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Abstract: Exploring the temperature-dependent photoluminescence (PL) properties of quantum dots
(QDs) is not only important for understanding the carrier recombination processes in QD-based
devices but also critical for expanding their special applications at different temperatures. However,
there is still no clear understanding of the optical properties of CdS/ZnS core/shell QDs as a function
of temperature. Herein, the temperature-dependent PL spectra of CdS/ZnS core/shell QDs were
studied in the temperature range of 77–297 K. It was found that the band-edge emission (BEE)
intensity decreases continuously with increasing temperature, while the surface-state emission (SSE)
intensity first increases and then decreases. For BEE intensity, in the low temperature range, a small
activation energy (29.5 meV) in the nonradiative recombination process led to the decrease of PL
intensity of CdS/ZnS core/shell QDs; and at high temperature the PL intensity attenuation was
caused by the thermal escape process. On the other hand, the temperature-dependent variation trend
of the SSE intensity was determined by the competition of the trapping process of the surface trap
states and the effect of thermally activated non-radiative defects. As the temperature increased, the
PL spectra showed a certain degree of redshift in the peak energies of both band-edge and surface
states and the PL spectrum full width at half-maximum (FWHM) increases, which was mainly due
to the coupling of exciton and acoustic phonon. Furthermore, the CIE chromaticity coordinates
turned from (0.190, 0.102) to (0.302, 0.194), which changed dramatically with temperature. The results
indicated that the CdS/ZnS core/shell QDs are expected to be applied in temperature sensors.

Keywords: temperature-dependent; photoluminescence; CdS/ZnS; quantum dots; temperature sensor

1. Introduction

The increasing demand for high-performance optoelectronic devices in recent years
has attracted considerable attention to quantum dot (QD) systems, because QDs can
confine their carriers in three dimensions [1,2]. QD devices have better performance than
quantum well and quantum wire devices, such as high characteristic temperature, low
threshold current density, and so on [3–5]. However, until now, QD devices have faced
an important problem, which is that their performance degrades when they operate at
high temperatures [6]. Temperature-dependent photoluminescence characteristics of QDs
are very meaningful for QD-based devices, such as photovoltaic, light concentrators and
phosphor conversion light emitting diodes (LEDs) [7,8]. These functional devices should
be stable with high performance at elevated temperatures. Thus, it is very necessary to
investigate the changes of optical properties of QDs with temperature.

CdS QDs are an important material applied in photoelectric conversion and LED
lighting [9,10]. The fluorescence efficiency of CdS QDs is relatively low, about 20–25%.
To obtain more stable blue light emission, several layers of semiconductor materials with
large band gaps, such as ZnS, are usually passivated on the surface of CdS QDs, increasing
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the coordination of surface atoms and blocking the interaction of excitons in CdS QDs
with those in the surrounding environment, thus obtaining CdS/ZnS core/shell QDs
with good photostability and high photoluminescence (PL) quantum yield [11,12]. At
present, QD-LEDs prepared with CdS/ZnS core/shell QDs show highly efficient elec-
troluminescence properties [13–15]. Further improvements in the performance of these
QD-based devices depend not only on higher QD PL quantum yield, but also on better
temperature stability. Some temperature-related studies have been carried out on the
QDs of CdSe [16,17], CdTe [18], Ag2Se [19], PbSe [20,21], CuInS [22], indicating that the
band gap and luminescence properties of semiconductors are temperature dependent. For
instance, with the decrease of temperature, the electroluminescence intensity and efficiency
of CdSe/ZnS core/shell QDs gradually increase, and the electroluminescence spectra show
a significant blue shift [16]. The PL energy shift of CuInS2-ZnS core-shell QDs and CuInS2
QDs with temperature are 35 meV and 98 meV, respectively, which are much larger than
those of the excitons in corresponding bulk semiconductors. However, there is still no clear
understanding of the optical characteristics of CdS/ZnS core/shell QDs as a function of
temperature [22].

Moreover, compared to traditional optical temperature probes such as organic flu-
orophores, luminescent complexes and inorganic phosphors, QDs have the advantages
of multiparameter detectable signals, strong PL intensity, and narrow half-peak width
when applied in optical temperature sensors. However, some difficult problems are still
unsolved, including unsatisfactory response sensitivity, optional detectable signals, poor
thermal stability, a limited temperature response range and so on [23,24]. Thus, designing
a new optical temperature sensor based on QDs with multiparameter detectable signals,
high sensitivity, and stability is still a challenge.

