
Citation: An, W.; Li, C.; Wang, D.;

Chen, W.; Guo, S.; Gao, S.; Zhang, C.

Flat Photonic Crystal Fiber Plasmonic

Sensor for Simultaneous

Measurement of Temperature and

Refractive Index with High

Sensitivity. Sensors 2022, 22, 9028.

https://doi.org/10.3390/s22239028

Academic Editors: Qiang Liu and

Lu Cai

Received: 2 November 2022

Accepted: 20 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Flat Photonic Crystal Fiber Plasmonic Sensor for Simultaneous
Measurement of Temperature and Refractive Index with
High Sensitivity
Wei An 1,2 , Chao Li 1,2,*, Dong Wang 1,2 , Wenya Chen 1,2 , Shijing Guo 1,2, Song Gao 1,2

and Chunwei Zhang 1,2

1 School of Information Science and Engineering, University of Jinan, Jinan 250022, China
2 Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, Jinan 250022, China
* Correspondence: ise_lic@ujn.edu.cn

Abstract: A compact temperature-refractive index (RI) flat photonic crystal fiber (PCF) sensor based
on surface plasmon resonance (SPR) is presented in this paper. Sensing of temperature and RI takes
place in the x- and y- polarization, respectively, to avoid the sensing crossover, eliminating the need
for matrix calculation. Simultaneous detection of dual parameters can be implemented by monitoring
the loss spectrum of core modes in two polarizations. Compared with the reported multi-function
sensors, the designed PCF sensor provides higher sensitivities for both RI and temperature detection.
A maximum wavelength sensitivity of −5 nm/◦C is achieved in the temperature range of −30–40 ◦C.
An excellent optimal wavelength sensitivity of 17,000 nm/RIU is accomplished in the RI range of
1.32–1.41. The best amplitude sensitivity of RI is up to 354.39 RIU−1. The resolution of RI and
temperature sensing is 5.88 × 10−6 RIU and 0.02 ◦C, respectively. The highest value of the figure
of merit (FOM) is 216.74 RIU−1. In addition, the flat polishing area of the gold layer reduces the
manufacturing difficulty. The proposed sensor has the characteristics of high sensitivity, simple
structure, good fabrication repeatability, and flexible operation. It has potential in medical diagnosis,
chemical inspection, and many other fields.

Keywords: photonic crystal fiber; surface plasmon resonance; refractive index sensor; temperature
sensor; dual-parameter measurement

1. Introduction

Optical fiber sensing technology has great potential for development in bio-chemical
detection, environmental monitoring, medical diagnosis, and many more fields [1–6] due to
its small size, low cost, anti-electromagnetic interference, and structural stability. Photonic
Crystal Fiber (PCF) is composed of core and cladding with periodically arranged air holes
that control the propagation of light. The flexible geometry arrangement of the PCF enables it
to provide desirable characteristics [7]. In addition, the air holes can be selectively filled with
materials such as thermo-sensitive liquid and analyte to realize various parameter sensing.
Compared with traditional optical fibers, PCF sensors combined with surface plasmon
resonance (SPR) have the advantages of real-time detection, flexible design, and high
sensitivity. With the development of SPR-PCF sensors, the detection of a single parameter,
such as refractive index (RI), temperature, etc., has gradually grown into maturity. A D-
shaped PCF-SPR sensor proposed by Meng X et al. [8] shows a double confinement loss (CL)
peak and an unchangeable spectrum trough that indicates the extreme stability of the sensor.
Siddik A B et al. [9] reported a dual-core PCF temperature sensor. Under the temperature
range of 0–60 ◦C, the sensor shows a flat sensitivity of 2.25 nm/◦C.

