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Abstract: This paper analyzes the relationship between pilot symbol-assisted modulation (PSAM)
and unitary space-time modulation (USTM). In particular, we present a map that transforms any
PSAM into a USTM and vice versa. USTMs are known to be capacity-achieving. However, most of
the proposed USTM construction methods in the literature are computationally expensive, and the
resulting constellations do not have a known structure that could simplify their decoding. Using
the relationship between PSAM and USTM, and inspired by a graphical representation of these
constellations used in this paper, we propose new USTM construction methods, which ensure that
the USTM has a good performance compared to the corresponding PSAM, and a feasible construction
and decoding, even for high data rates.

Keywords: constellation design; noncoherent multiple input–multiple-output (MIMO) communication;
pilot symbol-assisted modulation

1. Introduction

Most of the current communication systems are based on coherent reception where
channel state information (CSI) should be estimated for equalization, demodulation, etc.
The CSI can be obtained via training by inserting pilots in the data signals. These schemes,
however, increase the signaling overhead, which can be counterproductive in systems with
many antennas or fast movement of either side of the communication link [1].

This drawback increased the interest in schemes that do not require full CSI at the
transmitter and the receiver. An information-theoretic analysis of multi-antenna Rayleigh
block-fading channels was performed in [2]. Motivated by this work, a communication
method using unitary space-time modulation (USTM) and noncoherent reception was
proposed in [3]. In this method, assuming that the receiver has N antennas, the transmitter
has M ≤ N antennas, and the channel block length is T ≥ M + N channel uses, the trans-
mitted signals, viewed as matrices with T ×M elements, form a unitary matrix, i.e., one
with orthonormal columns. This signal structure was shown to be capacity-achieving for
high signal-to-noise ratio (SNR) or T � M [3]. USTM constellations can be constructed
minimizing the pairwise error probability of the constellation elements, although this is,
in general, a difficult task. Other construction methods were inspired by the geometrical
interpretation, given in [4], of the capacity expression, i.e., sphere packing in the Grassmann
manifold G(T, M): the set of all M-dimensional subspaces of CT . In particular, the columns
of the USTM matrices are viewed as a basis that spans an M-dimensional subspace. At the
receiver, the channel modifies the basis but keeps the subspace unchanged. Therefore,
information should be encoded into subspaces and not into the particular basis. This
idea is used in [5] to define a superposition coding of several USTM constellations in
Grassmann manifolds.

These results motivated the USTM contellation design as sphere packing in the Grass-
mann manifold by using either numerical optimization tools [3,6–9] or algebraic construc-
tions [10–12]. The main advantage of the first approach is that it does not restrict the
constellation to have a specific structure. However, the direct optimization is computa-
tionally expensive, and the lack of structure implies that all the USTM matrices have to be
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stored and that the optimum receiver has to test all signals. The second approach equips
the constellations with a certain structure, although with either poor performance [10],
intractable decoding [11], or intractable constellation construction for a high number of
degrees of freedom [12]. A different approach to constructing USTM constellations is
to map coherent codes, i.e., those designed for coherent reception, into the Grassmann
manifold. An example in which the exponential map is used can be found in [13]. This
map has the drawback of not being one-to-one, requiring an appropriate scaling of the
coherent codes which is, in general, not straightforward. Another example can be found
in [14]. In this example, the coherent codes are mapped in the faces of a hypercube, which
are projected into a hypersphere. Although the final USTM has a good performance, this
technique can only be used with one transmit antenna. A similar approach was proposed
in [15]. In this case, the authors use a different hypercube, but the technique can only be
used with, again, one transmit antenna.

Due to the inability of producing sphere packings in the Grassmann manifold with
efficient decoding and good performance, various works proposed the combination of
training pilots and coherent codes, known as pilot symbol-assisted modulation (PSAM),
as a meaningful alternative [4,16–19]. However, in this case, the resulting matrices are no
longer unitary, and hence, the constellations are not capacity-achieving, although, in some
cases, they can be shown to be similar to other USTMs [20]. This fact suggests that USTMs
and PSAMs might not be as different as originally thought. In fact, the USTM constellation
in [21] was shown to be more easily interpreted and analyzed as a PSAM [20].

In this paper, we use a map that transforms any PSAM into a USTM and vice versa,
and hence generalize the observation done in [20] for one particular case. To obtain this map,
we propose a new definition of the space-time matrices that compose a PSAM. Moreover,
this definition enables a graphical representation of both USTMs and PSAMs that will
draw insight into their relationship. Inspired by this representation and the PSAM matrix
definition, we propose a new USTM constellation construction method that outperforms
and inherits the structure of a coherent code. This construction method ensures that the
USTM has a good performance compared to the coherent code, and a feasible construction
and decoding, even for high data rates.

The rest of the paper is organized as follows. In Section 2, we present the system
model and introduce both the graphical representation and the new definition of PSAM
matrices. In Section 3, we present the map to transform PSAMs into USTMs and vice versa.
In Section 4, we present a first USTM construction method and use the graphical represen-
tation to show the limitations of this method. In order to overcome these limitations, we
propose a second USTM construction method in Section 5. In Section 6, we compare the
performance of particular constellations constructed with the previous methods. Finally,
main conclusions are drawn in Section 7.

2. System Model and Constellation Structure

Consider a wireless communication system with M transmit and N receive antennas,
and a block-fading channel with a coherence interval of T channel uses. Let X ∈ CT×M

and Y ∈ CT×N be the transmitted and received signals during T constant-fading channel
uses, respectively, where the transmitted signal satisfies the power constraint

