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Abstract: Accurate traffic prediction is significant in intelligent cities’ safe and stable development.
However, due to the complex spatiotemporal correlation of traffic flow data, establishing an accurate
traffic prediction model is still challenging. Aiming to meet the challenge, this paper proposes
SGGformer, an advanced traffic grade prediction model which combines a shifted window operation,
a multi-channel graph convolution network, and a graph Transformer network. Firstly, the shifted
window operation is used for coarsening the time series data, thus, the computational complexity can
be reduced. Then, a multi-channel graph convolutional network is adopted to capture and aggregate
the spatial correlations of the roads in multiple dimensions. Finally, the improved graph Transformer
based on the advanced Transformer model is proposed to extract the long-term temporal correlation
of traffic data effectively. The prediction performance is evaluated by using actual traffic datasets,
and the test results show that the SGGformer proposed exceeds the state-of-the-art baseline.

Keywords: Graph Transformer; multi-channel GCN; shifted window operation; traffic prediction;
deep learning

1. Introduction

Intelligent transportation system (ITS) shows great potential in improving the effi-
ciency [1], stability, and reliability of transportation systems, which makes it a research
hotspot [2]. The development of ITS is mainly reflected in vehicle–environment coordina-
tion control [3], passenger demand forecasting [4], travel time estimation [5], and order
scheduling [6]. The realization of these functions depends on accurate and reliable traffic
forecasting. Furthermore, the improvement of computing power and data acquisition
technology provides hardware and data support for the traffic prediction task, making the
development of accurate traffic prediction methods a hot research topic.

The research history of scholars on traffic prediction methods mainly includes statisti-
cal, shallow machine learning, and deep learning methods. The earliest statistical methods
used to predict traffic by modeling the nonlinear characteristics of the time series of traffic
data include ARIMA, Gaussian regression, and Bayesian network [7–9]. These methods
rely heavily on the periodicity of a single series and lack the ability to model the spatial
correlation characteristics of traffic data, so their potential for traffic forecasting needs to
be improved. Basic machine learning, such as SVM and ANN, can capture traffic data’s
spatial and nonlinear temporal correlation [10,11], and its prediction effect depends heavily
on professional feature engineering methods. Because there is no universally recognized
and practical feature selection guide for different problems, basic machine learning-based
methods may not maximize actual performance in the face of complex prediction tasks.
Therefore, to capture more abundant and deeper spatiotemporal correlation information
to bring more performance improvement to traffic prediction, the deep learning methods
provide a solution for this problem.
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Deep learning provides different solutions for feature extraction of spatial and tem-
poral correlations. In the task of spatial correlation acquisition, the early applied methods
focus more on convolutional neural networks (CNNs). Thanks to local connectivity and
weight-sharing characteristics of CNNs, it has a compelling feature extraction performance
for traffic data in the European space [12–14]. However, with the in-depth study of traffic
data and the development of graph neural networks (GNNs), the definition of graph net-
works is more consistent with the non-European characteristics of the spatial distribution of
traffic flow, which cause CNNs to become difficult to adapt to the definition form of these
data. Graph Convolutional Networks (GCNs) have become more mainstream spatial corre-
lation feature extraction methods because they can capture the non-Euclidean correlation
between graph network nodes [15–18]. The way to extract spatial correlation by GCNs has
become the focus of research. Among them, Kipf et al. proposed the Chebyshev first-order
approximate Graph Convolutional Network (GCN) to balance the performance of feature
extraction and computational complexity and it became the mainstream GCN method [19],
which was used in traffic prediction by a large number of movements. For example, STGCN,
DCRNN, STSGCN, and other excellent models have been proposed [20–24], and GCN is
adopted to complete the correlation feature extraction of the complex spatial domain.

When it comes to the capture task of nonlinear time correlation in traffic data, the early
commonly used methods are recurrent neural networks (RNN) and their variants, Long
Short-Term Memory neural network (LSTM), and Gated Recurrent Unit (GRU). The advan-
tage of these methods is that they can retain sufficient historical information and discard
useless information through recursive neurons, which leads to their application by many
people to capture traffic temporal characteristics [25–28]. However, RNN-like methods tend
to forget adequate long-term information for long-term sequences, leading to performance
degradation [29]. Then, with the breakthrough progress in natural language processing
(NLP), the model based on the Attention mechanism has become a research hotspot in
capturing temporal correlation, which shows better performance in capturing long-term
correlation. The attention mechanism can reduce the maximum length of the propagation
path of the network signal to the theoretical shortest O (1) while avoiding the recursive
structure, increasing the calculation efficiency [30]. Bai et al. introduced the attention
mechanism to adjust the importance of different time points and integrated the global
temporal information to improve prediction accuracy [31]. Guo et al. proposed the AST-
GCN based on the attention mechanism to effectively capture the dynamic spatiotemporal
correlation in traffic data by establishing the spatiotemporal attention mechanism [32].
Xu et al. dynamically modeled directional spatial dependencies by using a self-Attention
mechanism to capture real-time traffic flow. Then, the temporal attention mechanism is
adopted to model long-term time dependency across multiple time steps [29]. These ad-
vanced methods use the Attention mechanism in the Transformer to extract the correlation
features of time series or spatial series and achieve good results. However, they do not
make good use of the Seq2Seq architecture in the Transformer model. The advantage of
Transformer architecture is that it separates the learning of sequence information from the
prediction of future information through the encoder–decoder structure rather than doing
it simultaneously as a simple RNN-type network, which increases the network’s learning
ability and supports the prediction of any length at the same time.

Transformer, as a revolutionary innovation based on the Attention mechanism [33],
integrates the self-attention mechanism into the Seq2Seq architecture to further increase the
time-related capture capability and becomes one of the future research directions. TSTNet
combines GAT with a Transformer based on Seq2Seq architecture to extract the spatiotem-
poral correlation characteristics [34]. The transformer uses graph context embedding to
encode the input temporal and spatial information. It then embeds the target node, neigh-
bor node, and discrete time through the full connection layer into the input Transformer to
find the correlation between different elements. This kind of exploration of the Transformer
method is significant. Although it uses the Graph Attention Network (GAT) to learn some
graph space information, it uses the embedding and concatenation of spatial features and
temporal features as the input in the Transformer. Specifically, the spatial and temporal
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information are regarded as elements in the sequence, which is different from simply
using a Transformer as a time modeling device, which may result in some loss of spatial
topology information.