However, if the detection of multiple parameters is desired, operators need to cascade
several single-parameter sensing devices. The complex setup greatly increases the difficulty
of operation as well as the manufacturing cost. Therefore, multi-parameter sensors were
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developed. Many studies have reported possible structures for simultaneous measurement
of two or more parameters such as RI, temperature, magnetic field, seawater salinity, strain,
voltage, etc. By filling the PCF structure with materials that are sensitive to different parame-
ters in different positions, the simultaneous sensing of multiple parameters can be realized in
multiple channels. The D-shaped PCF proposed by Zhang Y et al. [10] realizes simultaneous
sensing of the RI and seawater temperature. Calculating the wavelength sensitivity of the RI
and temperature, the maximum values of 1228 nm/RIU and −1.06 nm/◦C were obtained,
respectively. In 2018, Yong et al. [11] proposed a C-type grapefruit micro-structured fiber for
the measurement of seawater temperature and salinity, with a maximum response sensi-
tivity of 1.402 nm/‰ and −7.609 nm/◦C for salinity and temperature, respectively. The
detection of multiple parameters often has the problem of cross-sensitivity, which increases
the difficulty of separating multiple signals. The proposed structure above uses the transfer
matrix to express metrics such as sensitivity, resolution, etc., of each parameter, which
makes the processing of parameters complicated. The D-shaped RI and temperature sensor
proposed by Chen A et al. [12] separates the detection of the two parameters in the x- and
y-polarizations, respectively, and avoids the crossover of signals. However, the obtained
maximum sensitivity is only 3940 nm/RIU and 1.075 nm/◦C, respectively. The simple D-
shaped coreless fiber sensor based on SPR proposed by Li B et al. [13] can measure the liquid
RI and ambient temperature in real-time. The optimal sensitivity reaches 12,530 nm/RIU
and −3.465 nm/◦C, respectively. The above configuration of structures is comparatively
concise. Nevertheless, the acquired sensitivity is unideal. In conclusion, improving the
sensing performance of the structure design is required.

In this paper, we propose and illustrate a compact RI-temperature PCF plasmonic
sensor. The RI detection channel is designed as a flat surface and coated with a gold layer.
The temperature detection channel is coated with a gold layer and filled with toluene to
improve the sensitivity of temperature detection. Separated sensing in x- and y-polarization
of dual-parameter averts sensitivity crossover. Simultaneous detection is implemented
simply by monitoring the polarized guiding light direction. The optimized structure
accomplishes the maximum wavelength sensitivity of −5 nm/◦C in the temperature range
of −30–40 ◦C. The resonance wavelength of temperature sensing shows great linearity. An
excellent optimal wavelength sensitivity of 17,000 nm/RIU is achieved in the RI range
of 1.32–1.41. The proposed sensor shows an ideal detecting resolution of 0.02 ◦C and
5.88 × 10−6 RIU for temperature and RI, respectively. The best amplitude sensitivity can
be up to 354.39 RIU−1. The highest value of the figure of merit (FOM) is 216.74 RIU−1.
The fabrication tolerance and manufacturing process of the sensor are also investigated
in the paper. Owing to its high sensitivity, flexible operation, and superior performance,
the sensor exhibits great potential in environmental monitoring, chemical inspection, and
many other fields.

2. Theory and Model Design

A cross-section view of the proposed PCF sensor is shown in Figure 1. The air holes of
PCF are composed of a three-layer hexagonal arrangement, and the interval of adjacent
air holes is mentioned as pitch, which is denoted by Λ. The air hole in the core area is
omitted. Therefore, the light wave propagates in the fiber core according to the principle of
total internal reflection (TIR) theory. The diameter ds of the innermost air holes is small,
while the diameter dl of the air holes in the outer two layers is relatively large. Ten air
holes in the upper and lower parts, respectively, are omitted for the deposition of the metal
film and analyte filling. The gold layer is deposited at a distance h from the fiber core to
implement the detection of RI. Analyte with variable RI is filled in the upper and lower
D-shaped regions in the fiber structure. Analyte liquid is in direct contact with the gold
film, achieving the sensitive detection of RI. The thickness of the gold layer is marked as tg.
The flat polishing of gold film greatly reduces the difficulty of manufacturing. In addition,
the two air holes that are close to the fiber core in the second layer are deposited with a gold
film; the thickness is also tg. The temperature-sensitive liquid toluene is filled in the two
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air holes to accomplish the real-time sensitive detection of the ambient temperature. This
structural design enables the sensing of the analyte RI and the ambient temperature to be
performed in y-polarization and x-polarization, respectively, avoiding the crossover of the
dual parameter detection. The optimized structural parameters are ds = 0.9 µm, dl = 1.6 µm,
Λ = 2 µm, h = 3.1 µm, and tg = 50 nm. We analyze the sensing characteristics of the sensor
by monitoring incident light wavelength, the step of which is set as 5 nm. Theoretical
simulation of the proposed structure is implemented by the finite element method (FEM).
In order to make the unwanted modes leak from the fiber cladding and further diminish
the leakage loss, a 1-µm-thick Perfect Matching Layer (PML) is used outside the PCF as an
absorbing boundary condition. In addition, the scattering boundary condition is configured
in order to better replicate the external environment. Free triangular mesh is used to divide
the proposed sensor structure. The model is divided into 27,878 mesh elements in total,
with 202,427 degrees of freedom.
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croinjecting pump. The remaining optical signal is transmitted into another SMF, which 
is coupled to the optical spectrum analyzer (OSA). The spectrum is recorded and pre-
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Figure 2. Schematic setup of the flat PCF plasmonic sensor. 

