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Abstract: The literature since Apollo contains exhaustive material on attitude filtering, usually
treating the problem of two sensors, a combination of state measuring and inertial devices. More
recently, it has become popular for a sole attitude determination device to be considered. This is
especially the case for a star tracker given its unbiased stellar measurement and recent improvements
in optical sensor performance. The state device indirectly estimates the attitude rate using a known
dynamic model. In estimation theory, two main attitude filtering approaches are classified, the
additive and the multiplicative. Each refers to the nature of the quaternion update in the filter. In this
article, these two techniques are implemented for the case of a sole star tracker, using simulated and
real night sky image data. Both sets of results are presented and compared with each other, with a
baseline established through a basic linear least square estimate. The state approach is more accurate
and precise for measuring angular velocity than using the error-based filter. However, no discernible
difference is observed between each technique for determining pointing. These results are important
not only for sole device attitude determination systems, but also for space situational awareness
object localisation, where attitude and rate estimate accuracy are highly important.

Keywords: attitude; star tracker; Kalman Filter; Static Attitude Estimation; SSA

1. Introduction

To improve attitude determination performance, statistical estimation and filtering
techniques are adopted by the space system designer. The most prevalent filter is the
Kalman Filter, proposed by Rudolf Kalman during the 1950s [1]. The theory was developed
and applied to space flight through a series of NASA reports [2,3] during the early 1960s.
The earliest known study to apply the Kalman Filter for the attitude determination problem
was in 1970 [4], where Farrell was one of the first to recognise the merit of the technique.

Since the Apollo era, the Kalman Filter and its modifications have been proposed
for a variety of attitude determination systems, each adopting a different set of attitude
determination sensors. The work by Farrell studied the crude use of sun sensors and
magnetometers [4]. One of the first uses of a star sensor was used with a gyroscope by the
Aerospace Corporation [5], applying a discrete Kalman Filter.

During the space race, satellite applications in low and medium Earth orbits were
discovered. Since many missions required only an Earth-pointing attitude, not experiencing
many complex dynamic motion routines, the gyroscope was neglected, and the attitude
calculated using orientation only sensors. Gai in the 1980s [6] attempted to use a star
sensor that, at the time, could only receive a single star measurement at a fast enough
rate for attitude estimation. The attitude accuracy was poor, applying a simple finite
difference-based approach and assuming negligible noise.

Spacecraft torques in the control system loop, as well as external torques caused
by the space environment such as solar wind or aerodynamic drag [7,8], have also been
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considered in the estimation problem. However, it was recognised the algorithms were still
not robust enough to model errors or remove the limitations raised by Gai [6] for angular
velocity estimation by finite difference. Modelling external torques is considered outside
the scope of this article, requiring position knowledge. They are also typically considered
in combined systems with an environmental sensor, such as a magnetometer [9,10].

In recent decades, attempts at formalising a standard Extended Kalman Filter ap-
proach for spacecraft attitude determination were made by Crassidis, Markley, Shuster,
et al. [9,11–14]. Attitude is typically expressed by the quaternion, which avoids issues in
singularities and sequential rotation ordering common for Euler angle and matrix represen-
tations. However, quaternions must maintain certain associative properties as well as a
unitary norm, which can be difficult to assure in estimation and filtering problems. These
approaches utilise multiple sensors.

Approaches to the filtration problem are distinguished between additive and mul-
tiplicative operations on the attitude quaternion. A section of Fundamentals of Spacecraft
Attitude Determination and Control was compiled by these authors, where different ap-
proaches were considered [15]. The methodology implements a magnetometer or star
tracker for orientation estimation, alongside a gyroscope for rate estimation.

Contemporary literature has revisited this problem given recent performance im-
provements in optical and processor technology [16–20]. These systems permit tracking
of multiple stellar sources at a high rate and resolution, permitting increased precision,
accuracy and update rates of the attitude estimate. These improvements have allowed for
the star tracker to be used as the sole instrument for attitude determination, a gyroless
star tracker, permitting for unbiased attitude and rate estimates. It is also more compact
and power efficient, ideal parameters for optimisation by the satellite designer. Early
work by [21] was an early attempt of a gyroless star tracker Extended Kalman Filter (EKF)
utilising multiple star measurements, but used a more primitive EKF implementation that
did not consider the advanced formalisation in [15].