In this paper, the temperature-dependent PL spectra of CdS/ZnS core/shell QDs in
the temperature range of 77–297 K were investigated. The decrease of PL intensity, the
broadening of the PL spectrum, and the shift of emission peak energy changed with increas-
ing temperature. It was found that the band-edge emission (BEE) decreased continuously,
while the surface-state emission (SSE) did not seem to be a monotonic process with the
increase of temperature. The PL spectra showed a certain degree of redshift in the peak
energies of both band-edge and surface states with increasing temperature. Meanwhile,
the PL linewidth increased with temperature, and was analyzed according to the standard
equation describing the change of exciton width in the ground state with temperature.
Furthermore, it was demonstrated that CdS/ZnS core/shell QDs as an optical temperature
sensor possesses high sensitivity up to 2.14% K−1, and multiparameter detectable signals.

2. Materials and Methods
2.1. Synthesis of CdS/ZnS Core/Shell QDs

CdS/ZnS core/shell QDs were prepared based on a thermal cycling-SILAR method
reported in our previous work [25]. First, CdS core QDs was synthesized. 4 g of oleic acid,
0.128 g of CdO and 35 mL of ODE were charged into a 250 mL three-necked flask and
heated at 250 ◦C in an argon atmosphere. 5 mL of 0.1 M sulfur precursor solution was
rapidly injected into the mixed solution, and the temperature was maintained at 230 ◦C
for 30 min. Then, the obtained CdS core QDs were purified and transferred to a 250 mL
three-necked flask, and 35 mL of ODE and 5ml of oleylamine were added. In an argon
atmosphere, the temperature was raised to 240 ◦C, and 3.2 mL of Cd precursor solution
was injected at the same time. After 10 min of growth, 3.2 mL of sulfur precursor solution
was injected, and the growth was continued for 10 min, thus completing the preparation
of a layer of ZnS shell layer. The precursor solution was injected according to the same
method as above in the order of Zn-S-Zn-S-Zn-S-Zn-S. Finally, the synthesized core/shell
QDs are purified by centrifugation, the excess organic ligands and unreacted substances
are removed, and then the samples are dissolved in toluene.
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2.2. Characterization

The absorption spectra of CdS/ZnS core/shell QDs were recorded with a Shimadzu
UV-3600 spectrophotometer. 4 µL of the QD solution (n-hexane) was placed on the carbon
film-coated copper grid and dried at room temperature to prepare transmission electron
microscopy (TEM) samples, and the TEM images were all measured by FEI Tecnai G2
(200 kV). The diluted solution of the liquid-phase sample of CdS/ZnS core/shell QDs was
deposited on a quartz plate. The quartz plate with the sample was fixed in a temperature
holder of Oxford Company, and liquid nitrogen was used to cool down. The temper-
ature characteristics of the samples were measured by the F900 steady-state/transient
fluorescence spectrometer. The type of the QDs excitation laser was Edinburgh EPL-375
picosecond laser and the power density of the exciting laser radiation was 2 W/cm2.

3. Results and Discussion

Figure 1a displays the absorption and PL spectra of the CdS core and CdS/ZnS
core/shell QDs at room temperature. It can be clearly seen that the position of the first
exciton absorption peak of CdS core QDs (black solid line) and CdS/ZnS core/shell QDs
(red short-dotted line) are 3.00 eV and 2.78 eV, respectively, displaying a certain degree of
redshift. Similarly, corresponding position of the PL peak is also redshifted from 3.06 eV
to 2.87 eV. The results show that with the increase of particle size, both the PL peak and
the exciton absorption peak shift to higher wavelengths. At the same time, the long PL
tail of CdS/ZnS core/shell QDs at the low energy side of the surface defect state is not
as obvious as that of CdS core QDs, which also shows that the growth of the shell can
effectively passivate the surface defect state. Figure 1b displays the TEM image of the
CdS/ZnS core/shell QDs. According to the TEM image, the average size of the CdS/ZnS
core/shell QDs is about 5.8 nm, which is significantly larger than the size of the CdS core
QDs (~3.5 nm).
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Figure 1. (a) Absorption and photoluminescence (PL) spectra of CdS core QDs (black solid line and
blue dotted line) and CdS/ZnS core/shell QDs (red short dash line and green short dash dot line).
(b) A typical transmission electron microscopy (TEM) image of CdS/ZnS core/shell QDs. Inset is
corresponding high resolution TEM (HRTEM) image of the QDs.

