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Abstract: In this paper, we describe a rotation angle measurement system (RAMS) based on an
inertial measurement unit (IMU) developed to measure the rotation angle of a movable surface. The
existing IMU-based attitude (tilt) sensor can only accurately measure the rotation angle when the
rotation axis of the movable surface is perfectly aligned with the X axis or Y axis of the sensor, which
is always not possible in real-world engineering. To overcome the difficulty of sensor installation
and ensure measurement accuracy, first, we build a model to describe the relationship between the
rotation axis and the IMU. Then, based on the built model, we propose a simple online method to
estimate the direction of the rotation axis without using a complicated apparatus and a method to
estimate the rotation angle using the known rotation axis based on the extended Kalman filter (EKF).
Using the estimated rotation axis direction, we can effectively eliminate the influence of the mounting
position on the measurement results. In addition, the zero-velocity detection (ZVD) technique is
used to ensure the reliability of the rotation axis direction estimation and is used in combination
with the EKF as the switching signal to adaptively adjust the noise covariance matrix. Finally, the
experimental results show that the developed RAMS has a static measurement error of less than
0.05◦ and a dynamic measurement error of less than 1◦ in the range of ±180◦.

Keywords: angle measurement; inertial measurement unit; extended Kalman filter; rotation axis
direction estimation

1. Introduction

The movable surfaces of an aircraft (such as elevators, flaps, and slats) are aerodynamic
devices allowing a pilot to adjust and control the attitude of an aircraft. Movable surfaces
are attached to the airframe on hinges or tracks (see Figure 1) and must be rotated to the
angle assigned by the pilot to ensure the stability of the aircraft. Therefore, it is essential
to accurately measure the rotation angles of the movable surfaces during an aircraft’s
ground test.

Figure 1. Aircraft’s movable surfaces are attached to the airframe.

The principle of measuring the rotation angle of a movable surface is equivalent to
measuring the rotation angle of a rigid body rotating around a fixed axis, which has a
specific direction. Optical motion capture systems are suitable for this task, however, these
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are expensive and require high computational costs [1]. Inertial measurement units (IMUs)
containing tri-axis accelerometers and tri-axis gyroscopes are also suitable for this task. In
recent years, microelectromechanical system (MEMS) IMUs have become widely available
in many areas, such as state estimation and angle measurement, due to their small size and
low cost [2,3].

Lian Hu et al. [4] proposed a Kalman filter-based algorithm that uses an IMU to
estimate the roll angle of an agricultural machine in paddy fields. Milad Ghanbari et al. [5]
proposed a tilt measurement algorithm consisting of a modified Kalman filter (KF) as a
postfilter and a complementary filter as a prefilter to enhance the accelerometer bandwidth
and eliminate the gyroscope drift. In ref. [6], the attitude (pitch and roll) was obtained
by fusing the acceleration and angular velocity using a nonlinear complementary filter.
In refs. [7–9], a KF-based algorithm using an IMU was developed to estimate the attitude
during dynamic conditions. Although these methods can solve the attitude estimation
problem, the pitch or roll is not equal to the rotation angle around the fixed rotation
axis when neither the X nor Y axis of the IMU are aligned with the rotation axis of the
movable surface.

Combining an IMU and a tri-axis magnetometer can form an attitude and heading
reference system (AHRS) that can provide a complete orientation measurement relative to
the direction of gravity and the Earth’s magnetic field [10–12]. We can parameterize the
orientation measured by AHRS as two quantities: a unit vector indicating the direction
of a rotation axis and an angle θ describing the magnitude of the rotation about the axis,
where θ is the rotation angle of the movable surface. However, the performance of the
AHRS degrades substantially due to the presence of significant magnetic disturbances in
the aircraft ground test environment.

Aligning the measurement axis of the IMU with the rotation axis is hard. Estimating
the mounting error (the misalignment of the IMU relative to the rotation axis) and correcting
the measured pitch or roll is an effective method to measure the rotation angle. Although
mounting error estimation methods can be found in numerous studies [13–15], these
methods require an apparatus such as turntables and have to be performed in the laboratory.
In ref. [16], a novel method to estimate mounting error was proposed, which requires
only a tri-axis accelerometer. However, the rotation angle is obtained by solving a model
equation, so the sensor noises directly affect the measurement results. Furthermore, it is
impossible to measure the rotation angle while the movable surface is rotating without
a gyroscope.