To fully extract the spatiotemporal correlation characteristics of traffic data, this paper
inspired by advanced work of T-MGCN and Informer [30,35] proposes a model combining
a shifted window operation, GCN, and Graph Transformer. This model uses a shifted
window operation to coarsen time segments to reduce fluctuation noise and computational
complexity; Multi-channel GCN is used to fuse spatial correlation based on different fea-
tures; the improved Graph Transformer can directly extract the nonlinear time correlation
characteristics of high-dimensional graph network data. Finally, the progressiveness of this
method is verified by comparison with the classic baseline. The main contributions of this
paper are as follows:

1. This paper constructs a prediction network that integrates a shifted window operation,
GCN, and Transformer models, namely Shifted Graph Convolutional Graph-Transformer
(SGGformer). GCN realizes complex spatial correlation characteristics extraction, and Graph
Transformer extracts the nonlinear temporal correlation characteristics;

2. The shifted window operation is developed to divide time segments, reduce compu-
tational complexity, and enhance the ability to capture features of different periods;

3. The regional relationship with the graph network is defined, and the aggregation and
mapping of regional nodes under the definition of a topology network is completed
based on a multi-channel GCN;

4. The improved Graph Transformer is used to process high-dimensional graph data.
The generative decoder outputs long sequences in a single step to avoid cumulative
errors and significantly reduce reasoning speed.

The rest of the paper is organized as follows: In Section 2, the deep learning method for
extracting spatial and temporal correlation features of traffic is introduced. In Section 3, the
definitions related to traffic prediction and the structure of the SGGformer model proposed
in this paper are introduced, respectively. In Section 4, data preprocessing, evaluation index
establishment, comparison test with baseline, and ablation analysis are described. Then, a
discussion of the results of the experiments is presented in Section 5. Finally, conclusions
are drawn with future study directions in Section 6.

2. Related Works

This section outlines the existing methods for modeling spatial and temporal depen-
dencies in traffic flow prediction. Because statistical and traditional machine learning
methods cannot effectively model spatial dependencies, these methods are mainly based
on deep learning models.

2.1. Spatial Correlation Extraction

CNNs are the first depth learning method used in traffic prediction. Because of its
local perception and weight-sharing characteristics, it is widely used in traffic prediction.
Toncharoen et al. used a convolutional neural network (CNN) to extract the spatial char-
acteristics of node data along the highway [12]. Yao et al. used a CNN model to capture
the spatial characteristics of traffic data distributed in regional form [13]. Wang et al. used
the 3D-CNN and sparse UNet method to model the spatial correlation of traffic data [14].
Cao et al. extracted the characteristics of the target road and the surrounding roads with
strong correlation through CNN [36]. However, this kind of network is more suitable
for the task of a regular network, which will cause the loss of topological information in
the face of an irregular traffic network. Thanks to the robust feature extraction ability of
graph neural networks (GNNs) for graph information, traffic prediction is extended to
the non-European domain. As a variant of GNNs, the GCN extends classical CNN to the
graph domain. Recently, GCN has been widely used to model the non-European spatial
correlation of traffic data, thus serving the traffic prediction task. Li et al. proposed the
DCRNN which uses diffusion convolution on the directed graph to capture the diffusion
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information of traffic flow [21]. Yu et al. proposed the STGCN which uses spectral graph
convolution on an undirected graph to model spatial correlation [20]. Guo et al. combined
a spectral graph convolutional network and a temporal CNN to complete the extraction of
temporal and spatial correlation [32]. Song et al. proposed the spatiotemporal synchronous
graph convolution network STSGCN, and built a spatiotemporal synchronous modeling
mechanism to effectively capture the complex local spatiotemporal correlation, in which
the local spatial correlation extraction is completed through the superposition of multiple
graph convolution operations [22]. Therefore, it can be found that the current develop-
ment direction for spatial correlation extraction is based on a graph convolution network,
and the difference lies in the construction method of the adjacency matrix. A reasonable
construction can effectively balance the computational efficiency with the performance of
spatial feature capture.

2.2. Temporal Correlation Extraction

RNN is the earliest method used to extract the time correlation of traffic data. Be-
cause gradient explosion, gradient disappearance, and other problems often occur, RNN
has limitations in modeling time correlation. In order to overcome these problems, LSTM
and GRU are used to build the long-term dependency relationship in the traffic sequence.
Xiao et al. used a two-way LSTM (Bi-LSTM) model to extract the periodic characteristics in
the daily and weekly traffic data and used the two-way characteristics of LSTM to capture
the forward and backward traffic flow change trends [25]. Tian et al. used the LSTM
model to effectively capture the complex temporal-related characteristics of traffic flow in
the short-term traffic flow prediction task [26]. However, these models are all based on
recursive processes, and there are always problems such as training, time-consumption,
and long sequence information forgetting. Some scholars tried to model the temporal
correlation of sequences through CNN [20,32,37]. However, its receptive field range could
not meet the requirements of long-term sequence input, and its scalability was constrained
as the number of hidden layers increased with the increase of sequence length. With the
breakthrough and development of the NLP field, research based on the Transformer model
has become a hot spot. The Attention mechanism captures the temporal correlation in the
transportation field due to its strong ability to extract the correlation of sequence elements.
Yao et al. proposed a new spatiotemporal dynamic network, introduced CNN to learn the
dynamic similarity between regions, and designed a periodic attention-shifting mechanism
to capture long-term periodicity [13]. Bai et al. used GRU to capture short-term trends
and introduced attention mechanisms to adjust the importance of different time points
which integrated global time information to improve prediction accuracy [31]. Guo et al.
proposed ASTGCN based on the attention mechanism. Based on three kinds of periodic
data, a spatiotemporal attention mechanism was established to effectively capture the
dynamic spatiotemporal correlation in traffic data [32]. However, these methods only use
the Attention mechanism for simple temporal correlation modeling, which cannot fully
capture the deep information hidden in the time series. The application of the Transformer
needs to be studied.

The transformer is a model based on the Seq2Seq architecture that integrates attention
mechanism, location coding, residual connection, and layer standardization [33]. It can
effectively extract the long-term temporal correlation hidden in the input sequence by
directly calculating the attention weight of the sequence data at each position. It is suitable
for sequence input of different lengths and can capture the deep temporal correlation
existing in the long-term range. There is still much space for research based on Transformer.
Song et al. proposed a model combining GAT and Transformer—TSTNet [34], which uses
random walking to map the characteristics of GAT learning to spatial embedding and
combines time embedding as a spatiotemporal sequence. Finally, it uses Transformer to
extract the spatiotemporal correlation in the sequence.
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3. Methodology

In this section, we define the research problem in the first part. Specifically, for the
topological map network division of regional data, we introduce the time-space sequence
and then describe the process of traffic classification and traffic prediction tasks. In the
second part, we introduce the main structure of SGGformer, which is divided into three
parts: time segment division based on a shifted window operation, spatial correlation
modeling, and time correlation modeling.