Figure 1. Schematic diagram of the proposed flat PCF-SPR sensor.

Figure 2 shows the experimental setup of the microsensor. A broadband light source
(BBS) emits a light signal in the wavelength range of 500–1500 nm. The output signal passes
through the polarizer controller. A polarized light signal is then transmitted to the designed
sensor through a single-mode fiber (SMF). Part of the light energy is lost in the interaction
with the analyte. The splicing method can be employed to couple the proposed PCF with
SMF. Filling and removal of the analyte can be accomplished using a microinjecting pump.
The remaining optical signal is transmitted into another SMF, which is coupled to the
optical spectrum analyzer (OSA). The spectrum is recorded and presented by the OSA.
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The material RI of the sensor component varies with different temperatures, causing a
removal in the phase matching conditions. The resonance wavelength changes between
the RI of the core-guided mode and the SPP mode. This variation is reflected in the
absorption spectrum. By observing the loss spectrum, sensitive temperature and RI sensing
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are implemented. The RI of the PCF background material fused silica can be derived from
Sellmeier’s Equation [14],

n(λ) =

√
A +

B
(1 − C/λ2)

+
D

(1 − E/λ2)
(1)

where λ is the wavelength of the current operating light in a vacuum environment.
A = 1.31552 + 0.690754 × 10−5 T, B = 0.788404 + 0.235835 × 10−4 T,
C = 0.0110199 + 0.584758 × 10−6 T, D = 0.91316 + 0.548368 × 10−6, and E = 100.

The free electron gas model of the Drude model is used to describe the movement law of
electrons inside of the metal, and the complex dielectric constant of gold is computed as [15]:

ε(ω) = ε1 + iε2 = ε∞ −
ω2

p

ω(ω + iωc)
(2)

where ε∞ = 9.75 is the dielectric constant of Au at infinite frequency, ωp = 1.36× 1016

is the plasma frequency of gold in units of rad/s, and ωc = 1.45× 1014 is the collision
frequency at T0 = 298.15 K [16]. The optical properties of metal are determined by plasma
frequency [17] and collision frequency [18,19].

Considering the effect of temperature change on the thickness of the metal layer,
Equation (3) is introduced [20]:

tg = tg0
[
1 + γ′(T − T0)

]
(3)

where tg0 is the thickness of the gold film at room temperature T0 = 298.15K. γ′ is the
corrected thermal expansion coefficient and is derived from:

γ′ = γ
1 + µ

1− µ
(4)

where the linear expansion coefficient γ = 1.42× 10−5 K−1, µ = 0.42 is the Poisson’s number
of the film material. γ is replaced by γ′, for the expansion of the gold layer is only in the
normal direction.

Liquid toluene is chosen as the temperature detection material for its large thermo-
optical coefficient and is selectively filled into the air holes in the second layer that are close
to the fiber core. RI of the liquid toluene nToluene can be expressed as [21]:

nToluene = nToluene
∣∣T0=20◦C + αToluene × (T − T0) (5)

where the thermal-optical coefficient of the RI for toluene αToluene = −5.273× 10−4 [22].
The RI of toluene at T0 = 20 ◦C can be written as [23]:

nToluene = 1.474775 + 6990.31/λ2 + 2.1776× 108/λ4 (6)

The CL of the core mode is determined to analyze the sensing performance, which
strongly relates to the imaginary part of RI. CL can be calculated as follows [24]:

αloss = 8.686× 2π
λ

Im(neff)× 104(dB/cm) (7)

where Im(neff) refers to the imaginary part of mode RI. By analyzing the dependence of RI
and mode CL, the transmission mechanism of the designed PCF-SPR sensor can be revealed.