Gyroless star trackers are becoming increasingly important for Space Situational
Awareness (SSA) applications [22,23]. Dual-use star trackers are in development to support
SSA. In their operation, the attitude estimate of the star tracker is important to determine
the observed space object’s orbit. The conclusions of this work are thus important to this
emerging field of star tracker application, where the relevance and importance of rate
estimation moves beyond just attitude control requirements.

Recent advancements considering a gyroless star tracker in the Kalman filter, acting as
the only sensor, are more limited. This is especially the case with implementations that treat
all star measurements within the filter measurement vector. [24] considers a multiplicative
EKF alongside a Singular Value Decomposition (SVD) state estimate for a gyroless star
tracker, but utilising control elements for rate estimation. This approach does not utilise all
star measurements in the filter, but the SVD derived attitude estimate. Similar work by [25]
also contain similar constraints.

The gyroless star tracker is considered in an additive-based Kalman filter by [17,18]. A
disadvantage of the additive approach is that it does not maintain unity of the quaternion
norm. Modern approaches re-normalise the quaternion after each update to assure unity is
maintained. This has been criticised since it always creates some error in the quaternion
estimate, limiting performance. However, it can be argued that the error is negligible
compared to other error sources from the camera and attitude propagation.

Filter design, including the Kalman filter for guidance systems, has advanced sig-
nificant recently with the adoption of machine learning [26–28]. However, there is great
concern that machine learning cannot assure the integrity required for satellite attitude
determination, where neural networks act like a ‘black box’. They might be considered for
Earth observation, rover guidance and mission planning [29].

This work treats angular velocity as constant, and makes the assumption that any
angular acceleration is negligible. Generally, a non-negligible angular acceleration would
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only take place if a control torque is acted on the satellite. Thus, the expected angular
acceleration is already known by the system.

The Calculated Reference of Stellar System (CROSS) star tracker is used as a test
platform in this article. CROSS is a Wide Field of View (WFOV) star tracker being developed
by the University of Sydney that seeks to be a high performing, versatile and competitive
attitude determination unit for spacecraft designers [30–32].

In this paper, the additive and multiplicative EKF are applied to evaluate and de-
termine the best approach to the gyroless star tracker attitude estimation problem. The
novelty and originality of the work are summarised by:

1. Novel implementation of the multiplicative EKF for the case of the gyroless star
tracker.

2. An in-depth, independent analysis to the state-of-the-art additive EKF for the gyroless
star tracker by [17,18], comparing to the multiplicative EKF approach as well as an
unfiltered approach (i.e., Linear Least Squares (LLS) only).

3. Analysis employs both simulation and real night sky testing. Provides a case example
of the novel approach of star tracker testing by [33].

The significance of the research is summarised as:

• Enabling more compact and lower power attitude determination systems.
• Improving attitude estimation accuracy and precision, a topic of interest for not only

satellite attitude control but SSA applications.
• Reducing bias to attitude and rate estimates.

The paper is structured by firstly outlining both EKF models. It then implements
each model by simulation and real night-sky testing, as well as comparing to a static
LLS approach, to discuss and evaluate the best approach. Theoretical arguments are
also considered in this discussion. Recommendations of the best approach are made at
the conclusion.

Given that gyroscope bias is now removed, and the EKF is estimating the angular
velocity state, additive and multiplicative filters are relabelled as the state and the state-
error EKF. This naming change highlights that the multiplicative approach estimates the
state error, rather than directly the state.

2. Model and Methods

This section introduces the conventions adopted to describe the spacecraft attitude.
A sensor model is then introduced for the star tracker, which includes star position error
considerations. The section closes by describing the two approaches to the EKF imple-
mentation, which contains a modified version of implementations in [15,17] to treat the
performance of the gyroless star tracker case.