3.1. Problem Definition
3.1.1. Definition 1: Regionally Topological Graph Network

This paper describes the traffic data divided by regions in the form of a graph network.
Specifically, the city’s regional data are represented as an undirected graph G = (V, E, W),
where V = {v1, v2, · · · , vN} indicates the collection of regional nodes, N is the total number
of regions. Moreover, an edge eij ∈ E denotes the correlation between region vi and vj. In
addition, the weight wij ∈W of the edge eij represents the degree of correlation between
region vi and vj, which is measured by the topological correlation between regions, and the
value is equal to the reciprocal of the number of edges passed by the shortest adjacent path
between regions. Specifically, there is a strong topological correlation between two regions
that are separated by sell regions in the regional network, which shows a large weight in
the adjacency matrix. The adjacency matrix W of G is expressed as Equation (1), and the
matrix visualization is shown in Figure 1.

Wr =


0 ωr(1, 2) · · · ωr(1, N)

ωr(2, 1) 0 · · · ωr(2, N)
...

...
. . .

...
ωr(N, 1) ωr(N, 2) · · · 0

 (1)

Figure 1. The topological adjacency matrix.
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3.1.2. Definition 2: Spatiotemporal Sequences

The time of a day is divided into T time stamps according to a certain resolution.
Under each time stamp, the spatial-temporal data of the region is expressed as follows.

S = {Xt|t ∈ T} (2)

where t is time stamp, Xt ∈ RN×F are the F traffic characteristics (average speed, average
flow) in the N regions under the time stamp t . For the node vi in the i-th region in the data
Xt, its traffic characteristics are expressed as xn ∈ RF.

3.1.3. Definition 3: Traffic Grades

In order to objectively and comprehensively evaluate the traffic status, this paper
takes the form of a traffic grade as the coupling representation of different traffic statuses.
Specifically, different traffic statuses are coupled based on a self-organizing mapping neural
network (SOM) [38,39]. The traffic grade is obtained through the training and testing
process of SOM.

In the training process, firstly, the node weight vector of SOM’s output layer W =
{ωi, i = 1 : Cls} is initialized, where Cls represents the node number which is equal to the
number of traffic grades. Then, the initial learning rate l(0), initial neighborhood radius
r(0), and iterations Iter are initialized. After that, the traffic sample X is input into the
SOM, and for the sample xt,n ∈ RF, t ∈ T, n ∈ N, the distance from all output layer nodes
to them is calculated as follows:

dt,n:i(x) =
√
(xt,n −ωi)

2 (3)

After the calculation, the nearest node is found as the winning node. The weights of
the winning node and all nodes in the neighborhood are updated, as shown below.

ωj(t + 1) = ωj(t) + l(t)× r(t)× (xt,n −ωj) (4)

where j = 1 : Cls, and the learning rate and neighborhood radius are updated as well,
which is shown as follows:

r(t) = r(0)× exp(−dt,n:i/t1), t1 = Iter/ log(r(0)) (5)

l(t) = l(0)× exp(−t/t2), t2 = Iter (6)

Through continuous circulation, all traffic samples are traversed. Finally, the training
will exit when the weight of the output layer does not change significantly or the maximum
number of training times is reached. This paper sets the maximum number of iterations as
200 generations.

In the test process, based on the trained SOM network parameters, the corresponding
traffic grade of each regional node is obtained. Specifically, the traffic samples X are input
into the SOM network. For each traffic sample xt,n ∈ RF, t ∈ T, n ∈ N, we calculate the
Euclidean distance between all SOM output layer nodes and the sample. The formula is
as follows:

dt,n:i(x) =
√
(xt,n −ωi)

2 (7)

where i = 1 . . . Cls. The nearest node ωi′ is found to determine the traffic grade of the
sample xt,n as i′. By completing the traversal of all nodes, traffic grade samples Yt ∈
RN are obtained, which represent the traffic state in N regions under the timestamp t.
The distribution of regional feature points after classification is shown in Figure 2. Besides,
Figure 3 shows the grade change of all regions in a certain day.
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Figure 2. Distribution of sample points under different features after SOM clustering.

Figure 3. Distribution of traffic grades for 24 h of the day for the full graph in the test set.

3.1.4. Definition 4: Traffic Prediction Task

Based on the defined regional graph network and the traffic samples X ∈ RW×N×F

(regional average speed, average flow) with a history of length W under a given times tamp
t, the goal of the traffic prediction task is to learn a mapping function that can predict the
traffic state grade under the next time stamp h, specifically as follows:

Yt+h = fθ(Xt−W+1 · · ·Xt−1, Xt, G) (8)

where θ represents the parameters of the mapping function.

3.2. SGGformer

The overall architecture of the SGGformer model proposed in this paper is shown
in Figure 4, including three main components: shifted window operation, multi-channel
GCN, and Graph Transformer. The overall model input includes the urban area’s historical
24 h characteristics (average flow and average speed) and the topological adjacency matrix.
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The final output is the entire graph traffic grade at the future time stamp through the char-
acteristic extraction of the model. For the three parts of the model, first of all, the following
introduces the shifted window operation of SGGformer, which divides the traffic data into
historical stages according to the time dimension. Then, the process of establishing spatial
dependency of traffic data by multi-channel GCN is described. Finally, the establishment of
time dependency by the Graph Transformer is explained, which can directly process GCN
to generate high-dimensional graph data sequences. Furthermore, the Seq2Seq architecture
of the Transformer type network is utilized to complete the traffic state prediction at the
future time.

Shifted Window Operation

Multi-Channel GCN

Graph Transformer

Channel Fusion

GCNGCNGCN

Encoder

Decoder

Output

Embedding

Input

A
d

ja
ce

n
cy

 M
a
tr

ix

Time t+h

H
is

to
ri

ca
l 

T
ra

ff
ic

 D
a
ta

Future Grade Distribution

Longitude

L
a
ti

tu
d

eMulti-
Channel 

GCN
…

Figure 4. Overall architecture diagram of SSGformer. Historical traffic data is firstly divided into
different segments by shifted window operation, and then multi-channel GCN operation is performed
on different historical segments in parallel based on the topological adjacency matrix to obtain spatial
correlation characteristics. Then, the Graph Transformer module is used to further complete the
extraction of time-related features. Finally, the traffic grade of all regions is output in the whole graph
corresponding to the time of practice t + h. Specifically, the Chinese characters in the regional grade
map represent the names of roads and landmark sites.