E
[
||X||2F

]
= M, (1)

and ||X||F =
√

tr(X∗X) is the Frobenius norm. The relationship between X and Y is
given by

Y = XH +

√
M
ρT

Z, (2)

where H ∈ CM×N is the channel matrix whose entries are i.i.d. drawn from the standard
complex Gaussian distribution CN (0, 1), Z ∈ CT×N is the additive noise whose entries are
also i.i.d. drawn from CN (0, 1), and ρ is the signal-to-noise ratio (SNR).
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The transmitted signals are selected from a constellation of matrices with L = 2RT

elements, where R is the transmission rate. The constellation CU = {XU
i }L

i=1 is a USTM
if the elements are T × M unitary matrices, i.e., XU∗

i XU
i = IM, where IM is the M × M

identity matrix, and they span different subspaces, i.e., S(XU
i ) 6= S(XU

j ) for all i 6= j, where
S(X) = {Xx, x ∈ CM} is the subspace spanned by the columns of X. In the case of a PSAM,
a certain quantity of channel uses are reserved to carry the pilot signals. If optimization
over the training and data powers is allowed, the optimal number of training channel uses
is M [1]. In this case, T−M channel uses are used to transmit matrices from a coherent code
A = {Ai}L

i=1, where Ai ∈ CT−M×M. Therefore, the PSAM can be constructed concatenating
the training and data signals in A. However, it is also possible to allow these signals to
spread throughout all the coherence intervals by means of a unitary matrix. In particular,
let [B1 B2] be a T × T unitary matrix, where B1 and B2 are the matrices with the first M
columns and the last T−M columns, respectively. The constellation CP = {XP

i }L
i=1, where

XP
i = B1P + B2 Ai, i = 1, . . . , L, (3)

and P ∈ CM×M is a pilot matrix, is a PSAM. In order to maximize the achievable rates, P
should be a scaled unitary matrix [1]. Note that, in order to satisfy the power constraint
in (1), assuming that all the matrices in the constellation are equiprobable, the coherent
code and the pilot matrix must satisfy 1

L ∑L
i=1 tr(P∗P + A∗i Ai) = M, and hence, ||P||2F < M.

For any A ∈ A and X = B1P + B2 A, the received pilot and data signals can be obtained
from Y as follows:

B∗1Y = PH +

√
M
ρT

B∗1 Z, (4)

B∗2Y = AH +

√
M
ρT

B∗2 Z. (5)

The matrix B∗1Y can then be used for channel estimation, and the matrix B∗2Y for data re-
ception.

If [B1 B2] = IT , the PSAM is constructed by concatenating P and the matrices in A.
Although these are the most extensively used values for B1 and B2, the (more general)
definition of PSAM matrices in (3) provides a new interpretation of a PSAM, which will be
used in Section 5 to design new constellations that combine coherent codes and USTMs. In
addition to this, the orthogonal matrices B1 and B2 enable a two-dimensional graphical
representation of the different constellations, as shown in Figure 1. In the figure, the
(T−M)-dimensional subspace spanned by B2, S(B2), is represented in the horizontal axis,
and the M-dimensional subspace spanned by B1, S(B1), in the vertical axis. The PSAM
matrices can be viewed as shifts of the coherent code signals through the subspace spanned
by B1. As a result, these matrices have, in general, different energy, although this will
ultimately depend on the coherent code. However, the USTM matrices have always the
same energy, independently of how the USTM was constructed. In Figure 1, we highlight
an interesting case in which the elements of a PSAM and a USTM span the same subspaces.
In the following section, we will show that this case is not exceptional, i.e., it is always
possible to find this type of PSAM-USTM pairs.
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S(B1)

S(B2)

A1 A2 A3 A4

XP
1 XP

4XP
2 XP

3

XU
1

XU
2 XU

3

XU
4

P

Figure 1. Graphical representation of a coherent code A = {Ai}4
i=1, a PSAM CP = {XP

i }4
i=1, and a

USTM CU = {XU
i }

4
i=1. The signals of both the PSAM and the USTM have the same mean power and

span the same subspaces, which are drawn with dotted lines.

3. PSAM-USTM Equivalence

In this section, we will show that there is certain equivalence between PSAM and
USTM constellations in terms of the spanned subspaces. We begin with the follow-
ing result, which shows that, under very general conditions, the PSAM matrices span
different subspaces.

Theorem 1. Let P be invertible, and let the constellation CP = {XP
i }L

i=1 be constructed from A as
in (3). Then, Ai = Aj if and only if S(XP

i ) = S(XP
j ).

Proof. Assume that Ai = Aj. From (3), we have that XP
i = XP

j , and hence, S(XP
i ) = S(XP

j ).

Assume now that S(XP
i ) = S(XP

j ). In this case, the columns of XP
i can be expressed as

linear combinations of the columns of XP
j , and vice versa. In particular, there is an M×M

matrix R such that XP
i R = XP

j , which, pre-multiplying by B∗1 and using (3), yields PR = P,

and, since P is invertible, we have that R = IM. Now, B∗2 XP
i R = B∗2 XP

j yields Ai = Aj.

Theorem 1 shows that the subspaces spanned by PSAM matrices constructed from
different coherent signals, Ai and Aj, are different, and hence, that a PSAM could be
decoded detecting the transmitted subspace, as a USTM receiver. The following corollary
follows from Theorem 1.

Corollary 1. Let CP be a PSAM constructed from A as in (3), where P is invertible. Then, there is
a USTM, CU, which elements span the same subspaces than the elements of CP.

In other words, any PSAM has an equivalent USTM in terms of the spanned subspaces.
The elements of the USTM can be obtained from the elements of the PSAM by using any
kind of orthonormalization. In particular, it is possible to find matrices {Ri}L

i=1 whose
inverses orthonormalize the elements of the PSAM. The equivalent USTM is, in this case,
composed of the matrices

XU
i = XP

i R−1
i , i = 1, . . . , L. (6)

The orthonormalization is, hence, a linear map. As an example, the matrices XU
i and Ri

can be obtained by means of a QR decomposition of XP
i . It is important to note that the

performance of the equivalent USTM does not depend on the particular orthonormalization.
This fact is due to the following result.

Proposition 1. Let the inverse of R orthonormalize X ∈ CT×M, T ≥ M. Then, the inverse of R̄
orthonormalizes X if and only if R̄ = UR, for some squared unitary matrix U.
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Proof. Since R is invertible, U = R̄R−1 is well defined. The inverse of R̄ orthonormalizes
X if and only if

IM =R̄−1∗X∗XR̄−1 = U−1∗R−1∗X∗XR−1U−1

=U−1∗U−1.
(7)

Therefore, U is unitary.