2.1. Attitude Definitions

Attitude is typically expressed as a matrix that transforms a vector from one coordinate
frame to another. In the case of spacecraft attitude, the transformation typically relates the
sensor or spacecraft frame to a celestial body frame, such as for the Earth or Solar System
centre. The celestial frame will be denoted by r, and the sensor or spacecraft frame will be
denoted by b. The relation between each frame and the attitude may be written as,

b = Ar, (1)

where A is the attitude matrix.
To aid in the representation of attitude, consider an axis e for a rotation to act on. The

angle of rotation may then be denoted by θ. The rotation of an arbitrary vector x about the
rotation vector is illustrated in Figure 1. The attitude matrix may be expressed as a function
of the rotation vector and angle, A = A(e, θ).
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Figure 1. Rotation of an arbitrary vector x about the rotation vector [15].

It is more convenient, however, to express the rotation as a quaternion. The quaternion
q may be expressed in terms of the rotation vector as,

q =


q0
q1
q2
q3

 =

{
cos θ

2
e sin θ

2

}
. (2)

The quaternion must satisfy the unity constraint |q| = 1. Maintaining this constraint in
estimation and filtering can prove problematic, as introduced in Section 1.

The attitude matrix and quaternion are related by,

A =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

. (3)

Derivations of attitude kinematics are not included in this description, as they are ex-
tensively written in the literature [15,34], but are instead stated. The time derivative of the at-
titude quaternion may be expressed in terms of the angular velocity, ω =

{
ωx ωy ωz

}T ,
by,

q̇(t) =
1
2

ω(t)⊗ q(t) =
1
2

Ω(ω(t))q(t), (4)

where Ω is a matrix representation of the tensor product operation between the angular
velocity and quaternion,

Ω(ω) =


0 −ωx −ωy −ωz

ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0

. (5)

A linearised form of the state transition over the duration of a time step ∆t can be
derived. Assuming a constant angular velocity over the time step and that the angular
rotation is small, the closed form may be expressed as,

q(t + ∆t) =
[

cos
(
|ω(t)|∆t

2

)
I4 +

1
|ω(t)| sin

(
|ω(t)|∆t

2

)
Ω
]

q(t) = Φqqq(t), (6)

where Φqq is the quaternion transition matrix and I4 is the 4× 4 identity matrix.
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The angular velocity may also be estimated assuming it is constant over the time step.
The quaternion rate is expressed as,

q̇ = lim
∆t→0

q(t + ∆t)− q(t)
∆t

. (7)

The quaternion rate may then be estimated using this equation if the time step is justifiably
small. Equation (4) may then be rearranged in terms of the angular velocity, using a similar
approach to Equation (6),

ω(t) = 2ΞT(q(t))q̇, (8)

where,

Ξ(q) =


−q1 −q2 −q3
q0 −q3 q2
q3 q0 −q1
−q2 q1 q0

. (9)

2.2. Star Tracker Model

The star tracker captures images of the stars using a standard camera and lens assembly.
The image is then analysed to identify stars against a known catalogue. Using the measured
unit vectors of stars in a sensor frame and the known unit vectors from a catalogue in a
global frame, an attitude may be calculated.

The measured star image is represented by the sub-pixel coordinates of the stellar
source (α, γ). The sensor frame unit vector is related to the sub-pixel coordinates by,

α = − f
bx

bz
, γ = − f

by

bz
, (10)

where f is the focal length. The body and celestial frame unit vectors are then related by
Equation (1).

The reverse relation to Equation (10) uses the unit vector normalisation condition,
|b| = 1. So, the body unit vector may be calculated by,

b =
1√

α2 + γ2 + f 2


−α
−γ

f

. (11)

A common measurement error model for the measured image coordinates α and γ
is [11,14],

R =
σ2

1 + α2 + β2

[
(1 + α2)2 (αγ)2

(αγ)2 (1 + γ2)2

]
. (12)

This model is appropriate for sensor measurements that are no greater than 15◦ from the
boresight. The star tracker measurements considered in this paper are 10◦ from boresight.
The eigenvalues and eigenvectors can be determined from the matrix to know the maximum
error of the image.

2.3. Extended Kalman Filter Model

Two approaches to applying EKF to attitude determination systems are considered in
the literature, the state-based and state error-based, as are first introduced in Section 1.

A stand-alone star tracker will be initially introduced, using the state-based approach.
The popular error state variant will then be discussed. The angular velocity cannot be
directly measured by the star tracker. An estimate by finite difference, applying Equation (8),
is adopted. The EKF is then compared to static estimation by LLS, using the popular
Davenport q method described in [15].
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2.3.1. State-Based Estimation

Using a stand-alone star tracker in the attitude determination system may estimate
both the attitude as a quaternion and the angular velocity. This section adopts approaches
initially proposed in [17].