3.2.1. Shifted Window Operation

The historical traffic data often show a certain stage. That is, the traffic flow remains
relatively stable for a certain period, with the arrival of the next stage, the traffic conditions
show a distinct difference. It can be understood that during the morning rush hour,
the roads in the urban area become crowded. As time goes by, the congestion of the
roads will improve, and the traffic will deteriorate again when it reaches noon. At the
same time, the time resolution is coarsened by dividing the shifted window operation,
and feature extraction is performed based on the coarsened time interval in the time-
dependent modeling process, which reduces the computational complexity to a certain
extent. Therefore, in this paper, the historical traffic data are divided into sliding segments
according to a particular time window, and the segmentation of different periods is realized
according to the size and step size of the sliding window, as shown in Figure 5.

Based on the traffic data with a history length of W time stamps, this paper selects
the sliding window size of (W/3) and the step size of (W/6), so the historical data will be
divided into five time windows, which are represented as Pi ∈ RN×(W/3)×F. The equation
for the dividing window is as follows:

Pi = [X(i−1)∗(W/6)+1, ..., X(i+1)∗(W/6)] (9)
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time 1
time 2

time 3

time n
time n+1

time n+2

…
Traffic Window 1 Traffic Window 2 Traffic Window m

Traffic Original Sequence

Traffic Shifted Sequence

Figure 5. The process of the shifted window operation.

3.2.2. Spatial Correlation Modeling

SGGformer establishes spatial dependencies by building a multi-channel GCN model,
as shown in Figure 6. First, the segmented data of different windows are input into the
stacked multi-channel GCN in parallel. Under each segment input, the parallel mechanism
is also used between different channels. After extracting the local spatial features of GCN,
the channel fusion layer is used to fuse the different types of spatial features captured.
Specifically, this paper mainly includes two features, namely, regional flow and average
speed. The overall spatial modeling process is shown in Equation (10).

HMG = Fusion(GCN f low(P f low
i ), GCNspeed(Pspeed

i ))

= GCN f low(P f low
i ) + GCNspeed(Pspeed

i )
(10)

where P f low
i ∈ RN×(W/3) and Pspeed

i ∈ RN×(W/3) represent the traffic data corresponding to
the two characteristic dimensions of traffic flow and average speed under window i. GCN
is proposed by Kipf et al. which is widely used in the field of traffic prediction because of
its simple calculation process and effective spatial feature extraction. Specifically, based
on the defined topological adjacency matrix and the combination of linear transformation
and activation function, it completes the feature capture of regional nodes. The GCN is the
first-order approximation of the spectral graph convolution, particularly, the aggregation
and mapping of the node’s first-order neighbor features are completed by a first-order
approximation of the Chebyshev polynomial, and the information transmission of the
multi-order neighborhood can be realized by stacking several GCN layers. For a layer of
GCN, the formula is as follows:

H(k) = GCN(W(k), H(k−1); θ(k)) = Re LU
(

D̃(k)−
1
2 W̃D̃(k)−

1
2 H(k−1)θ(k)

)
(11)

where W̃ = W + I is the adjacency matrix considering the self-loop, D̃(k) = ∑j W̃(k)
ij

represents the degree matrix, θ(k) ∈ Rd×d′ denotes a trainable parameter matrix, W(k) ∈
RN×N is the adjacency matrix of the graph network, H(k−1) ∈ RN×d(k−1)

is the node
representation of the k− 1-th layer output, and H(k) indicates the k− 1-th layer output
node representation after feature extraction. d(k−1) and d(k) represent the numbers of node
features corresponding to the layer (k− 1) and k, respectively. For the node features of the
first layer input, d(1) = W/3.
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Figure 6. The process of spatial correlation modeling.

3.2.3. Temporal Correlation Modeling

In this paper, the constructed Graph Transformer is used to extract the temporal-related
characteristics of traffic data. Its architecture is shown in Figure 7. Graph Transformer is
composed of an encoder and a decoder. It is based on the improvement of the traditional
Transformer. The improvement mainly consists of the following parts:

1. The encoder and decoder are composed of high-dimensional self-attention mod-
ules with residual connections. The purpose of constructing that module is to di-
rectly extract the time characteristics of multi-dimensional graph data obtained from
graph convolution;

2. In the decoder part, thanks to the inspiration of Informer [30], its generative decoder
can output an extended sequence in a single step by inputting an input with zero
occupation, thus avoiding cumulative error and greatly reducing the reasoning speed.

High Dimensional 
Multi-Head

Self-Attention

Add & Norm

× n LayersEncoder

Positional
Encoding

High Dimensional 
Multi-Head

Self-Attention

Add & Norm

× n LayersDecoder

Add & Norm

Decoder
Zero-Input

Concatenate

Positional
Encoding

Linear

Output

High Dimensional 
Multi-Head

Self-Attention

Encoder Input

…

Windows data

Figure 7. The process of temporal correlation modeling.
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In conclusion, this paper does not make many improvements to the excellent structure
of the Transformer. However, it focuses on the input form of each sub-feature extraction unit
and decoder in the structure. The following will be introduced respectively from the Graph
Transformer architecture: high-dimensional self-attention mechanism and zero-occupation
input of the decoder.
Graph Transformer Architecture:

The architecture of the graph transformer, such as neural transformation models
including the Transformer, has an encoder–decoder structure. Here, the encoder maps the
high-dimensional historical features of nodes extracted by the Multi-Channel GCN layer
to the continuous representation z = (z1, · · · zwin) ∈ Rwin×n×emb. Here, emb represents the
embedded characteristic dimension of the node. Given z, the decoder is input to the matrix
spliced by a partial historical feature embedding matrix and zero-occupation matrix, so as
to realize the output of the spatial-temporal characteristics at the future time in one step.

Encoder: The encoder is composed of a stack of m = 2 identical layers. Each layer
contains a high-dimensional autonomous willpower mechanism. We use the residual
connection between different layers, and then normalize the layers. The calculation formula
is as follows:

z(k)enc_out = LayerNorm(z(k)enc_in + SubLayerS−Attn(z
(k)
enc_in)) (12)

where z(k)enc_in and z(k)enc_out represent the input and output node characteristics of the sub-
layer of the layer k, respectively. SubLayerS−Attn(.) represents the high-dimensional self-
attention mechanism, as shown in this section. In order to facilitate residual connection,
all sub-layers and embedded layers in the model maintain dimensions emb = 64 and
LayerNorm(.) represents layer normalization functions.