3. Results and Discussion

Figure 3a,b represent the dispersion relationship of core modes in y- and x-polarization
with SPP modes. The solid black line is the CL of the mode propagating in the core, the
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blue dotted line in Figure 3a,b is the real part of the core mode RI in y- and x-polarization,
respectively, and the red dotted line is the real part of the SPP mode RI. It can be seen
from Figure 3 that when the RI of the core mode and the SPP mode is equal, the SPR is
excited, and a peak appears in the CL spectrum. Inset (i) is the electric field distribution
and direction when the core mode is well confined in the core and the CL is relatively
low. Inset (ii) is the electric field distribution and direction of the SPP mode in the two
detecting channels. As shown in inset (iii), when SPR occurs, the energy of the core
mode is transferred to the SPP mode at the resonance wavelength. When the analyte
RI or the ambient temperature changes, the position of the resonance wavelength shifts
accordingly. Sensitive detecting of the dual parameter can be achieved by observing the
change in resonance wavelength. As is illustrated in Figure 3, under RI = 1.36, T = 20 ◦C,
in y-polarization and x-polarization, the core mode and the SPP mode excite SPR at the
wavelength of 675 nm and 1245 nm, respectively.
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3.1. RI Sensing

The peaks of the CL in y-polarization are used to probe the RI change of the analyte.
By observing the position of the CL spectrum peak, the analyte RI can be determined
accordingly. In Figure 4a, as the analyte RI increases, the position of the CL attenuation
peak shifts to a larger wavelength, indicating a red-shift. In order to evaluate the sensitivity
of the reported sensor, the wavelength interrogation method is introduced. Wavelength
sensitivity is expressed as [25]:

Sλ(na, λ) =
∆λpeak

∆na
(nm/RIU) (8)

where ∆λpeak refers to the shift of peak wavelength under adjacent analyte RIs. The variant
of analyte RI is denoted by ∆na. At T = 25 ◦C, the sensor achieved an optimal wavelength
sensitivity of 17,000 nm/RIU when the analyte RI varies from 1.40 to 1.41, which is superior
to the prior results among sensors in this category. Furthermore, when the analyte RI
changes from 1.32 to 1.40 in steps of 0.01, SPR occurred at 600, 610, 630, 650, 675, 705,
745, 800, and 880 nm, respectively, corresponding to sensitivities of 1000, 2000, 2000, 2500,
3000, 4000, 5500, and 8000 nm/RIU. As shown in Figure 4b, taking the phase matching
(resonance) points of core mode and SPP mode, polynomial fitting gives the extremely high
fitting coefficient R2 of 0.99896.
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Resolution describes the minimum indices change that a sensor can resolve. The
resolution of RI is defined as [26]:

RRI(na, λ) = ∆na × ∆λmin/∆λpeak(RIU) (9)

where ∆na is the change in the adjacent analyte RI, ∆λmin represents the smallest spectrum
resolution, which is usually set as 0.1 nm, ∆λpeak refers to the shift wavelength of the
resonance peak. According to Equation (9), the resolution is 5.88 × 10−6 RIU when analyte
RI alters from 1.40 to 1.41.

Similarly, the amplitude sensitivities of the flat PCF sensor for na varies from 1.32
to 1.40 are calculated, and the results are plotted and depicted in Figure 5a. Amplitude
sensitivity can be obtained by [27]:

SA

(
RIU−1

)
= − 1

α(λ, na)

∂α(λ, na)

∂na
(10)

where α(λ, na) indicates the mode CL, ∂α(λ, na) refers to the difference of CL between the
adjacent analyte RI. Amplitude sensitivity reaches a maximum value of 354.39 RIU−1 at
885 nm when RI increases from 1.39 to 1.40. When the analyte RI changes from 1.32 to 1.41
in steps of 0.01, the corresponding amplitude sensitivity is 136.67, 152.05, 140.25, 197.70,
208.32, 263.07, 257.38, 354.39, and 339.80 RIU−1, respectively.
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Another important index FOM is calculated in our work. FOM indicates the sharpness
of the CL peak and evaluates the detecting accuracy. FOM is defined as [28]:

FOM
(

RIU−1
)
=

Sλ(na, λ)

FWHM(nm)
(11)

where Sλ(na, λ) is the wavelength sensitivity. FWHM(nm) denotes the full width at half
maxima. FOM combines FWHM and signal-to-noise ratio (SNR). For higher sensitivity, the
FOM is required to be as large as possible. In Figure 5b, an ideal FOM of 216.74 RIU−1 is
obtained at analyte RI = 1.40.