Proposition 1 implies that any orthonormalization of X can be expressed using a
given matrix R which inverse orthonormalizes X and a unitary matrix U. In this case
and using (2), the received signal, if X is orthonormalized, is XR−1U∗H +

√
M/(ρT)Z.

Since the entries of H are i.i.d. drawn from CN (0, 1), the entries of U∗H follow exactly the
same distribution. Using this fact, it can be shown that the knowledge of the particular
orthonormalization, i.e., U, does not provide additional information on X. Therefore,
the achievable rate is independent of U.

The equivalence pointed out in Corollary 1 also exists in the other direction, as stated
in the following result.

Theorem 2. Let CU = {XU
i }L

i=1 be a USTM and P an M×M invertible matrix. Then, there is
a T ×M unitary matrix B1, with orthogonal complement B2, such that B∗1 XU

i , i = 1, . . . , L, are
invertible and {αXU

i R̄i}L
i=1 is a PSAM which elements span the same subspaces than the elements

of CU, where
R̄i =

(
B∗1 XU

i
)−1P, (8)

α =

√
LM

∑L
i=1 ||R̄i||2F

. (9)

In addition, if all the matrix signals in CU are equiprobable, then the PSAM satisfies the power
constraint in (1).

Proof. This proof is divided into four steps, in which we will prove that i) matrix B1, such
that B∗1 XU

i , i = 1, . . . , L, are invertible, exists; ii) {αXU
i R̄i}L

i=1 is a PSAM; iii) the elements
of CU and {αXU

i R̄i}L
i=1 span the same subspaces; and iv) the constellation {αXU

i R̄i}L
i=1

satisfies the power constraint in (1). The proofs of these steps will complete the proof of
the theorem.

(i) We start showing that B1 exists such that B∗1 XU
i , i = 1, . . . , L, are invertible. To do

this, we will use the following lemma.

Lemma 1 ([22] (Exercise 14, p. 57)). If {Xi}L
i=1 are subspaces of equal dimension of a finite-

dimensional vector space V over an infinite field F , then there is a subspaceW of V such that the
direct sum ofW and each individual subspace in {Xi}L

i=1 is V , that is, V =W ⊕Xi, i = 1, . . . , L.
In other words,W is a common complement of the subspaces {Xi}L

i=1.

We will use this lemma with the subspacesW = S(B2) and Xi = S(XU
i ), i = 1, . . . , L.

In particular, Lemma 1 implies that we can find B2 such that CT = S([XU
i B2]), i = 1, . . . , L.

We will use this result with a contradiction argument. Let us assume that we can find i such
that B∗1 XU

i is not invertible. This implies that S(XU
i ) has, at least, one orthogonal direction

to S(B1), or, in other words, that there is a vector x ∈ CM such that b∗B∗1 XU
i x = 0 for all

b ∈ CM. Since B2 is the orthogonal complement of B1, then the direction orthogonal to
S(B1) is in the subspace spanned by this basis, i.e., XU

i x ∈ S(B2). In this case, XU
i and B2

cannot span CT , which contradicts Lemma 1.
(ii) In the second step, we will show that {αXU

i R̄i}L
i=1 is a PSAM by showing that

these matrices can be written as in (3). In particular, we will find the pilot matrix and the
coherent code A = {Ai}L

i=1 to be used in (3). From (3), the pilot matrix used to construct
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the PSAM can be obtained by left-multiplying the PSAM matrices by B∗1 . In this case, this
leads to

αB∗1 XU
i R̄i = αP, (10)

for i = 1, . . . , L. Now, using (3) again, the coherent code A can be obtained by left-
multiplying the PSAM matrices by B∗2 , that is,

Ai = αB∗2 XU
i R̄i = αB∗2 XU

i
(

B∗1 XU
i
)−1P. (11)

The PSAM can then be constructed as in (3) using the pilot matrix αP and the coherent
code A with elements in (11).

(iii) Since the elements of {αXU
i R̄i}L

i=1 are generated by scaling and right-multiplying
by M×M invertible matrices the elements of the USTM, both span the same subspaces.

(iv) If the transmitted signal, X, takes values from the constellation {αXU
i R̄i}L

i=1 with
equal probability, the average consumed energy in one channel block is

E
[
||X||2F

]
=

α2

L

L

∑
i=1
||XU

i R̄i||2F = M, (12)

where the second equality follows from (9) and the fact that XU∗
i XU

i = IM, i = 1, . . . , L.
Therefore, the power constraint in (1) is satisfied.

Corollary 1 and Theorem 2 describe a PSAM-USTM equivalence in terms of the
spanned subspaces. In particular, any PSAM has an equivalent USTM which elements span
the same subspaces, and vice versa.

In the following section, we will use the results of this section to design a new USTM
construction method. The resulting USTM constellations exhibit a certain structure inher-
ited from a coherent code.

4. USTM Construction from PSAM Orthonormalization

In this section, we present a new USTM construction method based on the results in
Section 3. In particular, a USTM, CU = {XU

i }L
i=1, can be constructed by othonormalizing

the elements of a PSAM, CP = {XP
i }L

i=1, as in (6). In this case, the received signal when the
i-th matrix of the constellation is transmitted results in

Y = XU
i H +

√
M
ρT

Z = XP
i R−1

i H +

√
M
ρT

Z. (13)

The constellation construction is computationally simple, since it only requires an
orthonormalization (by means of, e.g., a QR decomposition) in addition to the generation of
the PSAM matrix. However, in general, the orthonormalization does not leave an apparent
structure in CU that could be used to efficiently decode these signals. This fact implies that
the optimum receiver should test all signals. In order to circumvent this issue, we note
that the inverse of the Ri matrix in (13) left-multiplies the channel matrix, but does not
affect the noise. Therefore, it would be possible to interpret the R−1

i H term as an effective
channel, and use a PSAM reception technique to detect XP

i . It is important to note that this
effective channel is not independent of the transmitted signal, which implies that using
a PSAM reception technique is suboptimal. Despite this, we will show a case in which
the combination of these transmission and reception techniques is better than directly
transmitting the PSAM matrices. In particular, we tested this constellation design method
with a PSAM constructed from a scaled identity pilot matrix and a coherent code whose
matrix entries are independent and selected from a rectangular quadrature amplitude
modulation (QAM), i.e., spatial multiplexing (SM) of QAM symbols. The available power
was split between the pilot matrix and the coherent code following the indications in [1].
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In Figure 2, we show the block error rate (BLER) for T = 4, M = N = 2, modu-
lations of 4-QAM and 16-QAM, and three different transmitter-receiver configurations.
The modulations of 4-QAM and 16-QAM lead to transmission rates of R = 2 and R = 4
bits per channel use (bpcu), respectively, whereas the transmitter-receiver configurations
are detailed next:

• SM-SESD: In this case, the transmitter sent PSAM matrices constructed from a scaled
identity pilot matrix and SM of QAM symbols. The receiver used a least squares (LS)
channel estimator [23] and a Schnorr-Euchner sphere decoder (SESD) [24].