The primary objective of this research was to develop an IMU-based rotation angle
measurement system (RAMS) that can accurately measure the rotation angle without using
high-cost instruments and the RAMS can be randomly mounted on a movable surface.
The measurement algorithm used in RAMS consists of two parts: rotation axis direction
estimation and rotation angle estimation. The first part only requires the movable surface
to be stationary for a few seconds in three different rotational positions after the RAMS
is mounted on the surface while recording the accelerometer data. We can calculate the
rotation axis direction in the RAMS (IMU) frame of reference from the recorded data. In
the second part, an adaptive extended Kalman filter (EKF) is used to solve the rotation
angle estimation problem. We use acceleration data to correct the rotation angle obtained
from a gyroscope integration, where the measurement model in the EKF is built using the
estimated rotation axis direction. Furthermore, the zero-velocity detection (ZVD) technique
is used in both the rotation axis direction estimation and rotation angle estimation, which
aims to detect whether the RAMS is stationary. The ZVD determines the moment of
recording acceleration data during the rotation axis direction estimation and the moment
of switching the EKF noise covariance matrix during the rotation angle estimation. The
proposed algorithm is compared with the method in ref. [16], and the measurement
accuracy of the RAMS is compared with a commercial high-precision AHRS (Ellipse2-N
from SBG). The results show that the RAMS is able to measure the rotation angle within
±180◦, and the maximum measurement error is less than 0.05◦, even with it randomly
mounted on a movable surface.
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The rest of this article is organized as follows. Section 2 develops a model to describe
the relationship between the IMU output and the rotation axis of the movable surface.
Section 3 gives details of the proposed algorithm used in RAMS. Section 4 introduces
the design for the RAMS. Section 5 performs a simulation to evaluate the performance
of the proposed algorithm and the effect of major error sources. Section 6 presents the
experimental results. Section 7 concludes this article with a summary of the designed
measurement system.

2. Modeling
2.1. Problem Definition

In this section, we used IMU instead of RAMS since the IMU is the core of measuring
the rotation angle of a movable surface. It is required to mount the IMU on the surface to
measure the rotation angle of the aircraft’s movable surface. The following notation for
frames of reference is used (see Figure 2):

• A denotes the frame fixed on the Earth.
• B denotes the IMU frame of reference.
• C denotes the movable surface frame of reference.

Figure 2. Frames of reference are used. A denotes the frame fixed on the Earth, B denotes the IMU
frame of reference, and C denotes the movable surface frame of reference.

We assume that the X–Y plane of frame A is the horizontal plane, the X–Y plane of
frame B is the measurement plane, and the Z axis of frame C is the rotation axis of the
movable surface.

The coordinate transformation of the vector e ∈ R3 between two different frames (e.g.,
A and B) is

Be = A
B RT Ae (1)

where the left superscript of e implies that the corresponding vectors are expressed in
different frames, and A

B R ∈ R3×3 is the rotation matrix of the frame B with respect to
frame A.

The vector Bv =
[
vx vy vz

]T in frame B is used to represent the direction of the
rotation axis with respect to the IMU, which satisfies the following conditions:

1. ||Bv|| =
√

v2
x + v2

y + v2
z = 1.

2. vx ≥ 0, and if vx = 0, vy > 0.

where || · || denotes the norm of the vector.
The rotation matrix R is expressed using a unit vector > =

[
x y z

]T and a rotation
angle θ as [17]
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R = R(θ,>)

= (cos θ)I + (sin θ)[>]× + (1− cos θ)
(
>>T

)
=

 cos θ + (1− cos θ)x2 (1− cos θ)xy− (sin θ)z
(1− cos θ)xy + (sin θ)z cos θ + (1− cos θ)y2

(1− cos θ)zx− (sin θ)y (1− cos θ)zy + (sin θ)x

(1− cos θ)zx + (sin θ)y
(1− cos θ)zy− (sin θ)x

cos θ + (1− cos θ)z2


(2)

where R(·) denotes the conversion of an axis-angle to a rotation matrix, and [·]× denotes
conversion of a vector to a skew-symmetric matrix.