The state variables may be expressed as,

x =
{

qT ωT}T , (13)

where q =
[
q0 q1 q2 q3

]T and ω =
[
ωx ωy ωz

]T . The state transition, or propaga-
tion update, may be modelled using,

x(t + ∆t) = φ(x(t)) + σ(t), (14)

where φ is the state transition function and σ is the additive Gaussian noise. Using
Equation (6), the state transition function may be expressed as,

φ(x(t)) =
{

Φqqq(t)
ω

}
(15)

The EKF is an approach to using non-linear system models in the linear Kalman
Filter technique. It does this by a process of linearisation, as has already been applied to
Equation (6). The overall state transition matrix is represented by,

Φ =

 ∂q(t+∆t)
∂q(t)

∂q(t+∆t)
∂ω(t)

∂ω(t+∆t)
∂q(t)

∂ω(t+∆t)
∂ω(t)

 =

[
Φqq Φqω

Φωq Φωω

]
, (16)

where Φqq is already known from Equation (6). The partial derivative of q(t + ∆t) with
respect to ω(t) is,

Φqω =
∂q(t + ∆t)

∂ω(t)
=

∂Φqqq(t)
∂ω(t)

, (17)

and thus for i = x, y, z,

∂Φqqq(t)
∂ω(t)

=

[
−ωi∆t
2|ω| sin

(
|ω|∆t

2

)
I4 +

(
ωi∆t
2|ω|2 cos

(
|ω|∆t

2

)
− ωi
|ω|3 sin

(
|ω|∆t

2

))
Ω +

1
|ω| sin

(
|ω|∆t

2

)
∂Ω
∂ωi

]
q(t), (18)

where,

∂Ω
∂ωx

=


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

,
∂Ω
∂ωy

=


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

,
∂Ω
∂ωz

=


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

.

Since ω is assumed to be constant over the time step, Φωq = 0 and Φωω = I3.
In a similar form to the state or propagation update, as in Equation (14), the measure-

ment update is given by,
b̂ = h(x) + v, (19)

where h is the measurement function and v is the measurement noise, modelled as a
zero-mean Gaussian noise. The measurements of the star tracker are given in sub-pixel
coordinates calculated from the star source brightness distribution.

The expected measurement h(x) is derived from the identified stars. The star catalogue
coordinates are given in the inertial frame r. These are transformed to the star tracker
sensor frame by the attitude matrix A using Equation (1). The ith star locations known in
the derived expected image with coordinates αi and γi are obtained using Equation (10).
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A process of linearisation is also required for the measurement update, and so the
partial derivative of the measurement function with respect to the state variable produces
the measurement matrix,

H(x) =
∂h(x)

∂x
=


∂α1
∂q0

∂α1
∂q1

∂α1
∂q2

∂α1
∂q3

∂α1
∂ωx

∂α1
∂ωy

∂α1
∂ωz

...
...

...
...

...
...

...
∂γn
∂q0

∂γn
∂q1

∂γn
∂q2

∂γn
∂q3

∂γn
∂ωx

∂γn
∂ωy

∂γn
∂ωz

, (20)

where n is the total number of stars in the field of view. Using the chain rule, the partial
derivatives with each state variable may be calculated using,

∂α

∂x
=

∂α

∂bx

∂bx

∂x
+

∂α

∂by

∂by

∂x
+

∂α

∂bz

∂bz

∂x
, (21)

∂γ

∂x
=

∂γ

∂bx

∂bx

∂x
+

∂γ

∂by

∂by

∂x
+

∂γ

∂bz

∂bz

∂x
. (22)

So, the partial derivative of the measured sub-pixel star locations α and β are,

∂α

∂bx
= − f

bz
,

∂α

∂by
= 0,

∂α

∂bz
=

bx f
b2

z
,

∂γ

∂bx
= 0,

∂γ

∂by
= − f

bz
,

∂γ

∂bz
=

by f
b2

z
.