• SMO-SESD: This configuration is similar to the previous one. The only difference is
that the signal matrices were orthonormalized before transmission. The receiver had
no knowledge of this orthonormalization and assumed that the transmitted matrices
were from the original PSAM constellation.

• SMO-ML: In this configuration, the transmitter orthonormalized the PSAM matri-
ces too. The receiver tested all constellation matrices and performed a maximum
likelihood (ML) detection [7].

SNR [dB]

10 15 20 25 30 35

B
L
E
R

10!3

10!2

10!1

100

4-QAM

16-QAM

SMO-ML
SMO-SESD
SM-SESD

Figure 2. Performance comparison of a PSAM and its element orthonormalization with two different
receivers for T = 4, M = N = 2, and two transmission rates.

The results in Figure 2 show that the SMO-ML configuration exhibits around 1 dB gain
with respect to the other two configurations, albeit by means of using a computationally
expensive receiver. In particular, since the SMO-ML receiver has to test all constellation
matrices, the computational cost is proportional to the number of matrices in the constel-
lation, i.e., L = 2RT , which follows an exponential law with respect to R and T. This fact
makes the SMO-ML receiver extremely costly for relatively small values of R and/or T.
As an illustrative example, for the cases drawn in Figure 2, the number of matrices are 256
and 65,536 for the R = 2 and R = 4 cases, respectively, and this value increases to 1,048,576
for R = 5. The gain of the SMO-SESD configuration with respect to the SM-SESD is around
0.25 dB. In this case, the receivers are exactly the same, and the computational cost of
the orthonormalization performed by the transmitter in the SMO-SESD configuration is
polynomial with respect to T and M. Therefore, this gain is completely free for the receiver
and relatively inexpensive for the transmitter.

The previous result shows that the orthonormalization of PSAM matrices is a simple
idea that can provide some performance gain. In the rest of this section, we will examine



Sensors 2022, 22, 9049 8 of 21

how the orthonormalization modifies the structure of the PSAM and how this modification
affects the performance. To do this, we graphically represented in Figure 3 the structures of
two PSAMs and the equivalent USTMs using the S(B1) and S(B2) subspaces.

It can be easily inferred from the figure that the PSAM elements whose energy is lower
than the constellation average, i.e., those inside the semicircle in Figure 3, are separated after
the orthonormalization, and that the rest are bunched together. The separation between
constellation elements is related to the protection against noise. In other words, Figure 3
suggests that the orthonormalization is beneficial for the PSAM elements with less energy
than the average, but disadvantageous for the rest.

S(B1)

S(B2)

S(B1)

S(B2)

(a) 8 symbols per constellation

(b) 16 symbols per constellation

Figure 3. Two-dimensional graphical representation of the elements of a PSAM (with ‘×’ symbols)
and the equivalent USTM (with ‘◦’ symbols).

We verified this effect in the constellations of Figure 2. In particular, we studied how
the PSAM matrix energy affects the BLER of the SM-SESD and SMO-SESD transmitter-
receiver configurations with R = 4. This result is depicted in Figure 4, where the energy of
the i-th PSAM matrix was computed as ||XP

i ||2F. The figure confirms that the orthonormal-
ization is beneficial below certain energy of the PSAM matrix.

Looking at Figure 3, it is possible to identify a better USTM in which the bunched
elements are stretched out towards the S(B2) subspace. Unfortunately, this type of USTMs
do not correspond to a simple orthonormalization of the elements of a PSAM. In the
following section, we will propose another USTM constellation construction method to
circumvent the limits of the PSAM orthonormalization.
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Energy

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

B
L
E
R

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

SMO-SESD
SM-SESD

Figure 4. BLER vs. PSAM matrix energy of a PSAM and its element orthonormalization for T = 4,
M = N = 2, R = 4, and an SNR of 22 dB.

5. USTM Construction Combining a Coherent Code and a Small USTM
5.1. General Description

In this section, we present another USTM construction method that is inspired by the
definition of PSAM matrices in (3), and based on the combination and orthonormalization
of a USTM with LU elements and a coherent code of LP elements to generate a constellation
of L = LULP elements. The main idea is to compose LU PSAMs using the USTM elements
to carry the pilot matrix in place of the B1 matrix in (3). In particular, letting CU = {XU

i }LU

i=1,
CU⊥ = {XU⊥

i }LU

i=1, P, and A = {Ai}LP

i=1 be the USTM, a set of orthogonal complements
of the USTM elements, a pilot matrix, and the coherent code, respectively, we propose to
compose the PSAMs CP

i = {XP
i,j}LP

j=1, i = 1, . . . , LU, where

XP
i,j = XU

i P + XU⊥
i Aj. (14)