3.2. Temperature Sensing

Figure 6a shows the loss spectrum of the PCF-SPR sensor at −30–40 ◦C. Analyte
RI is fixed at 1.36. Corresponding to a temperature of −30, −20, −10, 0, 10, 20, 30, and
40 ◦C, SPR appears at a wavelength of 1440, 1415, 1380, 1340, 1295, 1245, 1200, and
1170 nm, respectively. As the temperature increases, the resonance wavelength shows a
blue-shift towards a smaller wavelength, for the RI of liquid toluene becomes smaller as the
temperature increases. The SPR occurring at the surface of the gold layer correspondingly
shifts to a shorter wavelength with increasing temperature. The wavelength sensitivity of
temperature detection is calculated as follows [29]:

Sλ(T, λ) =
∆λpeak

∆T
(nm/◦C) (12)

where ∆λpeak refers to the shift of peak wavelength under adjacent temperature T. The
variant of temperature is denoted by ∆T. The proposed sensor achieves wavelength
sensitivity of −2.5, −3.5, −4.0, −4.5, −5.0, −4.5, and −3.0 nm/◦C for the environment
temperature varying from−30 ◦C to 40 ◦C in steps of 10 ◦C, respectively. The best sensitivity
of −5.0 nm/◦C is obtained as temperature diverse from 10 ◦C to 20 ◦C. As shown in
Figure 6b, the fitting result of the resonance wavelength shows good linearity with an
excellent R2 of 0.9935.
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The resolution of temperature is defined as [30]:

RT(T, λ) = ∆T × ∆λmin/∆λpeak(
◦C) (13)

where ∆T is the change of the ambient temperature, ∆λmin denotes the smallest spectrum
resolution, which is also set as 0.1 nm. ∆λpeak refers to the shift wavelength of the resonance
peak when temperature varies. According to Equation (13), the resolution is 0.02 ◦C when
the temperature changes from 10 ◦C to 20 ◦C. It is worth mentioning that the reason we
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choose −30–40 ◦C as the temperature detecting range is for the consideration of both toluene
characteristics and sensing performance. The melting and boiling point of liquid toluene is
−94.9 ◦C and 110.6 ◦C, respectively [31]. Toluene remains chemically stable in this temperature
range when sealed. Additionally, the reported sensor shows good sensitivity and peak
wavelength linearity within the ambient temperature range from −30 ◦C to 40 ◦C.

3.3. Independence Analysis of Dual Parameter Sensing

The crosstalk between the two sensing channels should be considered in dual-parameter
measurement sensors. In this part, we analyze the performance in the two sensing channels
under different temperatures and analyte RI. Firstly, the analyte RI is fixed at 1.36 with the
ambient temperature varying from −30 ◦C to 40 ◦C. The CL spectrum of the RI sensing
channel is drawn in Figure 7a. As the temperature alters, core mode loss in y-polarization
only has a slight change in amplitude, while the resonance wavelength barely changes and is
fixed at 675 nm. For comparison, the CL spectrum of the y-polarization core mode when the
analyte RI is 1.37 at 20 ◦C is also plotted in Figure 7a. The core mode loss in y-polarization has
a greater change in amplitude; the peak wavelength also red-shifts from 675 nm to 705 nm.
Therefore, the RI sensing region is insensitive to temperature. Next, the ambient temperature
remains constant at 20 ◦C; the analyte RI is modified from 1.32 to 1.41. As can be seen in
Figure 7b, the core mode loss in x-polarization stays the same. Similarly, when the analyte RI
is 1.36 and the ambient temperature is 10 ◦C, the loss spectrum of the x-polarization core mode
is depicted in Figure 7b. It can be found that the peak wavelength red-shifts from 1245 nm to
1295 nm. Therefore, the temperature sensing channel is insensitive to the analyte RI. Given
the above, the RI sensing channel and temperature sensing channel are independent during
measurement, which helps avoid sensitivity crossover and simplifies the detecting process.
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4. Structure Parameter Optimization

The structure parameters of the sensor will affect the detection performance of tem-
perature and RI in various degrees. In order to optimize the sensing characteristics of the
proposed sensor, the influence of the thickness of the gold film tg, deposition depth of the
gold film h, the diameter of the small air holes in the inner layer ds, and the diameter of the
large air holes in the outer layer dl on the sensing performance are analyzed and discussed
in this section.