The purpose of this paper was to estimate the rotation axis Bv and rotation angle θ of
a movable surface.

2.2. Relationship between Accelerometer, Rotation Axis, and Rotation Angle

The tri-axis accelerometer can measure the external specific force acting on the sensor.
When the accelerometer is stationary, the measured acceleration is the gravitational acceler-
ation Bg =

[
ax ay az

]T . The distribution of gravitational acceleration Ag =
[
0 0 g

]T

on each axis as depicted in Figure 3, and the following formulas are valid [18]

ax = g cos α (3)

ay = g cos β (4)

az = g cos ϕ (5)

where α, β, and ϕ denote the angles included between gravitational acceleration and X, Y,
and Z axes, respectively.

Figure 3. Distribution of the gravitational acceleration.

If both the measurement plane and the rotation axis are horizontal, the tilt angle can
be measured in the stationary state by Equations (3)–(5). In most practical cases, however,
the sensor cannot be mounted in an ideal position. The measured gravitational acceleration
Bg can be expressed in terms of A

B R as

Bg = A
B RT Ag (6)
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Then, only consider the stationary state of the accelerometer, the rotation axis and the
measured acceleration with respect to the frame C can be expressed as

Cv = B
CRT Bv =

[
0 0 1

]T (7)

Cg = B
CRT Bg (8)

where Cv and Cg denote the rotation axis direction and the measured gravitational acceler-
ation in frame C, respectively.

We assume that Cg0 =
[Cax0

Cay0
Caz0

]T denotes the measured acceleration at the
initial moment when the movable surface has not yet rotated, and θt denotes the rotation
angle of the movable surface at time t. The rotation matrix with respect to the initial
moment is

R
(

θt, Cv
)
=

cos θt − sin θt 0
sin θt cos θt 0

0 0 1

 (9)

At this moment, the measured acceleration in the frame C can be expressed as:

Cgt = R
(

θt,C v
)TCg0

=

 Cax0 cos θt + Cay0 sin θt
−Cax0 sin θt + Cay0 cos θt

Caz0

 (10)

We can obtain that the trajectory of Cgt is a circle perpendicular to Cv as the rotation
angle θt changes (see Figure 4).

(a) (b)

Figure 4. Trajectory of the measured acceleration in the frame C: (a) is the main view; and (b) is the
top view.

For three different times t1, t2, and t3, we can obtain

Cgt1 =

 Cax0 cos θt1 +
Cay0 sin θt1

−Cax0 sin θt1 +
Cay0 cos θt1

Caz0

 (11)

Cgt2 =

 Cax0 cos θt2 +
Cay0 sin θt2

−Cax0 sin θt2 +
Cay0 cos θt2

Caz0

 (12)

Cgt3 =

 Cax0 cos θt3 +
Cay0 sin θt3

−Cax0 sin θt3 +
Cay0 cos θt3

Caz0

 (13)



Sensors 2022, 22, 8996 6 of 17

Considering Equations (11)–(13) together, we can yield the following relationship:

Cv = ±
[Cgt2 − Cgt1

]
×
[Cgt3 − Cgt2

]
||[Cgt2 − Cgt1 ]×[

Cgt3 − Cgt2 ]||
(14)

Multiplying both sides of Equation (14) by B
CR yields

Bv = ±
[Bgt2 − Bgt1

]
×
[Bgt3 − Bgt2

]
||[Bgt2 − Bgt1 ]×[

Bgt3 − Bgt2 ]||
(15)

Therefore, we can conclude that it is only needed to measure the gravitational acceler-
ation at three different rotation positions to calculate the rotation axis direction Bv.

When the external acceleration is not considered (the accelerometer is stationary),
the relationship between the measured acceleration Bam and the rotation angle θ can be
expressed as

Bam = R
(

θ, Bv
)T Bā0 + na (16)

where Bā0 =
[
āx0 āy0 āz0

]T is the mean value of the acceleration measurements over an
initialization period with no motion, and na denotes the measurement noise, assumed to
be Gaussian white noise, na ∼ N

(
0, σ2

a I3×3
)
.