Figure 2 displays the temperature-dependent PL spectra of CdS/ZnS core/shell QDs in
the temperature range of 77–297 K, under excitation at 375 nm. Inset displays the magnified
PL spectra of surface state of CdS/ZnS core/shell QDs. Obviously, as the temperature
increased, the decrease of PL intensity, the broadening of the PL spectrum, and the shift
of emission peak energy changed. As shown in Figure 2, the BEE intensity decreases
continuously, while the SSE intensity does not seem to be a monotonic process with the
increase of temperature. The PL spectra show a certain degree of redshift in the peak
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energies of both band-edge and surface states with increasing temperature. Moreover, the
PL spectrum full width at half-maximum (FWHM) increases with the temperature. In order
to deeply understand this change mechanism, the phonon energy and exciton phonon
coupling are studied by comparing the experimental data with the fitting results, so as to
obtain the internal interactions such as generation coupling and transition mechanism.
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Figure 2. PL spectra of CdS/ZnS core/shell QDs at different temperatures from 77 to 297 K. Inset
shows the magnified PL spectra of surface state of CdS/ZnS core/shell QDs.

In semiconductor nanostructures, except for the temperature-independent energy shift
caused by quantum confinement, the temperature dependence of the energy gap is usually
analogue to that of bulk semiconductor structures [26,27]. The redshift of semiconductor
PL peak wavelength demonstrates that the energy band gap shrinks with the increase
of temperature owing to exciton phonon coupling and lattice deformation [28,29]. The
emission peaks of CdS/ZnS core/shell QDs varied with temperature (Figure 3a), which
can be well fitted with the Varshni relationship [30]:

Eg(T) = Eg0 − α
T2

T + β
(1)

Eg0 in the formula represents the energy gap at 0 K, α represents the temperature
coefficient, β represents a fitting parameter, related to Debye temperature. The changes in
lattice parameters and the temperature dependent electron lattice interaction are taken into
account in this equation. Equation (1) is first proposed for infinite crystals; it can still be
used to analyze bulk semiconductors and QDs. The α and β values of CdS/ZnS core/shell
QDs are obtained to be 1.84 × 10−4 eV/K and 230 K, which are analogue to those for
bulk CdS materials (α = 3.3 × 10−4 eV/K, β = 221 K) [31,32]. This shows that the main
emission in CdS/ZnS core/shell QDs comes from the recombination of holes and electrons
near the band edge of CdS core. Considering the quantum confinement effect, the PL band
movement of CdS/ZnS core/shell QDs with temperature is analogue to the temperature
dependence of band gap contraction of bulk materials.

In addition, we can also observe the change of the PL spectral FWHM of CdS/ZnS
core/shell QDs with temperature through Figure 3b, and the specific value can be acquired
from the Gaussian best fit of the spectrum; it can be seen that the FWHM increase with
the temperature. Part of PL broadening is uneven and part of it is homogeneous, which
originates from exciton phonon scattering. Thus, it is of great significance to investigate the
mechanism of spectral line broadening caused by exciton phonon scattering. Experimental
data is fitted with the following equation [33,34], describing the temperature dependence
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of exciton peak broadening in bulk semiconductors and can be applied for CdS/ZnS
core/shell QDs.

Γ(T) = Γinh + σT + ΓLO(e
ELO
kBT − 1)

−1

(2)

Sensors 2022, 22, x FOR PEER REVIEW 5 of 10 
 

 

In addition, we can also observe the change of the PL spectral FWHM of CdS/ZnS 

core/shell QDs with temperature through Figure 3b, and the specific value can be acquired 

from the Gaussian best fit of the spectrum; it can be seen that the FWHM increase with 

the temperature. Part of PL broadening is uneven and part of it is homogeneous, which 

originates from exciton phonon scattering. Thus, it is of great significance to investigate 

the mechanism of spectral line broadening caused by exciton phonon scattering. Experi-

mental data is fitted with the following equation [33,34], describing the temperature de-

pendence of exciton peak broadening in bulk semiconductors and can be applied for 

CdS/ZnS core/shell QDs. 