Decoder: The decoder is also composed of n = 2 stacks of the same layer. In addition
to the layer in the encoder, a second layer is inserted, which performs a multi-head attention
mechanism on the output of the encoder stack, which is shown in Eq. (13). Similar to the
encoder, residual connections are used between each layer, and then, layer normalization
is performed. Similar to Transformer, we modify the self-attention layer in the decoder
stack to prevent locations from focusing on subsequent locations. This mask, combined
with output embedding, ensures that the prediction of i locations can only rely on known
outputs with locations smaller than i.{

z(k)dec_out = LayerNorm(h(k)dec + SubLayerAttn(z
(end)
enc_out, h(k)dec))

h(k)dec = LayerNorm(z(k)dec_in + SubLayerS−Attn(z
(k)
dec_in))

(13)

where z(k)dec_out is the output of the decoder, h(k)dec represents the intermediate variable in the

decoder, z(end)
enc_out denotes the output characteristics of the encoder at the last layer, z(k)dec_in

indicates the zero-occupation input of the decoder, see for details in [30]. The second layer
inserted is a high-dimensional attention mechanism SubLayerAttn(.), see below for details.

After the decoder completes the extraction of the temporal feature, the feature data
are input to the linear layer to complete the mapping of the feature to all node grades.
The calculation process is shown as follows:

zl_out = [ReLU(W(l)
lin × zdec_out) + b(l)lin]×Llinear

(14)

where ReLU(.) represents ReLU activation function, Wlin
(l) ∈ Rl_in(l)×l_out(l) and blin

(l) ∈
Rl_out(l) represents the mapping weight and offset of the layer, respectively. Llinear is the
number of stacked linear layers. Finally, the characteristics of all roads at various grades
zl_out ∈ RN×Cls are output.
High-dimensional Self-Attention Mechanism:

The conventional multi-head self-attention mechanism obtains the relative relation-
ship between elements through the dot product so that the relative relationship between
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elements is completely preserved in the feature extraction process of the sequence, and all
elements are processed in parallel in the calculation process to improve the calculation
efficiency. Considering the high number of features of elements in the sequence, parallel
computing in the form of multiple heads can extract the relationship between elements in
the sequence from different angles and further increase computational efficiency. There-
fore, the multi-head self-attention mechanism is widely used in the feature extraction
of sequences.

In this paper, the spatial feature sequence extracted by GCN in different time windows
is taken as the input, and each element in the sequence represents the spatial feature in this
window. The fusion and feature extraction of spatial features in different time windows
are completed using the self-attention mechanism to capture the temporal correlation
among them. However, compared with the input data of the conventional self-attention
mechanism, the combined sequence of different spatiotemporal features in this paper has
a higher dimension. Specifically, compared with the input data of the normal multi-head
voluntary mechanism, the input data of the high-dimensional multi-head self-attention
mechanism are in the form of a two-dimensional matrix, which increases the dimension of
the number of roads. Therefore, this paper improves the conventional attention mechanism
and designs a high-dimensional multi-head self-attention mechanism, which is shown in
Figure 8. The specific calculation process is as follows.

We first define the matrix of query, key, and value (Q ∈ Rwin×N×d , K ∈ Rwin×N×d

and V ∈ Rwin×N×d), and then obtain three functional matrices by performing a linear trans-
formation on the second dimension (i.e., node number dimension) of the embedded traffic
data X ∈ Rwin×N×d and decomposing it into multiple heads, as shown in Equation (15).

Qi = [reshape(WQX)]i
Ki = [reshape(WKX)]i
Vi = [reshape(WV X)]i

(15)

where WQ ∈ RN×n, WK ∈ RN×N , and WV ∈ RN×N represent the learnable parameter
matrix, h is the number of headers, and shape(.) is the header splitting operation of the
matrix, that is, the size is converted from [win× n× d] to [win× h× N

h × d]. In addition,

Qh ∈ Rwin× N
h ×d, Kh ∈ Rwin× N

h ×d, and Vh ∈ Rwin× N
h ×d represent the three functional

matrices corresponding to the i-th header obtained through linear mapping and the splitting
operation, respectively.

Then, we further use the dot product attention operation to represent the high-
dimensional self-attention layer, as shown in the following.

at,t′
i = so f t max( f (Qt

i , Kt′
i )) =

exp( f (Q
t×(dq×d)
i , Kt′×(dk×d)

i ))

∑t′∈Tp exp( f (Q
t×(dq×d)
i , Kt′×(dk×d)

i ))
(16)

headi = Attention(Qi, Ki, Vi) = ∑t∈Tp
aiVt

i i ∈ [1, · · · , h] (17)

X f c = MultiHead(Q, K, V) = Concat(head1, · · · , headh)WO (18)

where at,t′ ∈ A ∈ Rd(A ∈ RTp×Tp×d) represents the normalized weight matrix between
combination t and combination t′, t ∈ Tp, t′ ∈ Tp, and the second dimension is equal to
dq = dk = dv = N

h . headi represents the characteristic matrix under the i-th header. Finally,
the final output of the high-dimensional multi-head self-attention mechanism is obtained
by splicing and linear mapping of all Matrices corresponding to all header matrices.

The difference between the high-dimensional attention mechanism H−DAttn(.) and
the high-dimensional self-attention mechanism is reflected in the input. The query, key, and
value of the high-dimensional attention mechanism can be different inputs. Three functional
matrices can be obtained by performing a linear transformation on the second dimension
(i.e., node number dimension) of different traffic-embedded data X1 ∈ Rwin1×n×d, X2 ∈
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Rwin2×n×d, X3 ∈ Rwin3×n×d and decomposing them into multiple heads, as shown in the
formula below.

Qi = [reshape(WQX1)]i
Ki = [reshape(WKX2)]i
Vi = [reshape(WV X3)]i

(19)

After the linear mapping operation, the corresponding Q, K , V matrices are obtained.
The following operations are the same as the above self-attention mechanism and will not
be repeated.

Decompose 
to h Headers

Fusion h 
Headers

Header 1

Header h

…

… … …

…

Win×N×d

Time 1

Time 2

Time n

Graph Attention Mechanism of Header 1

Header 1

Header h

Graph Attention Mechanism
of Header h

Multi-Head Graph Attention Mechanism

Win×N/h×d Win×N/h×d

Win×N×d

Figure 8. The calculation process of the high-dimensional self-attention.