2.3. Relationship between Gyroscope, Rotation Axis, and Rotation Angle

As part of the IMU, the tri-axis gyroscope provides measurements of the angular
velocity about the X, Y, and Z axes. Gyroscopes are known to be affected by different
error terms, such as a measurement noise error and a bias [19]. The relationship between
the measured angular velocity Bωm and the real angular velocity Bω̂m can be simply
modeled as [8,9]

Bωm = Bω̂ + b + nω (17)

ḃ = w (18)

where b denotes the gyroscope bias, nω denotes the measurement noise, and w denotes
a random walk process. Both nω and w are assumed to be Gaussian white noise, nω ∼
N
(
0, σ2

θ I3×3
)
, w ∼ N

(
0, σ2

b I3×3
)
.

With a fixed rotation axis, the relationship between rotation velocity, rotation axis, and
rotation angle can be expressed as

Bω̂ = ±||Bω̂||Bv (19)

θ̇ = BvT Bω̂ = BvT(Bωm − b + nω) (20)

3. Algorithm Description

The whole angle measurement process is performed in two steps. The first step is
to estimate the rotation axis direction Bv. The second step is using Bv to construct the
prediction model and the measurement model in the EKF, which is used to estimate the
rotation angle. In addition, the ZVD is required for both rotation axis direction estimation
and rotation angle estimation. Figure 5 shows the block diagram of the angle measurement
algorithm. More details about the algorithm are introduced as follows.
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Figure 5. Block diagram for the angle measurement algorithm. Estimating the rotation axis direction
requires acceleration data and the results of zero-velocity detection (ZVD). Estimating the rotation
angle requires acceleration data, angular velocity data, rotation axis direction, and the results of ZVD.

3.1. Zero-Velocity Detection

The objective of ZVD is to decide whether the IMU is stationary or moving during a
time epoch consisting of N measurements between time instants n and n + N − 1 [20]. The
ZVD is widely used in inertial navigation systems, providing the required information to re-
set the velocity error, and preventing the velocity error linearly increasing with time [21,22].
When the IMU is stationary, the following two conditions should be satisfied [23]:

1. Acceleration condition: ||Bam|| = g.
2. Angular velocity condition: ||Bωm|| = 0.

Isaac Skog et al. [20] confirmed that a simple threshold on the angular velocity
magnitude works well. Antonio R. Jiménez et al. [24] applied thresholds to the acceleration
magnitude, angular velocity magnitude, and local acceleration variance. In ref. [25], a time
duration threshold was added. In this paper, the ZVD conditions are:

1. The acceleration magnitude needs to satisfy a threshold:

thamin < ||Bam|| < thamax . (21)

2. The local acceleration variance is less than a threshold:

ζ2
a = vartw

(
||Bamt ||

)
< thζa (22)

where vartw(||Bamt ||) is an operator that computes the variance of acceleration magni-
tude ||Bamt ||measured in a time interval of length tw seconds.

3. Both of the above conditions need to be satisfied, and the duration is longer than
tht seconds.

Figure 6 describes an example of how the ZVD works on actual acceleration data, and
Table 1 shows the parameter settings at this point.

Table 1. Parameter values of zero-velocity detection.

Parameter Value

thamax 9.84 m/s2

thamin 9.76 m/s2

thζa 0.001 m2/s4

tw 0.01 s
tht 0.01 s
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Figure 6. An example of the zero-velocity detection applied to the acceleration data.

3.2. Estimation of Rotation Axis Direction

After mounting the RAMS on a movable surface, the first step is to estimate the
rotation axis direction in the frame B. As introduced in Section 2, the key of the rotation axis
direction estimation is to measure the gravitational acceleration at three different rotational
positions, and then the rotation axis direction Bv can be calculated from Equation (15).