SPR is excited at the interface between the gold layer and the medium. The thickness
of the gold layer tg has a great influence on the resonance wavelength and the peak value
of the loss spectrum. Therefore, this parameter is one of the key indicators that affect
the sensing performance. It can be seen from Figure 8a that the increase in tg promotes
the red-shift of the resonance wavelength. When tg = 40, 50, and 60 nm, the wavelength
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sensitivity of RI is 13,000, 14,500, and 15,500 nm/RIU, respectively. As tg increases, the
height of the loss peak decreases. This is because the gold film is too thick, preventing the
electric field from penetrating the dielectric layer [32]. The mode coupling efficiency is
correspondingly depressed and weakened, resulting in great suppression of the CL peak.
Additionally, the CL spectrum of 1.41 RIU shows a 2nd order peak near the resonance peak
of 1.40 RIU when tg = 60 nm, which might interfere with the sensing. For temperature
detection, as shown in Figure 8b, when tg = 40 and 50 nm, the wavelength sensitivity is
−4.5 nm/◦C, and when tg thickens to 60 nm, the temperature sensitivity is increased to
−5 nm/◦C. Considering the sensing characteristics of both RI and temperature, 50 nm is
determined to be the optimum thickness of the gold film.
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Figure 8. Loss spectra of (a) y-polarization core mode in RI sensing channel when analyte RI varies
from 1.40 to 1.41, and (b) x-polarization core mode in temperature sensing channel under ambient
temperature from 0 to 10 ◦C with different thicknesses of the Au film tg.

Since the detection of RI occurs in y-polarization, the polishing depth h of the Au film
has a great influence on the sensing performance of RI. Figure 9a exhibits the CL spectra
of 1.40 RIU and 1.41 RIU as a function of h. When the analyte RI varies from 1.40 to 1.41,
the corresponding wavelength sensitivities are 13,500, 14,500, 16,000, and 16,000 nm/RIU
for h = 2.9, 3, 3.1, and 3.2 µm, respectively. When h is larger than 3.1 µm, the sensitivity
is no longer improved. It can be seen from Figure 9a that the CL peak becomes lower as
h increases. As the polishing surface gets away from the core area, resonance intensity
between the core mode and SPP mode is weakened accordingly. Figure 9b shows the
resonance wavelength as a function of different h at 0–10 ◦C. It is obvious that the change
in h has little effect on temperature sensitivity, which remains at −4.5 nm/◦C. Therefore,
we choose h = 3.1 µm for higher RI sensitivity.
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The structure of PCF can be further optimized. The diameter of the air holes has a great
influence on the leakage of the mode and the position where the resonance occurs. Firstly,
the influence of the small air hole diameter ds in the inner layer on sensing performance
is analyzed. Figure 10a shows the effect of ds on the CL spectrum when the analyte RI
changes from 1.40 to 1.41. When ds = 0.7, 0.8, 0.9, and 1 µm, the RI sensitivity is 14,000,
14,500, 16,000, and 18,500 nm/RIU, respectively. It can be known that smaller ds allows
the guiding light to leak more from the core area, resulting in a stronger resonance at
the interface between the metal film and the medium. A larger peak in the CL spectrum
appears. Red-shift of the resonance wavelength is suppressed, and the RI sensitivity is
reduced. From Figure 10b, when ds = 0.7, 0.8, 0.9, and 1 µm, the temperature sensitivity is
−3.5, −4.5, −5, and −4.5 nm/◦C, respectively. As ds increases from 0.7 µm to 0.9 µm, the
temperature sensitivity ascends. However, when ds continues to increase, the temperature
sensitivity begins to descend afterward. Therefore, the value of ds is set as 0.9 µm.
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Figure 10. Loss spectra of (a) y-polarization core mode in RI sensing channel when analyte RI varies
from 1.40–1.41, and (b) x-polarization core mode in temperature sensing channel under ambient
temperature from 0–10 ◦C with different diameter of air holes ds.

Figure 11 displays the variations of the loss spectrum with a different air hole diameter
dl for the RI range 1.40–1.41 and the temperature range 0–10 ◦C. Because there is no large
air hole between the RI detection channel and fiber core area, the variation of dl does not
have much influence on the RI detection, yet it has a certain influence on the temperature
detection. Figure 11a shows that when dl = 1.5, 1.6, and 1.7 µm, the RI sensitivity is
15,500, 16,000, and 15,000 nm/RIU, respectively. Figure 11b shows that the corresponding
temperature sensitivity is −3.5, −4.5, and −2 nm/◦C, respectively. When dl = 1.6 µm, both
RI and temperature detection have better performance. Thus, dl = 1.6 µm is considered the
best design. In conclusion, the optimized structural parameters are ds = 0.9 µm, dl = 1.6 µm,
h = 3.1 µm, and tg = 50 nm.