Decoder Zero-occupation Input:
Because the traditional Seq2Seq architecture performs multi-step prediction through

continuous self-regression in the decoding process, which reduces the calculation speed in
the prediction process. Referring to the experience obtained by the Informer [30], similarly,
we concatenate some historical features with zero vectors as the input of the decoder, as
shown in the following.

Xt
de = Concat(Xt

tok, Xt
0) ∈ R(Ltok+Ly)×N×d (20)

where Xt
tok ∈ RLtok×N×d is the starting token and Xt

0 ∈ RLy×N×d is the placeholder of the
target sequence (set the scalar to 0), which equals the number of the prediction length.
The starting token is a sequence of length sampled from the encoder input sequence, which
corresponds to a segment before the prediction time. This paper takes the prediction of
the next 1 h as an example, the sequence input to the encoder is the node characteristic
sequence of five historical time periods. We take the last two time periods of the sequence
as the starting token, namely Ltok = 2, and input Xde = {X2p, X0} to the decoder. Note
that the decoder here predicts all outputs in one step, and does not need time-consuming
“dynamic decoding” transactions in the ordinary encoder–decoder architecture, which
greatly reduces the calculation time.

3.2.4. Loss Function

SGGformer uses Negative Log Likelihood Loss (NLLLoss) as the target loss function.
After the feature extraction of the spatiotemporal network, the matrix Xout ∈ RN×Cls

representing all regions at different levels is obtained. Before calculating the loss value, it is
necessary to calculate the probability distribution of each road corresponding to different
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grades. Therefore, the above matrix is operated by So f tmax operation, which is shown
as follows:

Ŷi,j = So f tmax(Xi,:) =
exp(Xi,j)

∑k exp(Xi,k)
(21)

where Xi,j refers to the value of the corresponding grade j of the road i in the matrix, and the
grade probability matrix Ŷ ∈ RN×Cls represents the probability of all roads corresponding
to different grades, which is used as the input of the loss function. The loss value is
calculated as follows:

L(Ŷ, Y) = −∑N
n=1 Y ∗ log(Ŷ) (22)

where L(Ŷ, Y) is the loss value of the prediction grade and the real grade, and Y ∈ RN×Cls

represents the real level of all roads. For each road (each line), the index value corresponding
to the real grade is 1, and the rest is 0. Finally, the total loss value is obtained by summing
the loss values of all roads.

4. Experiment
4.1. Data Description and Preprocessing

This experiment is based on the floating car data of a big data platform DiDi, and the
vehicle track data from November 1 to November 30, 2016, are selected as the source data,
which is shown as Figure 9. According to the divided sub-regions, the average speed
and the average flow of the sub-regions are counted per hour, the details are described
as follows.

Figure 9. The raw trajectory data of the floating vehicles.

In this paper, the track data point x is preprocessed by three main steps. First, we
divide the region with the size of 8 × 8 based on the rectangular distribution range of
track points. Next, the track data point is counted and calculated. The original track data
point TPi = {tsi, loni, lati}, i ∈ {1, . . . , NTP} is obtained, where tsi is the time stamp of
track point i, loni and lati are the longitude and latitude of track point i, respectively. We
can obtain the velocity characteristics of each track point by calculating the ratio of the
distance between adjacent track points of vehicles and the time stamp. Finally, the regional
characteristics are counted. For the regional flow and average speed, we can get the
weighted average of the number of characteristic points and the speed of characteristic
points at the corresponding time stamp.

According to the obtained regional data, we need to further develop the input data.
Since this paper takes the 24 h historical regional traffic characteristics of the whole graph
as the input, a total of 720 sets of datasets are obtained through the rolling selection method.
Moreover, the specific parameters of the model and training process are shown in Table 1.
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Table 1. Hyperparameter setting for Environment Perceiver.

Detailed Parameter Setting

Number of roads 64 Optimizer ADAM
features of roads 3 Learning rate 5 × 10−4

Historical Length 24 Weight decay 1 × 10−3

GCN layer LGCN 2 Batch size 24
GCN hidden Dimension 32 Training Epoch 500

Linear hidden Dimension lout 64 Training set size 576
Linear layer Llinear 2 Validation set size 72

Number of traffic condition grades 5 Testing set size 72

4.2. Assessment Indicators and Baseline Model

In this paper, accuracy and the quadratic-weighted Kappa coefficient (Kappa coeffi-
cient) are used as the evaluation indicators of the prediction effect. The quadratic-weighted
Kappa coefficient represents the consistency between the prediction grade and the actual
grade distribution, representing the prediction’s accuracy and deviation. The calculation
process is based on the confusion matrix, and the value is between −1 and 1. The closer
the value is to 1, the higher the consistency of the prediction grade results. Specifically,
the calculation method of accuracy and weighted kappa coefficient are shown as follows.

ACC =
1
n

n

∑
t=1

(1, i f vt = ṽt else 0) (23)

KAPPA =
Po − Pe

1− Pe
(24)

Po = ∑Cls
i=1 ∑Cls

j=1 ωi,j pi,j

Pe = ∑Cls
i=1 ∑Cls

j=1 ωi,j pi,: p:,j

ωi,j = 1−
(

i−j
Cls−1

)2
(25)

where, for the accuracy rate equation, vt is the actual grade, ṽt is the prediction grade, n is
the number of prediction grades. For the quadratic-weighted kappa coefficient equation,
p is the confusion matrix, pi,j represents the frequency of occurrence of the data instances
that the road with a real grade i is judged a grade j in all prediction results. pi,: represents
the ratio of the number of data instances with a real grade i to the the total number of
instances, p:,j represents the ratio of the number of data instances that the road is predicted
as a grade j to the total number of instances, ωi,j is a weight and Cls represents the number
of grades.

To evaluate SGGformer’s competitive performance, we compare it with the following
baseline. In these baselines, the FC-LSTM, ConvLSTM, DCRNN, and STGCN inputs are
the average road speed or flow. All baselines are optimized for optimal performance.

FC-LSTM: A classical cyclic network used for time series data modeling. Here, the full
connection layer maps the time dimension linearly. Precisely, the dimensions are mapped
to 64 and 24, respectively, and then input to the double-layer LSTM layer, and finally output
the final result through the two full connection layers. The hidden layer dimension of the
first full connection layer is 64, the hidden layer dimension of the double layer LSTM is
64, the hidden layer dimension of the final full connection layer is 24, and the output layer
dimension is 5.