The partial derivative of b with respect to the angular velocity ω is,

∂b
∂ω

= 0, (23)

and with respect to the quaternion q is,

∂b
∂q

=
∂A
∂q

r, (24)

where for each quaternion the partial derivative of the attitude matrix is,

∂A
∂q0

=

 2q0 2q3 −2q2
−2q3 2q0 2q1
2q2 −2q1 2q0

,
∂A
∂q1

=

2q1 2q2 2q3
2q2 −2q1 2q0
2q3 −2q0 −2q1

,

∂A
∂q2

=

−2q2 2q1 −2q0
2q1 2q2 2q3
2q0 2q3 −2q2

,
∂A
∂q3

=

−2q3 2q0 2q1
−2q0 −2q3 2q2
2q1 2q2 2q3

.

The complete methodology of the EKF model is summarised by Table 1. The + and −
superscripts indicate the pre- and post-measurement update, respectively, used by the state
vector x and covariance matrix P. The precidicted state vector is expressed by z.

Given the risk to ill-conditioning of the covariance matrix P owing to non-linearities
and the re-normalisation of the quaternion, P is checked for positive definiteness by a
Cholesky Factorisation attempt. If the attempt failed, the covariance matrix is reset by
negating all diagonal negative terms and setting all non-diagonal terms to zero. In the
reported results of this work, this reset was never necessary.

2.3.2. State Error Estimation

For the stand-alone star tracker, the state error estimation approach uses the formali-
sation from [15]. However, the approach is made novel by replacing the gyroscope bias
state by a direct estimate of the angular velocity, making various modifications to the
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model to reflect this state estimate change. The state variables may be expressed as in the
state-based approach,

x =
{

qT ωT}T . (25)

However, the filter will not act directly on the state, but the state errors. The state error
vector is expressed as,

∆x =
{

δθT δωT}T , (26)

where δθ =
{

δθx δθy δθz
}T and δω =

{
δωx δωy δωz

}T .

Table 1. EKF methodology for the Star Tracker only state-based approach.

States xk =
{

q0 q1 q2 q3 ωx ωy ωz
}T

zk =
{

α1 . . . γn
}T

Propagation Update q̂−k+1 = Φqqq+
k

ω̂−k+1 = ω̂+
k

P−k+1 = ΦP+
k ΦT + Q

Φ =

[
Φqq Φqω

0 I3

]
Measurement Update Kk = P−k HT

k (x̂
−
k
[
Hk(x̂

−
k )P−k HT

k (x̂
−
k ) + Rk

]−1

x̂+k = x̂−k + Kk[ẑk − hk(x̂
−
k )]

P+
k = [I7 − Kk Hk(x̂

−
k )]P

−
k

Hk(x̂
−
k ) =


∂α1
∂q0

∂α1
∂q1

∂α1
∂q2

∂α1
∂q3

∂α1
∂ωx

∂α1
∂ωy

∂α1
∂ωz

...
...

...
...

...
...

...
∂γn
∂q0

∂γn
∂q1

∂γn
∂q2

∂γn
∂q3

∂γn
∂ωx

∂γn
∂ωy

∂γn
∂ωz



hk(x̂
−
k ) =


α1
...

γn


q̂+

k =
q̂∗+k
|q̂∗+k |

The propagation update is rewritten as,

∆x(t + ∆t) = φ(∆x(t)) + σ(t). (27)

The linearised state transition matrix is then,

Φ =

 ∂δθ(t+∆t)
∂δθ(t)

∂δθ(t+∆t)
∂δω(t)

∂δω(t+∆t)
∂δθ(t)

∂δω(t+∆t)
∂δω(t)

 =

[
Φδθδθ Φδθδω

Φδωδθ Φδωδω

]
. (28)

An alternative approach is adopted by [15] to derive the state transition matrix. Using
the linearised state space estimate equation for the rate of state change,

∆ ˙̂x(t) = F(t)x̂(t), (29)
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where F(t) is the Fisher information matrix, which provides a linearised matrix operator
on the propagated state via,

F(t) =
∂ ˙̂x(t)
∂x̂(t)

. (30)

It is known from [15] that the rate of attitude error change is related to the attitude error
and angular velocity terms by,