We average the acceleration data when the movable surface is stationary after being
rotated to mitigate the measurement noise effect on the result of Equation (15), and rewrite
Equation (15) as

Bv = ±
[Bā1 − Bā0

]
×
[Bā2 − Bā1

]
||[Bā1 − Bā0]×[

Bā2 − Bā1]||
(23)

where Bā0, Bā1, and Bā2 denote the average acceleration.
The ZVD ensures that stationary and motion intervals are correctly classified. Once

the gravitational acceleration measurements at three different positions are obtained, the
rotation axis direction Bv can be estimated according to Equation (23).

The operation procedure rotates the movable surface and then keeps it stationary for
at least 1 s, while recording the acceleration data and inputting them into Algorithm A1
(see Appendix A). This is repeated operation until Algorithm A1 successfully obtains the
rotation axis direction Bv.

3.3. Estimation of Rotation Angle

An EKF, which consists of two stages (prediction and correction) [7–10,12], is used
to estimate the rotation angle after the rotation axis direction is estimated. We define the
rotation angle θk and the gyroscope bias bk as state vectors

xk =

[
θk
bk

]
. (24)

3.3.1. Prediction

Assume that at time step k, we have the angular velocity Bωm measured by gyroscope
and the rotation axis direction Bv. According to Equations (17)–(20), we can obtain the
prediction equation of the EKF as

x̂−k = f (x̂k−1, Bωm)

=

[
θ̂k−1 +

BvTω̂∆t
b̂k−1

] (25)

P−k = FxPk−1Fx
T + Q (26)
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where ω̂ = Bωm − b̂k−1, the minus superscript denotes the a priori (or predicted) estimate,
the hat represents that the real system state is estimated by the EKF, Pk−1 is the covariance
matrix, Fx is the Jacobi matrix of f (x̂k|k, ωm), and Q is the process noise covariance matrix.

The process noise covariance matrix Q is

Q = B
[

σ2
θ I3×3 0

0 σ2
b I3×3

]
BT (27)

B =

[BvT∆t 0
0 ∆tI3×3

]
(28)

where σ2
θ I3×3 and σ2

b I3×3 are the covariance matrix of nω and w.

3.3.2. Correction

We use the measured acceleration Bam to correct the prior estimate. According to
Equation (16), the correction model is

Bam = h
(
x̂−k
)
+ na = R

(
θ, Bv

)T Bā0 + na (29)

where Bā0 and na are defined in the same way as in Equation (16).
The prediction equation can be written as

x̂k = x̂−k + K
(

Bam − h
(
x̂−k
))

(30)

K = P−k Hx
T
(

HxP−k Hx
T + V

)−1
(31)

Pk = (I−KHx)P−k (32)

where Hx is the Jacobi matrix of h(x̂−k ), K is Kalman gain, and V is the measurement noise
covariance matrix.

The measurement noise covariance matrix V is

V = σ2
a I3×3 (33)

where σ2
a I3×3 is the covariance matrix of na.

The procedure of the EKF to estimate the rotation angle is shown in Figure 7.

Figure 7. Procedure of the EKF to estimate the rotation angle.
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3.3.3. Dynamic Adjustment of Noise Covariance

The above measurement model is only valid when the RAMS is stationary due to
the external acceleration. Methods to resolve the covariance uncertainty due to external
acceleration by adaptively adjusting the measurement noise covariance matrix can be found
in many studies [7–9,26]. We chose a switching EKF structure to eliminate the effect of
external acceleration.

Based on the standard EKF, we define two state covariance matrices P and Pz, and two
measurement noise covariance matrices V and Vz. Pz and Vz are used to construct the EKF
for stationary intervals. P and V are used to construct the EKF for motion intervals.

The ZVD is still used to distinguish whether the sensor is stationary or in motion.
Figure 8 shows the complete rotation angle estimation procedure.

Figure 8. Complete procedure of rotation angle estimation.