ConvLSTM: A classical hybrid neural network used for traffic spatiotemporal data
modeling. Here, we first model the spatial correlation of traffic data through the stacked
two-layer CNN, then input it into the two-layer LSTM layer, and finally output the final
result through the two-layer full connection layer. The convolution kernel size of the first
layer convolution is 8, the step size is 4, the convolution kernel size of the second layer
convolution is 3, the step size is 2, the hidden layer dimension of the double-layer LSTM is
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64, the hidden layer dimension of the final fully connected layer is 24, and the output layer
dimension is 5.

DCRNN: It refers to the method of [20], builds a directed graph based on sensors,
and gives an edge weight by measuring the proximity between sensor pairs. The dynamic
traffic flow is modeled as a two-way diffusion process. Diffusion convolution is proposed
to capture spatial dependence, and a cyclic neural network is used to model the time
dependence. The first two layers of diffusion convolution raise the dimension to 64, and the
third layer of diffusion convolution reduces the dimension to 32.

STGCN: It refers to the method of [21], which combines graph and gated time convolu-
tion to learn spatiotemporal patterns from traffic sequence data based on a graph structure.
The structure consists of two layers of spatiotemporal graph convolution modules. Each
module consists of a layer of temporal convolution module, a layer of spatial graph con-
volution module, and a layer of temporal convolution module. The first layer of the time
convolution module increases the number of feature channels to 64, and the space map
convolution module reduces the number of feature channels to 32, the last layer of the time
convolution module increases the number of feature channels to 64, and the hidden layer
dimension of the last full connection layer is 80.

4.3. Comparison with Baseline

Figure 10 shows the traffic prediction performance between the SGGformer model and
the baseline on the dataset. See Tables 2 and 3 for specific values. Firstly, the SGGformer
presented in this paper shows stable and relatively optimal tables under different prediction
lengths. Based on the average performance of the three prediction lengths, the comparison
accuracy and quadratic-weighted kappa coefficients are optimized by 1.7% and 0.9%,
respectively, compared with the optimal baseline, and the optimization effect becomes
more and more evident with the increase of prediction lengths. At the same time, the effect
fluctuation of the SGGfromer under different prediction lengths is less than 1%, which
proves the stability and robustness of this method under different prediction lengths.

Figure 10. The performance comparison among SGGformer and baselines.
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Table 2. Results of comparison with the baselines on accuracy performance.

Method/ Prediction Length 1 h 3 h 6 h

FC-LSTM 0.8602 0.8683 0.8635
ConvLSTM 0.8607 0.8721 0.8801

DCRNN 0.8872 0.8889 0.8847
STGCN 0.8922 0.8868 0.8876

SGGformer 0.9025 0.9088 0.9053

Table 3. Results of comparison with the baselines on quadratic-weighted kappa coefficient.

Method/ Prediction Length 1 h 3 h 6 h

FC-LSTM 0.9399 0.9422 0.9385
ConvLSTM 0.9406 0.934 0.9399

DCRNN 0.9480 0.9462 0.9438
STGCN 0.9495 0.9467 0.9456

SGGformer 0.9549 0.9559 0.9568

Secondly, by comparing different deep learning baselines, it can be found that the
performance of different methods on the quadratic-weighted kappa coefficient is not
different, which is about 0.94. For prediction accuracy, STGCN is optimal under different
lengths, and its advantages are more concentrated on short-term prediction. Specifically,
with the increase in the prediction length, the prediction accuracy is reduced from 5.64%
to 2.48% compared with other baselines. DCRNN is on a par with STGCN in terms of its
performance different from the measured length. Specifically, its accuracy in predicting the
future 1 h and 6 h groups decreases by 0.4% on average, and its accuracy in predicting the
future 3 h groups exceeds 0.3%. The performance of ConvLSTM under different prediction
lengths is slightly worse than that of STGCN, and the gap gradually narrows with the
increase of prediction lengths, with differences of 3.15%, 1.47%, and 0.75%, respectively.
Overall, FC-LSTM showed a stable prediction effect but was weaker than ConvLSTM,
with an average difference of 0.68%. The gap becomes more significant with the increase of
prediction length.

In order to show the prediction effects of different methods more intuitively, the figure
below shows the difference between the prediction level and the actual level of different
methods in the selected period when the prediction length is 1 h, 3 h, and 6 h. The periods
selected in this paper are 12, 15, 19, and 22 h lower on the first day of the test set. This is
because the level distribution in these periods is relatively complex.

Figure 11 shows the grade difference heat map with a prediction length of 1 h. It can
be found that the SGGformer shows the most accurate effect both in terms of quantity
and difference. In some periods, STGCN and DCRNN had a slight difference (12 h, 19 h,
and 22 h), but in some periods (15 h), the difference between the baseline method and
SGGformer was noticeable. In general, the SGGformer has shown stable and excellent
results in different periods. Compared with different baselines, the difference between
DCRNN and STGCN is insignificant, and the effect of the ConvLSTM is worse than the two
baselines. However, the distribution between the three is similar. FCLSTM has the worst
effect among all comparison methods, and its distribution is not similar to other methods.
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Figure 11. The grade difference under prediction length 1 h.

Figure 12 shows the thermal diagram of the difference between the predicted and
actual grades with the predicted length of 3 h. On the whole, compared with the prediction
length of 1 h, there are fewer areas of error prediction, which is consistent with the results
of the prediction accuracy table above. Similarly, comparing different methods, we can find
that the SGGformer still shows the most robust performance, DCRNN and STGCN show
slightly worse performance, and ConvLSTM and FCLSTM show even worse performance,
specifically, more error areas are predicted.

Figure 12. The grade difference under prediction length 3 h.
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Finally, the SGGformer’s performance is optimal when the future prediction length is
6 h, which is shown in Figure 13. However, its effect is even worse than STGCN in some
specific periods (such as 12 h periods). The performance of other baselines is analyzed
as above.

Figure 13. The grade difference under prediction length 6 h.

4.4. Ablation Research

To study the effects of different components in the proposed SGGformer model, we
repeatedly removed one of the components to conduct ablation research.

1. Based on SGGformer, the shifted window operation is removed, specifically, GCN com-
bines Graph Transformer to build a model to verify the rationality of the shifted window;

2. The GCN based on SGGformer is removed, specifically, the GCN is directly input into
the Graph Transformer network after the shifted window to verify the effectiveness of
GCN for spatial feature capture;

3. The Graph Transformer based on the SGGformer is detached, specifically, SGCN is
simply utilized to verify the rationality of the Graph Transformer.