Subsequently, we use these PSAMs to construct the constellation CO = {{XO
i,j}LU

i=1}LP

j=1,

where XO
i,j is the orthonormalization of XP

i,j, i.e., we can find a matrix Ri,j such that

XO
i,j = XP

i,jR
−1
i,j is unitary. Following the general PSAM description of Section 2, we as-

sume that the PSAMs {CP
i }LU

i=1 satisfy the power constraint in (1), i.e., the pilot matrix

power PP = ||P||2F and the coherent code power PA = 1
LP ∑LP

j=1 ||Aj||2F satisfy PP + PA = M.
A two-dimensional graphical representation of this constellation construction method

is depicted in Figure 5. The figure illustrates one of the benefits of this method: the con-
stellation elements are more homogeneously distributed in the semicircle than in Figure 3.
In addition to a composition of LU orthonormalized PSAMs, the constellation CO admits
another interpretation. In particular, it can be seen as a generalization of a PSAM orthonor-
malization in which data are encoded also in the pilots, or, more specifically, in the location
of the pilot matrix within a channel block. This location is given by the USTM matrices in
CU. It is important to note that, assuming LU is small enough, both constructing CU using
numerical optimization tools and storing CU and CU⊥ is feasible.
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The receiver can estimate the transmitted signal using a PSAM and a USTM receiver
in two phases. In the first phase, we propose to select one candidate from each PSAM CP

i ,
i = 1, . . . , LU, using the PSAM receiver. More specifically, for the i-th PSAM, CP

i , the PSAM
receiver should assume that the i-th matrix from CU was used to carry the pilot matrix
and estimate the transmitted coherent matrix, say, A ̂i . In the second phase, the USTM
receiver assumes that the constellation used by the transmitter was the set of candidates,
i.e., {XO

i, ̂i
}LU

i=1, and selects the received matrix from this set. The computational cost of this
reception technique is equivalent to the cost of LU PSAM receivers for constellations of LP

elements, plus the cost of a USTM receiver for constellations of LU elements.
Apart from the power constraint, this construction method does not impose any other

limitation on how the available power is distributed between P and A. However, this dis-
tribution affects the performance of CO, and, hence, it should be carefully designed. In the
following two sections, we will propose two methods to select PP and PA. The first method,
in Section 5.2, is a general approach that can be used for any system, although it is very con-
servative and has a limited performance, especially for certain coherent codes. The second
method, in Section 5.3, is valid for certain T, M, and LU values, and the generated constella-
tions present some performance gains as compared with other constellation constructions.

S(XU
1 )

(a) Constellation construction from a USTM of 2 elements

(b) Constellation construction from a USTM of 4 elements

S(XU
2 )

S(XU
1 )

S(XU
2 )S(XU

3 )

S(XU
4 )

and a coherent code of 4 elements

and a coherent code of 8 elements

Figure 5. Two-dimensional graphical representation of the elements of the PSAMs constructed
combining a USTM and a coherent code (with ‘×’ symbols), and the orthonormalization of these
elements (with ‘◦’ symbols).

5.2. General Method to Select PP and PA
Although the authors of [1] obtained the optimal power distribution between the pilot

matrix and the coherent code for one PSAM, the combination of several PSAMs to compose
a unique constellation limits the performance of this power distribution. In particular,
the elements of the resulting constellation CO are intermingled, and even some of them
could span the same subspace, as depicted in Figure 6. In order to avoid this, the distance
between the subspaces spanned by the constellation elements has to be controlled. For
instance, let dS(X1, X2) be the distance between the subspaces spanned by the matrices X1
and X2, if PP and PA are selected in such a way that

max
i,j

dS(XU
i , XO

i,j) <
1
2

min
k,` 6=k

dS(XU
k , XU

` ), (15)
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then it can be shown that the constellation elements span different subspaces. In particular,
using (15) and the triangle inequality, i.e., dS(X1, X3) ≤ dS(X1, X2) + dS(X2, X3), we
have that

dS(XU
i , XU

k )≤dS(XU
i , XO

i,j)+dS(XO
i,j, XO

k,`)+dS(XU
k , XO

k,`)

<dS(XU
i , XU

k )+dS(XO
i,j, XO

k,`),
(16)

for all i = 1, . . . , LU, k = 1, . . . , i− 1, i + 1, . . . , LU, j = 1, . . . , LP, and ` = 1, . . . , LP. The in-
equality in (16) implies that dS(XO

i,j, XO
k,`) > 0 and, hence, that XO

i,j and XO
k,` span different

subspaces. It is important to note that the previous result is independent of the particular
metric used to measure the subspace distance.

S(XU
1 )S(XU

2 )

Figure 6. Two-dimensional graphical representation of the potential consequence of a wrong power
distribution between the pilot matrix and the coherent code. Four pairs of constellation elements
span the same subspaces, which are drawn with dotted lines. (element: ‘◦’ symbols, coherent code:
‘×’ symbols).

The main drawback of this method is that it does not take into account the shape of
the coherent code, A, or the orientation of the orthogonal complements in CU⊥. In fact,
this method ensures that the constellation elements span different subspaces even in
cases in which a bad combination of coherent code and orthogonal complements is used.
This implies that this method is, in general, conservative and not very efficient. Figure 7
illustrates this drawback with two examples. In particular, the example in Figure 7a
shows three PSAMs constructed from a square-shaped coherent code, which power has
to be reduced to avoid that the elements near the square corners intersect with those of
the other PSAMs. This power level generates a lot of empty space, although, in this case,
the orthonormalization of the elements in Figure 7a satisfy (15). In Figure 7b, the orthogonal
complements are rotated 45◦, which allows more power to be allocated to the coherent
code. In this case, the large empty spaces are eliminated and the constellation elements are
more homogeneously distributed, although their orthonormalization does not necessarily
satisfy (15).

In the following section, we will describe a method to produce constellations similar to
that depicted in Figure 7b. In particular, prior to the orthonormalization, the constellation
elements are located in the surface of a hypercube defined in a special vector set: a module
over a ring.
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(a) Bad orientation of the orthogonal complements

S(XU
1 ) S(XU

2 )

S(XU
3 )

CP
3

CP
2CP

1

(b) Good orientation of the orthogonal complements

S(XU
1 ) S(XU

2 )

S(XU
3 )

CP
3

CP
2CP

1

Figure 7. Three-dimensional graphical representation of the effect of the orthogonal complements
orientation and the coherent code shape. A USTM of three elements is used to construct three PSAMs,
which elements are surrounded by quadrilaterals. (coherent code: ‘×’ symbols).

5.3. USTM Construction from a Hypercube

In this section, we present a USTM construction method in which the constellation
elements are first placed in the surface of a hypercube, and then they are orthonormalized.
Hypercubes are generally defined in vector spaces over the field of the real numbers R,
i.e., Rn. However, for this construction method, we need to define the hypercube in a
different vector set in which the field R is substituted by a ring. This type of vector sets
are known as modules over a ring. In this section, (i) we present the module in which
the hypercube is defined, (ii) we introduce a hypercube definition that can be used in this
module, and (iii) we describe the method itself.