Figure 9 shows an example of how the EFK with ZVD and the standard EKF work on
data recorded by the RAMS, respectively. The reference angle in Figure 9a was obtained by
a precision turntable. The error in Figure 9b is defined as the difference between the angle
θk estimated using different algorithms and the reference angle θ̂k:

error = θk − θ̂k. (34)

The complete motion process in Figure 9 is divided into three parts: stationary period 1
(0–1 s), moving period (1–2 s), and stationary period 2 (2–3 s). In stationary period 1, the
two algorithms produced almost the same results (see Figure 9b). In the moving period,
||Bam|| 6= g and ||Bωm|| 6= 0, the angle estimation error of the standard EKF was higher
than that of the EKF with ZVD. In stationary period 2, the RAMS was stationary again,
and the estimation error of the EKF with ZVD converged rapidly. Therefore, we can
conclude that the improved EKF algorithm in this paper has significant advantages in
dynamic processes.
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Figure 9. An example of the EKF with ZVD and the EKF applied to the data recorded by the RAMS.
(a) Reference rotation angles obtained by a precision turntable. (b) Angle estimation errors of the EKF
with ZVD (solid lines) and the EKF (dashed lines) with respect to the reference angles. (c) Magnitudes
of the acceleration. (d) Magnitudes of the angular velocity.

4. System Design

The RAMS that was designed in this paper consists of a rotation angle measurement
module and a 5G mobile communication module. The block diagram for the system is
shown in Figure 10. The RAMS transfers the measurement results to the cloud server via 5G
network. The data visualization application obtains the measurement data from the cloud
server and visualizes them. Furthermore, the data visualization application can access
RAMS measurements directly via USB. More details of the rotation angle measurement
module are as follows.

Figure 10. Rotation angle measurement system architecture.

The rotation angle measurement module (see Figure 10) is the core of the measurement
in RAMS, which includes a tri-axis accelerometer (ADXL355), an IMU (BMI088) containing
a tri-axis gyroscope, and a microcontroller (STM32F411). The ADXL355 [27] is a low noise
density, low offset drift, low power, selectable measurement range tri-axis accelerometer
with industry-leading noise, minimal offset drift over temperature, and long-term stability
for precision applications with minimal calibration. The BMI088 [28] is a high-performance,



Sensors 2022, 22, 8996 12 of 17

low-cost inertial sensor consisting of a 16-bit digital tri-axis accelerometer and a 16-bit
digital tri-axis gyroscope with high-vibration robustness and excellent temperature stability.
The STM32F411 [29] is a microcontroller based on the ARM Cortex-M4 32-bit core operating
frequency of up to 100 MHz. It features a single-precision floating-point unit, a full
set of DSP instructions, up to five SPI interfaces (up to 50 Mbit/s), and a full-speed
USB 2.0 controller.

The reason to choose two different sensors instead of having one combined one is that
we need a low-noise accelerometer to achieve the measurement accuracy while saving costs.
Table 2 gives the prices and accelerometer noise densities for ADXL355, ADIS16465 (a
high-precision MEMS IMU IC), and BMI088, where the prices are from Digi-Key. As can be
seen from the information in Table 2, the noise density of ADXL355 is much less than that
of the accelerometer in BMI088, however, the price is much lower than ADIS16465. This
solution can achieve the desired measurement accuracy while keeping the cost of sensors
under USD 100.

Table 2. Accelerometer noise density prices for different sensor ICs.

IC Noise Density (µg/
√

Hz) Unit Price (USD)

ADXL355 22.5 52.14
ADIS16465 23 798.14

BMI088 175 28.75

The STM32F411 uses SPI to read acceleration data from ADXL355 and angular velocity
data from BMI088 and uses USB to send the measurement results to the communication
module. The rotation angle measurement algorithm described in Section 3 is executed on
the STM32F411.

Two sensors (ADXL355 and BMI088) were separately calibrated using the method
in ref. [30] to reduce the sensor measurement errors.

5. Simulation and Discussion

In this section, we use simulations to verify the proposed algorithm and compare it
with the method in [16]. The properties of the IMU used in the simulations are presented
in Table 3.
Table 3. Properties of the IMU used in the simulations.