Table 1 illustrates the comparison of the sensing characteristics between the proposed
flat PCF-SPR sensor and previously reported structures for RI and temperature detection.
Compared with other structures, it is evident that the detecting performance of temperature
and RI is greatly improved in the proposed PCF. The sensor shows more superb wavelength
sensitivity of 17,000 nm/RIU and amplitude sensitivity of 354.39 RIU−1 for RI sensing
than the previously reported sensors. The optimal temperature sensitivity of −5 nm/◦C is
comparable. In addition, the proposed structure is simpler than some of the structures that
have been introduced.
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Table 1. Performance comparison between the proposed sensor and previously reported sensors.

Structure
Configuration

RI
Range

Temp.
Range

Operating
Wavelength

[nm]

Wavelength
Sensitivity
(RI/Temp.)

Amplitude
Sensitivity
(RI/Temp.)

[RIU−1/◦C−1]

Wavelength
Resolution
(RI/Temp.)
[RIU/◦C]

FOM
(RI)

[RIU−1]

Liquid-filled D-shape
PCF [12] 1.35–1.40 20–60 ◦C 550–850

3940
nm/RIU/

1.075 nm/◦C

152.23/
539.42 N/A N/A

No-core fiber [13] 1.33–1.44 0–180 ◦C 400–1200
12,530

nm/RIU/
−3.465 nm/◦C

N/A N/A N/A

Double U-groove
PCF [33] 1.32–1.4 −30–50 ◦C 1300–2500

4715
nm/RIU/
18 nm/◦C

48.44/
1.01 × 10−1

2.12 × 10−5/
5.55 × 10−3 N/A

Dual-core D-shaped
PCF [34] 1.33–1.39 −50–40 ◦C 500–900

8100
nm/RIU/

1.3 nm/◦C
N/A N/A N/A

Grating-assisted SPR
silicon core sensor [35] 1.28–1.38 15–40 ◦C 1800–2800

1949.8
nm/RIU/

1.6 nm/◦C
N/A N/A N/A

Proposed Flat PCF
Plasmonic Sensor 1.32–1.41 −30–40 ◦C 500–1500

17,000
nm/RIU/
−5 nm/◦C

354.39/
N/A

5.88 × 10−6/
0.02

216.74

5. Fabrication Tolerance and Manufacturing Process Analysis

In the practical manufacturing process, the difference in structure parameters is in-
evitable. According to Reeves et al. [36], the order of 1% deviation might take place. In
this section, the repeatability and stability of the proposed sensor are investigated by
performing fabrication tolerance on the key parameters tg, h, ds, and dl.

