has an important reference value for the
actual remaining life prediction.

In a future study, we will consider the degradation characteristics of the same bearing
under different working conditions, realize the RUL prediction of bearings under different
working conditions and adaptively divide the health state and degradation state mechanism
to achieve more accurate RUL prediction.
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