Accelerometer Gyroscope

Bias 50 mg 0.7◦/s
Noise Density 50 µg/

√
Hz 0.02◦/s/

√
Hz

Random Walk 10 µg
√

Hz 0.014◦
√

Hz/s

Simulation

In the simulation, we first rotated the IMU around a rotation axis and estimated the
misalignment between the rotation axis and the IMU using the method in ref. [16] and
the method proposed in this paper, respectively. Then, the IMU was rotated around the
rotation axis from −180◦ to 180◦ and 1000 measurements calculated by the two methods
were recorded at 5◦ intervals. Figure 11 shows the maximum measurement errors of the two
methods for different rotation angles with the rotation axis Bv =

[
0.1734 0.9835 −0.0523

]T .
Clearly, the measurement accuracy of the proposed rotation angle estimation method is
superior against the method in ref. [16].
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Figure 11. Maximum measurement errors of the two methods for different rotation angles [16].

6. Discussion

Since the rotation angle measurement model in this paper relies on the rotation axis
direction, the accuracy of the rotation axis direction estimation directly affects the accuracy
of the measurement results.

For accelerometers, the axis misalignment, scaling factor, and fixed bias can be obtained
and compensated by the method in ref. [30], while the measurement noise na directly affects
the accuracy of the rotational axis estimation. To reduce the effect of na, we should extend
the stationary time as long as possible and average the acceleration data recorded during
the stationary period.

In addition, the angle between the rotation axis and the horizontal plane also has
an impact on the accuracy of the rotation axis direction estimation. As the rotation axis
changes from horizontal to vertical, the noise weight of Bā1 − Bā0 in Equation (23) becomes
larger. Assume that γ is the angle between the rotational axis Bv and the horizontal plane,
g0 and g1 are the ideal values of the measured acceleration of gravity for two different
rotational positions (g1 = R(30◦, Bv)Tg0). The relationship between the variation of γ and
||g1 − g0|| is shown in Figure 12. When the rotation axis is vertical, rotation about this
axis does not cause a change in the measured acceleration (regardless of noise). When
γ = 60◦, the magnitude of ||g1 − g0|| is half of that at γ = 0◦, so in the actual measurement
process, the angle between the rotation axis and the horizontal plane should preferably be
less than 60◦.
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Figure 12. Relationship between the variation of β (angle between the rotational axis and the
horizontal plane) and ||g1 − g0||(1g = 9.8 m/s2).

7. Experiments Result

We used a precision three-axis turntable (SGT320E from China Aviation Industry
Corporation) as an experimental platform to provide the actual reference data of rotation
angles. The angular position accuracy of the SGT320E is ±5′′. The RAMS was compared
with the method in ref. [16] and a high-precision commercial AHRS (Ellipse2-N from SBG).
The estimates of the rotation angles obtained by the method in ref. [16] were calculated
using raw data from the RAMS. The Ellipse2-N is a small, high-precision AHRS that
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contains a tri-axis gyroscope, accelerometer, and magnetometer, with a measurement
accuracy of 0.1° for roll and pitch, and 0.8° for yaw.

To study the RAMS’s performance in different mounting positions, we adjusted the
RAMS to different positions for several tests, taking the rotation axis direction close to
the RAMS’s X axis direction (Test 1), Y axis direction (Test 2), and a tilt direction (Test 3)
as examples.

All tests were divided into two steps. The first step controlled the specified rotation
axis of the SGT320E to rotate three times to estimate the rotation axis direction. The second
step was to control the rotation axis from −180◦ to 180◦ with a 1 s pause at 10◦ intervals.

The rotation axis direction estimated by the RAMS is shown in Table 4. The results
were retained to four decimal places. A total of four sets of rotation angle data were
obtained, corresponding to the reference rotation angles obtained by the SGT320E, the
RAMS measured angles, the method in ref. [16] measured angles, and the Ellipse2-N
measured angles. The Ellipse2-N measurement results were obtained by converting the
measured orientations into axis-angle form. The measurement errors were computed as
the difference between measured values and the reference values.

Table 4. Rotation axis directions estimated by RAMS.