We consider ±5% variation from the optimal parameters of tg, h, ds, and dl. Under
ambient temperature T = 20 ◦C, the CL spectra of y-polarization core mode in the RI
sensing channel for analyte RI of 1.36 and 1.37 is depicted in Figure 12. Figure 12a–d
shows the result of the tolerance test for tg, h, ds, and dl, respectively. The resonance peak
shift is less than 5 nm, which is very minor. The change in peak value is very slight and
is under 4.12 dB/cm. Figure 13a shows the wavelength sensitivity of RI detection with
±5% structure tolerance. It is obvious that except for an improvement of 500 nm/RIU
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with −5% ds, wavelength sensitivity remains unchanged. Therefore, ±5% tolerance of the
structure parameters has little effect on RI sensing.
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A tolerance test on structure parameters is also performed in the temperature-sensing
channel. A ±5% deviation of tg, h, ds, dl, and ±2%, ±3%, and ±5% deviation of dl are
considered. With analyte RI of 1.36, the CL spectrum of the x-polarization core mode under
ambient temperature T = 10 and 20 ◦C is drawn in Figure 14. Figure 14a–d shows the result
of the tolerance test for tg, h, ds, and dl, respectively. tg, h, and ds with ±5% deviation did
not show a significant effect on wavelength shift, which is less than 5 nm. The change in
peak value of CL spectra is under 73.46 dB/cm. In Figure 13b, the decrease in wavelength
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sensitivity for temperature sensing caused by tg, h, and ds with ±5% deviation is less than
0.5 nm/◦C. However, ±5% deviation of dl will have a greater effect on both wavelength
shift and peak value. Thus, we further examine the temperature sensing characteristics
with ±2% and ±3% tolerance of dl. As shown in Figure 14d, with ±3% deviation of dl, the
corresponding maximum wavelength shift is 35 nm, and the maximum peak loss change
is 65.96 dB/cm. With ±2% deviation of dl, the wavelength shift is 25 nm and 20 nm for
−2% under T = 10 and 20 ◦C, respectively, and 15 nm for +2% under T = 10 and 20 ◦C. The
maximum peak loss change is 58.17 dB/cm. From Figure 13b, with ±3% tolerance of dl, the
variation of wavelength sensitivity for temperature sensing can be limited within 0.5 nm/◦C.
With ±2% tolerance of dl, the wavelength sensitivity is unaffected. In order to ensure the
loss peak shift is as minor as possible, we suggest the fabrication tolerance of dl be controlled
under ±2%, which is technically feasible. Overall, the reported sensor exhibits considerable
repeatability and stability when the structure parameters tg, h, and ds are fabricated within
±5% tolerance and dl within ±2% tolerance. Moreover, gold is very stable. Liquid toluene
and gold are chemically nonreactive. As an organic compound, toluene does not corrode
silica. Since toluene is packaged in the PCF, volatility can be avoided. The material and
structure design helps the sensor stay stable during the detecting process.
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Manufacturing is an essential part of the proposed sensor to be practically applied. In
Figure 15, the manufacturing process of the reported flat PCF plasmonic sensor is illustrated.
We suggest the following ways by which our sensor can be implemented. The stack-and-
draw method [37] can be adopted to fabricate the PCF structure. Silica tubes with good
geometric dimensions and optical surfaces are selected. Capillaries of different diameters
are drawn through a drawing tower after rigorous cleaning. The drawn capillaries are
tightly packed according to the designed structure. The preform stacking configuration
of the proposed sensor is shown in Figure 15. Solid rods, thick-wall, and thin-wall rods
are used to form cavities of different sizes. The stacked rods are drawn in a jacket through
a high-temperature furnace that is heated to 1850–1900 ◦C [38] to soften. The cane is cut
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into the desired length. Using the side polishing method [39], the gold coating surface is
produced. The gold film is then coated on the PCF. The deposition process can be realized
by chemical vapor deposition (CVD) [40], atomic layer deposition (ALD) [41], and other
methods [42]. Next, air holes, except for the selected liquid-filled ones, are sealed with UV
glue. UV glue is hardened under a UV radiator. The gold film on the inner air holes can
also be deposited by the aforementioned methods. Liquid toluene is then pumped into the
selected air holes in a vacuum [43]. In the next step, the experimental realization of the
proposed work is expected to examine and improve our structure.
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6. Conclusions

In this paper, a sensitive and compact RI-temperature PCF sensor based on SPR
is presented. The flat RI detection channel is coated with gold film. The temperature
detection channel is composed of two liquid toluene-filled air holes and incorporated with
a gold film. The large thermos-optical coefficient of toluene improves the temperature
sensitivity. The detection of temperature and RI takes place in the x- and y- polarization,
respectively, to avoid the detection crossover. By optimizing the structural parameters
of the sensor, the detection sensitivity is improved. A maximum wavelength sensitivity
of −5 nm/◦C is achieved in the temperature range of −30–40 ◦C. An excellent optimal
wavelength sensitivity of 17,000 nm/RIU is accomplished in the RI range from 1.32 to 1.41.
The simulation results show that the proposed sensor possesses higher sensitivity than the
previously reported structures. For temperature sensing, the fitting result of the resonance
wavelength shows good linearity with an excellent R2 of 0.9935. For RI sensing, polynomial
fitting of the resonance wavelength also gives the extremely high fitting coefficient R2 of
0.99896. The proposed sensor shows an ideal detecting resolution of 5.88 × 10−6 RIU and
0.02 ◦C for RI and temperature, respectively. The best amplitude sensitivity can be up to
354.39 RIU−1. The best value of FOM is 216.74 RIU−1. The sensor shows good repeatability
when tg, h, and ds are fabricated within ±5% tolerance and dl within ±2% tolerance. In
addition, the proposed sensor structure can be easily manufactured. The flat polishing
area of the gold layer reduces the manufacturing difficulty. Due to the characteristics of
high sensitivity, simple structure, and flexible operation, the novel flat PCF sensor has a
promising future in environmental monitoring, chemical inspection, and many other fields.
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