Γ(𝑇) = Γ𝑖𝑛ℎ + σT + Γ𝐿𝑂(𝑒
𝐸𝐿𝑂
𝑘𝐵𝑇 − 1)−1 (2) 

Here, Γ𝑖𝑛ℎ is a non-uniform broadening, independent of temperature, which is in-

duced by fluctuations in the composition, shape, and size of nanocrystals; The latter two 

items are the uniform broadening caused by the exciton phonon interaction, σ represents 

the exciton acoustic phonon coupling coefficient, Γ𝐿𝑂 is the exciton-Longitudinal optical 

(LO) phonon coupling coefficient, 𝐸𝐿𝑂 is LO phonon energy, 𝑘𝐵 is Boltzmann constant. 

The temperature dependence of the FWHM energy for CdS/ZnS QDs can be well fitted, 

as displayed in Figure 3b. 𝐸𝐿𝑂, is obtained to be 37 meV, which agreed with the value in 

a previous report [35]. The parameters Γ𝑖𝑛ℎ  are calculated to 69 meV, and the smaller 

value shows that the particle size distribution is uniform, consistent with the TEM results. 

The parameters σ and Γ𝐿𝑂 are determined to be 136.3 𝜇𝑒𝑉/𝐾 and 15 𝑚𝑒𝑉, respectively. 

It shows that the exciton−acoustic phonon coupling has a great contribution to the spectral 

line broadening. Therefore, for CdS/ZnS core/shell QDs in a temperature range of 77–297 

K, the broadening and displacement of the spectral line are mainly caused by the coupling 

of exciton and acoustic phonon. 

 

Figure 3. Temperature-dependent PL peak energy (a); and FWHM (b) of CdS/ZnS core/shell QDs 

in a temperature range of 77–297 K, respectively. Short dotted lines represent the fitting curves; (c) 

PL intensities of CdS/ZnS core/shell QDs as a function of inverse 𝑘𝐵𝑇 in a temperature range of 77–

Figure 3. Temperature-dependent PL peak energy (a); and FWHM (b) of CdS/ZnS core/shell QDs
in a temperature range of 77–297 K, respectively. Short dotted lines represent the fitting curves;
(c) PL intensities of CdS/ZnS core/shell QDs as a function of inverse kBT in a temperature range of
77–297 K. In the figure, spheres represent BEE peak energy, BEE FWHM and BEE intensity; triangles
represent SSE peak energy, SSE FWHM and SSE intensity.

Here, Γinh is a non-uniform broadening, independent of temperature, which is induced
by fluctuations in the composition, shape, and size of nanocrystals; The latter two items
are the uniform broadening caused by the exciton phonon interaction, σ represents the
exciton acoustic phonon coupling coefficient, ΓLO is the exciton-Longitudinal optical (LO)
phonon coupling coefficient, ELO is LO phonon energy, kB is Boltzmann constant. The
temperature dependence of the FWHM energy for CdS/ZnS QDs can be well fitted, as
displayed in Figure 3b. ELO, is obtained to be 37 meV, which agreed with the value in a
previous report [35]. The parameters Γinh are calculated to 69 meV, and the smaller value
shows that the particle size distribution is uniform, consistent with the TEM results. The
parameters σ and ΓLO are determined to be 136.3 µeV/K and 15 meV, respectively. It shows
that the exciton−acoustic phonon coupling has a great contribution to the spectral line
broadening. Therefore, for CdS/ZnS core/shell QDs in a temperature range of 77–297 K,
the broadening and displacement of the spectral line are mainly caused by the coupling of
exciton and acoustic phonon.