Rotation Axis Direction

Test 1 Bv1 = [0.9932 −0.1044 0.0523]T

Test 2 Bv2 = [0.1043 0.9921 −0.0698]T

Test 3 Bv3 = [0.8070 −0.5864 0.0698]T

It is common to quantify sensor performance as the static and dynamic root-mean-
square error (RMSEs). The ZVD determined whether the RAMS was stationary or moving.
The RMSEs of the angular measurements at different positions are summarized in Table 5,
where each value is retained to four decimal places. In all three sets of tests, the static
RMSEs of the RAMS are less than 0.02◦, and the moving RMSEs are less than 0.5◦. The
static RMSEs of the method in [16] are less than 0.1◦, however, this method cannot obtain
accurate measurements under dynamic conditions. Both the static and moving RMSEs
of Ellipse2-N exceed 0.1◦ because the magnetometer could not effectively suppress the
cumulative error of the gyroscope at the heading angle due to the frequent changes in
the magnetic field in the experimental environment. After running Ellipse2-N and the
RAMS for 10 min, they were left to stand still for 1 min. During this minute, the RAMS’s
measurement results were held constant while the Ellipse2-N’s measurement results shifted
(see Figure 13), which shows that the designed RAMS is not affected by the gyroscope
integration error.

Table 5. Static and dynamic RMSE of Ellipse2-N and RAMS.

RMSE Static (◦) RMSE Dynamic (◦)

Bv1

RAMS 0.0145 0.4138
Ellipse2-N 0.1091 0.3545

Method in ref. [16] 0.0672 3.6057

Bv2

RAMS 0.0182 0.4133
Ellipse2-N 0.1734 0.2624

Method in ref. [16] 0.0804 2.7650

Bv3

RAMS 0.0118 0.4611
Ellipse2-N 0.0827 0.1299

Method in ref. [16] 0.0709 3.6634
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Figure 13. Drift of the Ellipse2-N and RAMS were left to stand for one minute.

The maximum measurement error for different angles is also an important indicator
of system performance. As shown in Figure 14, the maximum measurement error of RAMS
for various angles did not exceed 0.05◦.
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Figure 14. Maximum measurement error of RAMS for various angles.

8. Conclusions

It is an important part of aircraft ground testing to accurately measure the rotation
angle of movable surfaces. For existing IMU-based attitude sensors, the only way to obtain
the desired measurement accuracy is to align the sensitive axis of the sensor with the
movable surface rotation axis or calibrate the mounting error using precision equipment.
Considering the fact that mounting errors are inevitable in the actual measurement pro-
cess, this paper focuses on proposing a new measurement algorithm for rotational angle
measurement without any additional calibration equipment.

The proposed algorithm uses a unit vector in the IMU frame of reference to represent
the direction of the rotation axis, which can be estimated using only the stationary accelera-
tion measurements for three different rotational positions. The process of the rotation axis
direction estimation can be performed before or during the angle measurement (estimating
the rotation axis direction during the measurement process requires saving the raw data
from the RAMS and outputting the measurement results in real-time only after the rotation
axis is estimated). The rotation angle estimation part of the proposed algorithm uses an
adaptive EKF, whose correction model is built relying on the estimated rotation axis direc-
tion. The results of simulations and real experiments show that the static measurement
accuracy of RAMS in the range of −180◦–180◦ is better than that of a commercial AHRS
and another measurement method in ref. [16], and the maximum static measurement error
is less than 0.05◦.
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In addition, the RAMS designed in this paper is not only applicable to aircraft movable
surface measurement but can also be applied to any rotation angle measurement project
where the rotation axis is fixed, such as the measurement of a robot arm joint rotation angle
and the calibration of a low-cost rotary encoder.
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Appendix A

Algorithm A1 Rotation Axis Direction Estimation

Input: New acceleration data Ba, rotation axis direction Bv
Output: Whether Bv is successfully calculated

1: Create a data buffer Bu f
2: f lag← 0, count← 0, i←0
3: Bā[0], Bā[1], Bā[2]← [0 0 0]T

4: if count < 3 then
5: if Zero-velocity detection result is stationary then
6: Bu f [i]← Ba
7: f lag← 1
8: else
9: if f lag = 1 then

10: Bā[count]← average the data in Bu f
11: f lag← 0, clear Bu f , i← 0
12: count = count + 1
13: end if
14: end if
15: i = i + 1
16: end if
17: if count = 3 then
18: Bv← calculate (15) using Bā[0], Bā[1], and Bā[2]
19: return true
20: else
21: return false
22: end if
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