Assuming that T is a multiple of M, i.e., T
M is an integer, we can interpret CT×M as

the Cartesian product of T
M sets R = CM×M, i.e.,M = CT×M = R T

M . It is important to
note that R is not commutative and, hence, it is not a field, which implies thatM is not
a vector space over R. However, it can be easily verified that R is a ring equipped with
the operations of matrix sum and product. Consequently,M is a module over R. More
specifically,M is a rightR-module equipped with the matrix product between elements of
the two sets. Note that, using this interpretation, X ∈ M is a vector with T

M components,
and that each component is a matrix in R. In addition to this, this module has a basis,

which can be built from any T × T unitary matrix. In particular, let B = {Bi}
T
M
i=1 be a

collection of T ×M matrices such that [B1 · · · B T
M
] is unitary, i.e.,

[B1 · · · B T
M
][B1 · · · B T

M
]∗ =

T
M

∑
i=1

BiB∗i = IT , (17)
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then B is a basis ofM. In other words, for any X ∈ M, we can find coordinates Ci ∈ R,

i = 1, . . . , T
M , such that X = ∑

T
M
i=1 BiCi. In particular, it can be shown from (17) that the

matrices Ci = B∗i X satisfy the previous equality. Since the elements of B also satisfy
B∗i Bj = 0M, for all i 6= j, and B∗i Bi = IM, for all i, where 0M is the M×M null matrix, we
say that B is an orthonormal basis.

We define the hypercube inM defined by the orthonormal basis B as the set

HB(ξ) =
{

X =

T
M

∑
i=1

BiCi

∣∣∣||Ci||F ≤ ξ, ∀i
}

, (18)

where ξ > 0 is a constant that defines the size of the hypercube. It can be readily verified
that, in the caseR = R,HB(ξ) is an hypercube centered at the origin, oriented following
the elements in the basis B, and whose sides expand from −ξ to ξ in the coordinate system
defined by B. The surface of the hypercube is the set of points in which the constraint
in (18) is satisfied as an equality for at least one matrix Ci, i.e., the surface ofHB(ξ) is

HS
B(ξ) =

{
X ∈ HB(ξ)

∣∣∣∃i, ||B∗i X||F = ξ
}

. (19)

We say that all the matrices X that satisfy ||B∗i X||F = ξ for the same coordinate i are
in the same face of the hypercube.

After the introduction of the hypercube definition, we are able to describe the con-
struction of the USTM. To do that, we start composing T

M PSAMs with elements in different
faces of a hypercube. These PSAMs are composed using an orthonormal basis B of the
moduleM, a coherent code AH = {AH

i }LP

i=1, where AH
i ∈ CM×M, and a pilot matrix P.

Note that, in this case, the coherent code elements are drawn from CM×M and not from
CT−M×M as before. The reason for this is that the coherent code elements are going to be
used as coordinates of matrices in M. Using the previous pieces, we can compose the
PSAMs CHP

i = {XHP
i,ι }ι∈I , i = 1, . . . , T

M , where ι = [ι1 · · · ι T
M−1]

∗ is a vector of indices,

I = {1, . . . , LP} T
M−1,

XHP
i,ι = µ

i−1

∑
j=1

Bj AH
ιj
+ BiP + µ

T
M

∑
j=i+1

Bj AH
ιj−1

, (20)

and µ > 0 is a factor that scales the coherent code. As mentioned before, it is clear from (20)
that XHP

i,ι has coordinates in the moduleM that are scaled versions of the elements of the
coherent code AH, except for the i-th coordinate, which is the pilot matrix. It can be shown
that, with a proper µ value, the PSAM elements are in different faces of the hypercube
HB
(
||P||F

)
. In particular, µ has to satisfy

µ||AH
i ||F < ||P||F, (21)

for all i = 1, . . . , LP. Note that the strict inequality is required to ensure that the PSAM
elements are not placed in two hypercube faces at the same time. We now use the PSAMs

CHP
i , i = 1, . . . , T

M , to construct the constellation CHO = {{XHO
i,ι }ι∈I}

T
M
i=1, where XHO

i,ι is the

orthonormalization of XHP
i,ι . The number of elements in this constellation is T

M (LP)
T
M−1.

The following result ensures that the elements in CHO span different subspaces.

Theorem 3. Let the pilot matrix used to compose CHO be a scaled unitary matrix, i.e., P = ηU,
where η > 0 and U is unitary; and let XHO

i,ι ∈ CHO and XHO
j,κ ∈ CHO. Then, S(XHO

i,ι ) = S(XHO
j,κ )

if and only if i = j and ι = κ.
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Proof. We start by noting that XHO
i,ι and XHP

i,ι span the same subspaces. Therefore, it is
equivalent to show that S(XHP

i,ι ) = S(XHP
j,κ ) if and only if i = j and ι = κ. Using Theorem 1,

it is straightforward to prove this theorem for the case i = j. Therefore, we continue
assuming i 6= j. We will proceed by assuming that S(XHP

i,ι ) = S(XHP
j,κ ), and conclude

that, in this case, the inequality in (21) cannot be satisfied, which concludes the proof.
In particular, if S(XHP

i,ι ) = S(XHP
j,κ ), there is some R ∈ CM×M such that XHP

i,ι = XHP
j,κ R. Pre-

multiplying both sides of this equality by Bi
∗ and Bj

∗, we obtain P = µDR and µE = PR,
respectively, for some D, E ∈ AH. Therefore, since P is invertible, then all D, E and R
are invertible. Moreover, we can combine both equalities to obtain µE = 1

µ PD−1P =

η2

µ UD−1U. Both D and E must satisfy the inequality in (21), and thus, we should have that

µ2tr(D∗D) < tr(P∗P) = η2M, (22)

µ2tr(E∗E) =
1

µ2 tr(P∗D∗−1P∗PD−1P)

=
η4

µ2 tr(D∗−1D−1) < η2M.
(23)

Let λ1, . . . , λM be the eigenvalues of D∗D. The two previous inequalities imply that

µ2
M

∑
m=1

λm < η2M, (24)

η4

µ2

M

∑
m=1

1
λm

< η2M. (25)

For a given sum of the eigenvalues, the left-hand side of (25) is minimum if all the
eigenvalues are equal. Therefore,

η4

µ2

M

∑
m=1

1
λm

>
η4

µ2

M

∑
n=1

M

∑M
m=1 λm

=
η4

µ2
M2

∑M
m=1 λm

. (26)

Using (24) in (26) we obtain

η4

µ2

M

∑
m=1

1
λm

> η2M, (27)

which contradicts (25).