δθ̇ = −[ω̂×]δθ+ δω, (31)

where [ω̂×] is the matrix operator of the cross product, written as,

[ω̂×] =

 0 ω̂z −ω̂y
−ω̂z 0 ω̂x
ω̂y −ω̂x 0

. (32)

So the Fisher information matrix is expressed as,

F(t) =
[
−[ω̂×] I3

03 03

]
, (33)

where I3 is the 3× 3 identity matrix. The Fisher information matrix and the transition
matrix is related by the expression,

d
dt

Φ = F(t)Φ. (34)

Considering each side and maintaining equivalence, the transition matrix constituents
may be expressed as,

Φδθδθ = I3 − [ω̂×] sin(|ω̂|∆t)
|ω̂| + [ω̂×]2 [1− cos(|ω̂|∆t)]

|ω̂|2 ,

Φδθδω = [ω̂×] [1− cos(|ω̂|∆t)]
|ω̂|2 + I3∆t− [ω̂×]2 [|ω̂|∆t− sin(|ω̂|∆t)]

|ω̂|3 ,

Φδωδθ = 03,

Φδωδω = I3.

The state update is still performed using the approach in Equation (6). The angular velocity
is assumed to be constant over the time-step.

The measurement update uses a similar form to the state-based approach, expressed as,

b̂ = h(∆x) + v. (35)

However, instead of considering the measured pixel coordinates, it considers the measured
star unit vectors directly. The unit vectors are calculated using the image measurements α
and γ using Equation (10). The measurement function is defined as,

h(x) =


A(q)r1

...
A(q)rN

. (36)

The linearised measurement matrix is solved by considering the partial derivatives of
the measurement function with respect to the state error vector,

H =
∂h(x)
∂∆x

. (37)

This is solved directly in [15], using the chain rule and so the state error vector is expressed as,
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H =

 [A(q)r1×] 03
...

...
[A(q)rN×] 03

. (38)

The attitude error represents the difference between the true and estimate quaternion
by the relation, assuming the attitude error is suitably small,

qtrue = q̂ +
1
2

Ξ(q̂)δθ, (39)

where Ξ was defined in Equation (9). Similarly, the angular velocity is related by,

ωtrue = ω̂ + δω. (40)

The methodology of this approach is summarised in Table 2.

Table 2. EKF methodology for the Star Tracker using the state error approach.

States xk =
{

q0 q1 q2 q3 ωx ωy ωz
}T

∆xk =
{

δθx δθy δθz δωx δωy δωz
}T

zk =
{

bT
1 . . . bT

n
}T

Propagation Update q̂−k+1 = Φqqq+
k

ω̂−k+1 = ω̂+
k

P−k+1 = ΦP+
k ΦT + Q

Φ =

[
Φδθδθ Φδθδω

03 I3

]
Measurement Update Kk = P−k HT

k (x̂
−
k
[
Hk(x̂

−
k )P−k HT

k (x̂
−
k ) + Rk

]−1

∆x̂+k = Kk[ẑk − hk(x̂
−
k )]

P+
k = [I7 − Kk Hk(x̂

−
k )]P

−
k

Hk(x̂
−
k ) =

 [A(q̂−k )r1×] 03
...

...
[A(q̂−k )rN×] 03



hk(x̂
−
k ) =


A(q̂−k )r1

...
A(q̂−k )rN


q∗+k = q̂−k + 1

2 Ξ(q̂−k )δθ+k

q̂+
k =

q̂∗+k
|q̂∗+k |

ω̂+
k = ω̂−k + δω̂+

k

3. Results and Discussion

This section presents the results of analysing each estimation model. The results
include simulations of the star tracker, as well as real night sky testing using the CROSS
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star tracker [30]. In the real night sky test, the Earth’s rotation is used for dynamic testing
under a constant rotation. This unfortunately constrains performance analysis to precision
only and not accuracy, but still allows meaningful conclusions to be derived.

3.1. Simulations

Both models presented in Section 2.3 are simulated and compared. The error models
described in Section 2.2 are used to produce representative measurement errors. The model
errors are the same for each filter approach considered. As mentioned, results are also
compared to a static least square estimator, to establish a baseline for performance.