Figure 14 and Tables 4 and 5 show the accuracy and quadratic-weighted kappa co-
efficients of the SGGformer and its variants at different prediction lengths. For precision
performance, the SGGformer has an average increase of 1.59% compared with the variant
with the best performance. Among many variants, the G-Gformer has a slight advantage
over the other two, showing an average increase of 0.47% in accuracy. The remaining two
variants, S-Gformer and S-GCN, have similar effects when the prediction length is 1 h and
3 h, and the S-Gformer has an increase of about 0.3% compared with S-GCN when the
prediction length is 6 h.
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Figure 14. Comparison of results of ablation experiments.

Table 4. The ablation analysis on accuracy performance.

Method/ Prediction Length 1 h 3 h 6 h

S-GCN 0.8845 0.8856 0.8852
S-Gformer 0.8837 0.8858 0.8874
G-Gformer 0.8839 0.8926 0.8922
SGGformer 0.9025 0.9088 0.9053

Table 5. The ablation analysis on quadratic-weighted kappa coefficient.

Method/ Prediction Length 1 h 3 h 6 h

S-GCN 0.9436 0.9448 0.9449
S-Gformer 0.9436 0.9447 0.9456
G-Gformer 0.9439 0.9462 0.9461
SGGformer 0.9549 0.9559 0.9568

For the quadratic-weighted kappa coefficient representing consistency, the SGGformer
has an average increase of 0.47% compared with the best performing variant G-Gformer.
However, the difference between the quadratic-weighted kappa coefficients of other vari-
ants is slight, about 0.1%.

5. Discussion

The experiment part verifies the effectiveness of SGGformer in two parts: baseline
comparison and ablation analysis. According to the experimental results, we can draw the
following conclusions.

1. It can be seen from the baseline comparison results that the graph convolution based
on the sliding window combined with Graph Transformer is effective. Precisely, graph
convolution can effectively capture the non-European spatial correlation characteris-
tics in the traffic data, and Graph Transformer has greater advantages in capturing
nonlinear temporal correlation of the traffic data. STGCN, also a spatiotemporal
property acquisition network based on a graph convolution network, shows a slightly
weaker performance, indicating that GCN is more appropriate in spatial correlation
properties. However, compared with the use of a Graph Transformer to capture
temporal-related characteristics, STGCN and DCRNN use Gated convolution and
GRU to extract features, respectively, which shows some shortcomings in performance.
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Compared with the former, ConvLSTM and FC-LSTM both use the capture time char-
acteristics of LSTM, showing poorer prediction performance. The difference between
the two is that the former uses ordinary convolution to capture European spatial
characteristics. In contrast, the latter uses a simple, fully connected network to capture
spatial correlation characteristics. Simply flattening regions undoubtedly ignores the
spatial relationship between regions, resulting in a relatively worse prediction effect.

2. The comparison results of ablation experiments verify the effectiveness of different
components of SGGformer. The G-Gformer cancels the shifted window operation, the
S-Gformer deletes the GCN model and extracts the temporal-dependent characteristics
through the Graph Transformer, while S-GCN uses the spatial feature extraction model
for traffic prediction. The prediction effect of all variants is worse than that of all
SGGformers, which proves that the three components contribute to improving the
prediction effect. Among them, the prediction effect of the G-Gformer is second only
to SGGformer in prediction performance, which is reasonable. Because this variant
only removes the operation of the shifted window operation, it can still effectively
extract spatial and temporal correlations in traffic data. However, it lacks the division
of time phase by the shifted window, thus reducing specific performances. The S-
Gformer and S-GCN are canceled, respectively, from the space extraction module
and time extraction module, which significantly reduces the feature extraction ability
for traffic data, thus showing the worst performance. By comparing the two, the
S-Gformer is slightly better than S-GCN, which means that the time feature extracted
by the Graph Transformer is more effective than the spatial feature extracted by GCN
for traffic prediction.

Based on the above analysis, we know the advantages of the SGGformer and the necessity
of different components. However, the current method of testing has some shortcomings:

1. In this paper, the spatial feature extraction network, GCN, uses a fixed adjacency
matrix to extract spatial features and does not fully consider the impact of time-
varying traffic flow on space.

2. This paper mainly finds that the performance of the Seq2Seq architecture is not
fully utilized for traffic grade prediction at a particular time in the future. That is,
the multi-step prediction task in the future is not involved.

Therefore, using a dynamic adjacency matrix and multi-step prediction is the future
direction of improvement. To achieve a dynamic adjacency matrix, we consider adding an
attention mechanism to capture the relative relationship of dynamic space.

6. Conclusions

In this paper, the sliding window operation, multi-channel graph convolution, and im-
proved Graph Transformer are combined to extract the spatiotemporal correlation char-
acteristics of traffic and complete the task of traffic grade prediction. The multi-channel
graph convolution is used to complete the modeling of spatial dependency, and the graph
transformer is used to capture the temporal dependency. Then, in terms of accuracy and
prediction consistency, this paper compares the proposed SGGformer with mainstream
baseline methods. The SGGformer shows better results in both aspects, verifying the
effectiveness of this method. At the same time, according to the comparison results with
different variants, the positive contributions of different components to the spatiotemporal
feature extraction are verified.

Although the current method has achieved good results, there is still room for improve-
ment in capturing spatiotemporal correlation. Specifically, using an attention mechanism
to construct a dynamic adjacency matrix is an effective improvement method to improve
the temporal extraction ability. At the same time, using Graph Transformer based on
the Seq2Seq architecture to conduct multi-step prediction is also a hot topic in traffic pre-
diction. In future work, we will integrate these improvements to improve the model’s
comprehensiveness and robustness and achieve a higher prediction performance.
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The following abbreviations are used in this manuscript:

ITS Intelligent Transportation System
CNN(s) Convolutional Neural Network(s)
GCN(s) Graph Convolutional Network(s)
SVM Support Vector Machine
ANN Artificial Neural Network
RNN Recurrent Neural Network
LSTM Long Short Term Memory Neural Network
GRU Gated Recurrent Unit
NLP Natural Language Processing
Seq2Seq Sequence-to-Sequence
GNN Graph Neural Network
SOM Self-Organizing Mapping Neural Network
STGCN Spatial Temporal Graph Convolutional Networks
DCRNN Diffusion Convolutional Recurrent Neural Network
STSGCN Spatial-Temporal Synchronous Graph Convolutional Network
ASTGCN Attention Based Spatial-Temporal
GAT Graph Attention Network
TSTNet Sequence to Sequence Spatial-Temporal Traffic Prediction model
T-MGCN Temporal Multi-Graph Convolutional Network
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