As a consequence of Theorem 3, if P is a scaled unitary matrix and µ satisfies (21)
for all the elements in the coherent code AH, then the elements in CHO span different
subspaces. This fact highlights the importance of a good selection of the scaling factor µ.
In addition to this, it is important to note that µ significantly impacts the performance of
the constellation CHO. In order to visualize this impact, we refer to Figure 7b, which is a
graphical representation of the PSAMs CHP

i , i = 1, . . . , T
M , for the case T

M = 3. Note that the
’×’ symbols in one of the faces of the cube in Figure 7b represent one constellation element,
and that the coherent code AH used for this graphical representation is composed of four
elements. The scaling factor µ controls how the elements of each PSAM are distributed
throughout the cube faces. In particular, a low value causes the PSAM elements to be
concentrated around the axes, whereas a large value makes the elements approach the face
borders, and thus, the elements in a neighbouring cube face. In order to obtain a good
performance, we have to set the value of µ taking into account the protection against noise
and the reception technique.
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Regarding the protection against noise, we should equalize the elements’ separation
in each PSAM, and the separation between elements in different PSAMs. To this end, we
propose to select µ in such a way that

min
i 6=j

dF(µAH
i , µAH

j ) =
√

2 min
i,Q

dF(µAH
i , Q), (28)

where dF(X, Y) is the Euclidean distance between X and Y , i.e., dF(X, Y) = ||X − Y ||F,
and Q is restricted to ||Q||F = ||P||F. The left-hand side of (28) is the minimum distance
between two coherent code elements, which is, at the same time, the minimum distance
between two elements of the same PSAM. The minimization in the right hand side of (28)
provides the minimum distance between the coherent code elements and a matrix with
Frobenius norm equal to ||P||F. Figure 8 provides a graphical representation of the previous
distances for a T

M = 2 case.
Regarding the reception technique, if a PSAM receiver is used to select candidates

from the PSAMs, we should consider the power split between the pilot matrix and the
coherent code obtained in [1]. In this case, we propose to set µ to the minimum value
between the one that satisfies (28), and the one that satisfies the power split in [1].

In the following section, we will use the hypercube method described in this section
to obtain USTM constellations from coherent codes composed of matrices with rectangular
QAM symbols in their entries.

S(B1)

S(B2)

XHP
1,j XHP

1,i

µAH
j µAH

i

dF(µAH
i , µAH

j )

XHP
2,i

√
2d

F (µA H
i , Q

)

dF(µAH
i , Q)

Figure 8. Graphical representation of the distances used in (28) to set the value of µ for T
M = 2.

5.4. Application to Rectangular QAM-Based Coherent Codes

In this section, we focus on a special case of the hypercube method to construct
USTM constellations. In particular, the coherent codes of this case are based on rectangular
QAM, i.e., the real and imaginary parts of each matrix entry in the coherent codes are
independently and equiprobably drawn from an equispaced set of values centered at the
origin. More specifically, the set of values is

Q =

{
q
(

i− LQ + 1
2

)}LQ

i=1
, (29)

where LQ is the number of elements in Q, and q > 0 is a factor that scales the QAM
constellation. In the rest of this section, we assume that a PSAM receiver is used to select
candidates from the PSAMs, and we obtain the value of µ following the method exposed in
the previous section.
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We start finding the value of µ that satisfies (28), which we express as µ1. To this aim,
we note that, for coherent codes based on rectangular QAM, the left-hand side of (28) is
µ1q. In order to find the right-hand side of (28), we first solve

min
Q

d2
F(X, Q),

s.t., ||Q||2F = ξ2.
(30)

The Lagrangian of (30) is L(Q) = tr((X −Q)∗(X −Q)) + σ(tr(Q∗Q)− ξ2), where σ
is a Lagrange multiplier. Using the differential of the Lagrangian, it can be shown that the
matrix Q that solves (30) must satisfy −(X −Q)∗ + σQ∗ = 0, which yields Q = 1

1+σ X.
This implies that the solution of (30) is proportional to the given matrix X. Using these
results, the equality in (28) can be expressed as

µ1q =
√

2 min
i

dF

(
µ1 AH

i ,
||P||F
||AH

i ||F
AH

i

)
=
√

2 min
i

∣∣∣∣µ1 −
||P||F
||AH

i ||F

∣∣∣∣||AH
i ||F.

(31)

Since µ1 must satisfy (21), we have that

µ1 <
||P||F
||AH

i ||F
, (32)

and hence, the equality in (31) results in

µ1q =
√

2 min
i

(
||P||F
||AH

i ||F
− µ1

)
||AH

i ||F

=
√

2 min
i

(
||P||F − µ1||AH

i ||F
)
.

(33)

The coherent code matrix that minimizes the last term in (33) is the one with the maximum
norm. For the case of rectangular QAM, we have that maxi ||AH

i ||F =
√

2M LQ−1
2 q. Using

this result in (33) yields
µ1q =

√
2||P||F −M(LQ − 1)µ1q. (34)

Consequently,

µ1 =
||P||F

q

√
2

1 + M(LQ − 1)
. (35)

We continue computing the value of µ that satisfies the power split in [1], which we
express as µ2. This power split is given in [1] in terms of the portion of power dedicated to
the coherent code,

α =
PA

PA + PP
=

PA
PA + ||P||2F

. (36)

Since all the QAM symbols are equiprobable, the average power used in the coherent
code is

PA =
2(T −M)M

LQ

LQ

∑
i=1

µ2
2q2
(

i− LQ + 1
2

)2

=2(T −M)Mµ2
2q2 (LQ)2 − 1

12
.