Each model starts at an initial attitude of q0 =
√

2
2
{

0 0 1 1
}T . The star tracker

is set initially at a constant rotation in the y-axis, or pitch direction, with a speed of
36 arc-sec/s. A noise of 1× 10−4 pixels is set at the centroid of each star.

The simulations are run over a period of 90 min, with measurements captured once
every second, i.e., 1 Hz. The star tracker is set to a square field of view of 20◦ and a stellar
magnitude maximum of 5.0. The attitude does not considerably improve with more than
8–10 stars [15,31], so a higher magnitude limit is not necessary.

The results are presented in Figure 2 and Table 3. The best performance for angular
velocity is found for the state-based EKF compared to static LLS and state error. A slight
improvement from state-based and a large improvement from static when comparing the
speed error and standard deviation of Table 3. However, in terms of the attitude, the results
are not so distinct.

Figure 2. Attitude measurement performance for the simulation operating at a constant speed of
36 arc-sec/s.

The yaw error is clearly the worst, being the direction perpendicular to the boresight.
In all directions, a slight improvement might be noted in the yaw error by adopting a state
approach. The state error approach corrects by small increments at each time step. With
significant noise in each stellar measurement, the restricted error term may not be enough
to correct the noise.
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Table 3. EKF results with the simulation using an angular speed of 36 arc-sec/s.

Parameter Measure LLS EKF State EKF State Error

Roll Error [arc-sec] 0.04 0.01 0.12
Standard Deviation [arc-sec] 3.59 2.60 3.26

Pitch Error [arc-sec] 0.02 0.05 0.13
Standard Deviation [arc-sec] 3.65 2.53 2.91

Yaw Error [arc-sec] 0.60 0.46 0.20
Standard Deviation [arc-sec] 25.86 7.88 12.93

Speed Error [arc-sec/s] 30.63 0.12 0.4
Standard Deviation
[arc-sec/s] 21.3 0.31 0.18

3.2. Real Night Sky

The EKF approaches may also be compared and further analysed through samples of
real night sky images. The EKF is also compared to a LLS based approach that does not
consider any prior information.

The test is performed by fixing the CROSS star tracker to a tripod and placing it with
the camera facing approximately at the zenith. The camera’s horizontal field of view is
approximately 19.9◦ and the lens focus is located a distance to the sensor that intentionally
blurs the stars in the image, aiding sub-pixel centroid analysis. After each captured image,
each star is processed by measuring the unit pointing vector and identifying it to an
equivalent catalogue of vectors. These vectors are then employed in the LLS or EKF. An
illustration of the assembly is presented in Figure 3. As the Earth rotates, the stars move
across the camera’s field of view at the known speed of Earth’s rotation.

Figure 3. Illustration of zenith facing camera for static image testing using Earth rotation. Angular
movement of stars through camera field of view caused solely by Earth rotation.

To compute a constant attitude throughout the test duration, the Earth’s rotation, as
well as empirically known nutation and precession angular fluctuations, may be corrected
through a series of matrix operations to the measured attitude matrix. The residuals and
precision of the measured attitude may then be calculated, providing an evaluation of the
star tracker’s performance. The corrections to the attitude matrix A may be given by,

Acorr = RNPAuncorr, (41)

where R, N and P are the Earth rotation, nutation and precession matrices, respectively.
Further description of each correction is described in [33]. The spread is calculated by
fitting a linear trend line to the data set, measuring the goodness-of-fit, and transforming
this to an error variance.

Each image was captured on a hill in the Inner West of the City of Sydney, Australia, on
10 May 2021. The sky contained some light pollution, but the astronomy weather forecast
website, Meteo Blue, reported the presence of no planetary bodies in the night sky, with
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good visibility conditions and little to no cloud cover. It is considered that atmospheric
noise may lead to worse performance, but should not significantly affect comparisons of
each approach. The camera board is a FLIR Blackfly S containing a Sony IMX264 image
sensor [35], 2448 × 2048 px, and is accompanied by a Scorpion Imaging lens [36], with an
approximate diameter of 17 mm and 2/3′′ sensor size. Each image is captured with a 15 s
interval and an exposure time of 0.15 s.

Each approach is compared, also considering a shorter time difference between each
image, and so a faster rotation speed. This is accounted for by reducing the time factor
between each correction. Tthe measured attitude in each direction, yaw, pitch and roll, and
the angular velocity is considered. The angular velocity of the LLS approach is calculated
by taking the simple difference between the measured Euler angles and dividing by the
time step.

It should be noted that the dependence on update rate has minimal influence on
performance. Farrenkopf [15,37] calculated the steady-state error in the state error EKF for
a gyroscope and star tracker Kalman filter, where,

σθ −→ ∆t1/4(σnσv)
1/2, (42)

where σv is the gyroscope noise. For the gyroless case, σv may be treated as a process noise
in the propagation step. The dependence on the time update ∆t is the same though, where
it is the quartic root.

The results for the attitude and angular velocity are presented in Figure 4. The results
are also tabulated in Table 4. The error is calculated for the attitude by fitting a trend line
and considering the residual. The error in the angular velocity measurement is calculated
by the residual to the known Earth rotation. The standard deviation represents the precision
of the data set series to the trend line.

Table 4. EKF results with real night sky imagery using a 1 s time displacement between each image,
and so an angular speed of 36 arc-sec/s.

Parameter Measure LLS EKF State EKF State Error

Roll Residual [arc-sec] 28.49 28.32 28.51
Standard Deviation [arc-sec] 8.34 8.43 8.34

Pitch Residual [arc-sec] 66.28 66.46 66.30
Standard Deviation [arc-sec] 6.26 6.33 6.27

Yaw Residual [arc-sec] 75.39 75.89 75.06
Standard Deviation [arc-sec] 27.87 26.18 27.74

Speed Residual [arc-sec/s] 10.17 0.70 1.50
Standard Deviation
[arc-sec/s] 8.09 0.61 1.16

The attitude in Figure 4 shows a slow drift from the initial attitude. This may be due
to external factors such as the wind or a general slip on the tripod, and is highlighted by
the data spread being greater than the slip or drift speed. The speed results are calculated
after a convergence time of 60 s.

Comparing the attitude results of the EKF to the LLS static approach, no distinct
improvement is derived from using a filter. Differences between the state error and state-
based approaches are also not so clear. This conclusion was also demonstrated in Section 3.1.

The convergence time of the angular velocity is much longer for the EKF, but especially
for the state-error approach. This is reasonable, as the state error correction is restricted to
only small increments. However, once converged, as seen in Table 4, the EKF precisions are
much higher than the static LLS. It may be concluded that for high spin rates, a Kalman
filter is more suitable to estimate angular velocity.

Overall, the state approach is better in terms of angular velocity, as in Table 4. This
result is suspected to be due to the restricted magnitude of the state error, which is in-
sufficient to correct for propagation approximation error. The difference in attitude ac-
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curacy and precision between state-based and state error techniques after convergence
in Figure 4 and Table 4 is not strong enough to significantly prefer a state-based over a state
error-based approach.

Figure 4. Attitude measurement performance for the standard time step of 1 s, considering
each approach.

It could be argued that the star tracker could also be tested against more erratic
behaviour with a changing angular velocity. However, such phenomena are almost always
caused by a deliberate torque in the spacecraft attitude controller, which can be directly
measured and fed into the attitude determination system. This would improve results.
Higher speeds also are not appropriate, as significantly smeared images at high spin rates
cannot successfully identify an attitude [38].

4. Conclusions

This work compares state and state error-based Kalman filter formulations to de-
termine the best approach for the gyroless star tracker. Each approach is traditionally
known as additive and multiplicative EKF, but is relabelled for the gyroless case where the
spin rate is a directly estimated state. This treatment is important for new applications of
star trackers in SSA, where spacecraft spin speeds are an important parameter, as well as
traditional attitude determination.

Approaches consider both simulation and real night sky analysis. The real night sky
case uses a novel technique for testing in the absence of a known truth orientation. The
state-based Kalman approach was determined to perform the best in each case. It is not
restricted by the error term and reset step. This approach may encounter ill conditioning of
the covariance matrix and requires renormalisation, increasing the error margin. However,
the magnitude of these errors are considered minor and were not noticeable in the results
reported. Moreover, resetting the covariance matrix proved unnecessary for the analyses
reported here.

Further work will see implementation of this Kalman filter on an upcoming satellite
mission. It will also see implementation of the state estimate in direct SSA applications.
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