(37)
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Using (36) and (37), we obtain

µ2 =
||P||F

q

√
α

1− α

1
(T −M)M

6
(LQ)2 − 1

, (38)

where, as indicated in [1], α = 1
2 if T = 2M and α = γ−

√
γ(γ− 1) if T > 2M, where

γ = (T−M)(M+ρT)
ρT(T−2M)

.
Finally, as proposed in the previous section, we scale the coherent code by µ = min(µ1, µ2).

In the following section, we compare the performance of these constellations with the per-
formance of a PSAM and its orthonormalization.

6. Constellation Performance Analysis

In this section, we analyze and compare the performance of three transmitter-receiver
configurations. Two of those configurations were briefly analyzed in Section 4. In particular,
the three configurations are as follows:

• SM-SESD: The transmitter sends PSAM matrices constructed from a scaled identity
pilot matrix and SM of QAM symbols. The receiver uses an LS channel estimator and
a SESD.

• SMO-SESD: The same configuration as the previous one, but the matrices are orthonor-
malized before transmission.

• H-SESD-ML: In this configuration, the transmitter uses a constellation generated using
the hypercube method with an identity pilot matrix and rectangular QAM-based
coherent codes, as described in Sections 5.3 and 5.4. The receiver uses the reception
technique described in Section 5.1, i.e., it estimates the transmitted signal using a
PSAM and a USTM receiver in two phases. In the first phase, the receiver selects
one candidate from each PSAM. To this end, it assumes that the transmitted signal
belongs to a given PSAM and uses a LS channel estimator and a SESD to estimate
the transmitted signal (one for each PSAM). In the second phase, the USTM receiver
assumes that the constellation used by the transmitter was the set of candidates and
selects the received matrix from this set using an ML detection.

We first compare the BLER of these configurations for M = N = 2, T equal to 4, 8
and 16, and for three QAM sizes: 4-QAM, 16-QAM, and 64-QAM. The BLER is depicted
in Figures 9–11 for T = 4, T = 8, and T = 16, respectively. The figures show that the
performance of the three configurations is very similar. SMO-SESD is slightly better than
SM-SESD and the performance of H-SESD-ML with respect to the other two configurations
depends on the particular case. However, it is important to note that the constellation
used in the H-SESD-ML configuration has more elements than those used in the other
configurations. In particular, the constellations of the SM-SESD and SMO-SESD have
(LQ)2M(T−M) elements, and the constellation used in the H-SESD-ML configuration has
T
M (LQ)2M(T−M) elements, where LQ equals 2, 4 and 8 for 4-QAM, 16-QAM and 64-QAM,
respectively. As a consequence, the bits transmitted per channel use are different for each
configuration, as shown in Table 1. Therefore, the BLER obtained with the H-SESD-ML
configuration cannot be directly compared.
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Figure 9. Performance comparison of three PSAMs constructed from rectangular QAM, their or-
thonormalization, and a constellation constructed using the hypercube method with the same QAM.
All results are obtained for a channel with T = 4 and M = N = 2.
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Figure 10. Performance comparison of three PSAMs constructed from rectangular QAM, their
orthonormalization, and a constellation constructed using the hypercube method with the same
QAM. All results are obtained for a channel with T = 8 and M = N = 2.
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Figure 11. Performance comparison of three PSAMs constructed from rectangular QAM, their
orthonormalization, and a constellation constructed using the hypercube method with the same
QAM. All results are obtained for a channel with T = 16 and M = N = 2.

Table 1. Bits per channel use transmitted for each configuration.

T QAM H-SESD-ML SMO-SESD SM-SESD
4 4 2.25 2 2
4 16 4.25 4 4
4 64 6.25 6 6
8 4 3.25 3 3
8 16 6.25 6 6
8 64 9.25 9 9
16 4 3.6875 3.5 3.5
16 16 7.1875 7 7
16 64 10.6875 10.5 10.5

In order to perform a fairer comparison, we computed the effective throughput of
the three configurations as the nominal throughput in Table 1 times one minus the BLER
in Figures 9–11. The maximum of the effective throughput from modulations 4-QAM,
16-QAM and 64-QAM is shown in Figure 12. Mathematically, letting Ri and BLERi(ρ) be
the nominal throughput and the BLER for an SNR ρ of the i-th modulation, respectively,
the effective throughput Reff = maxi Ri(1− BLERi(ρ)) is shown in Figure 12. The figure
shows that H-SESD-ML is the best configuration for T = 8 and T = 16, and it is also the
best configuration for some SNR ranges for T = 4. With respect to SM-SESD, SMO-SESD
increases the effective throughput around 0.04 bpcu on average for the three values of the
channel block length T, whereas the increment provided by H-SESD-ML is around 0.06
bpcu for T = 4, 0.2 bpcu for T = 8 and 0.17 bpcu for T = 16.
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Figure 12. Effective throughput comparison of a PSAM constructed from rectangular QAM, its
orthonormalization, and a constellation constructed using the hypercube method with the same
QAM. This throughput is the maximum from that obtained with 4-QAM, 16-QAM and 64-QAM,
and for M = N = 2.

7. Conclusions

We studied the relationship between PSAMs and USTMs. To do this, we introduced
a new definition of PSAM space-time matrices, in which the pilot matrix can be spread
out across the coherence interval using a tall unitary matrix. This unitary matrix and its
orthogonal complement enables a graphical representation of these constellations. Using
this definition, we found a map that transforms any PSAM into a USTM and vice versa.
This map indicates a PSAM-USTM equivalence in terms of the spanned subspaces.

We used this equivalence and the graphical representation to define new USTM
construction methods based on different PSAMs and their equivalent USTMs. In particular,
firstly, we proposed the use of the equivalent USTM of a PSAM. Secondly, inspired by the
graphical representation, we proposed to combine the equivalent USTMs of several PSAMs
of which the pilots are carried by different tall unitary matrices. The resulting constellations
can be interpreted as a PSAM where information is also encoded in the pilot position inside
the channel coherence interval. Using the correct power distribution between pilots and
signals, our results show that the obtained USTMs have higher effective throughput than
the PSAMs used to construct them.
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