To investigate the role of different nonradiative processes in QD relaxation, the temper-
ature dependence of the PL intensity was analyzed. The BEE intensity of CdS nanocrystals
decreases as the temperature increases. The PL intensities of CdS/ZnS core/shell QDs as a
function of inverse kBT is shown in Figure 4a. Considering two typical non radiative relax-
ation processes, including (1) carrier capture of surface defect states [36] and (2) multiple
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LO phonon assisted thermal escape [37,38], the temperature-dependent PL intensity can be
fitted through the following relationship: [39,40]

IPL =
I0

1 + Ae
−Ea
kBT + B(e

ELO
kBT − 1)

−m (3)

where IPL represents the integrated PL intensity at different temperatures, I0 represents
the initial PL intensity at 0 K, Ea represents activation energy of thermal quenching, ELO
represents the average phonon energy, kB represents the Boltzmann constant, m represents
the number of LO phonons involved in carrier thermal escape, and A and B are the
ratios of the radiative lifetime to the capture time of nonradiative recombination centers,
respectively. The black short dotted line in Figure 3c shows the simulation of BEE intensity
exploiting this equation, which is very consistent with the experimental results, indicating
that the decrease of BEE intensity can be explained by the carrier traps of surface defect
states and the thermal escape assisted by multiple LO phonon scattering. The number
of LO phonon m and the activation energy of carrier-trapping by surface defect states
were obtained to be 3.3 and 29.5 meV, respectively. At the low temperature range, a small
activation energy about 10–30 meV in the nonradiative relaxation process leads to the
decrease of the PL intensity of CdS/ZnS core/shell QDs [37,41]. At high temperatures, the
PL intensity attenuation is caused by the thermal escape process. It is worth noting that
the SSE intensity of CdS/ZnS core/shell QDs first increases and then decreases with the
increase of temperature. According to Equation (3) and the previous analysis on the change
of BEE peak intensity with temperature, the carriers of the band edge will be transferred
to the surface states, that is, the trapping process of the surface trap states, which will
cause an increase in the surface-state luminescence intensity. At the same time, the effect
of thermally activated non-radiative defects also exists in this luminescence process, so
the temperature-dependent variation trend of the surface state luminescence intensity is
determined by the competition of these two processes.

According to the analysis of a series of temperature changing phenomena of CdS/ZnS
core/shell QDs, it was found that the temperature changing phenomena can be applied
to the preparation of temperature sensors. As shown in Figure 4a, the CIE chromaticity
diagram depicts the trajectory of (x, y) coordinates of the temperature-dependent PL spectra
from the CdS/ZnS core/shell QDs shown in Figure 2. The CIE chromaticity coordinates
varied dramatically from (0.190, 0.102) to (0.302, 0.194) with temperature, which also
indicates its potential application in temperature sensors.

The corresponding temperature-induced BEE peak energy, BEE FWHM, BEE in-
tensity shift (Figure S1a–c, black sphere symbols) can be described by a linear func-
tion (red solid line): W = −2.5775 × 10−4T + 2.30881, W = 1.58895 × 10−4T + 0.06644,
W = 2581.16439T + 80, 115.15603, where T is the temperature. The linear fitting degree
is expressed by Adj. R-Square, whose value is close to 1 the better. It can be seen from
Figure S1 that the Adj. R-Square of the relationship between temperature and BEE peak
energy, BEE FWHM, BEE intensity of the CdS/ZnS QDs sensor are all greater than 0.99,
which means they all have obvious linear relationship.

The temperature-dependent dual-emission PL spectra of the CdS/ZnS QDs can also
be characterized by ratio measurement. As shown in Figure 4b, the ratiometric measure-
ment result of the integrated PL peak area, R = IBEE/ISSE , shows two different linear
relationships. It displays a linear function relationship of R = −0.10743T + 20.03117 at low
temperatures (77−160 K) and R = 0.10711T − 14.39874 in the range of 160−297 K. By ana-
lyzing the data displayed in Figure 2, the maximum sensitivity value for the CdS/ZnS QDs
is calculated to be 2.14% K−1 at 297 K. Here, thermal sensitivity is defined as S = 1dR/RdT,
where R is the integrated PL peak area ratio at a given temperature (T) [42,43]. It is worth
noting that the thermal sensitivity is higher than most previously reported semiconductor
QD based temperature sensors (Table S1). Therefore, IBEE/ISSE can be used as a further
parameter to obtain the precise temperature.
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Since the BEE peak energy, BEE FWHM, BEE intensity and IBEE/ISSE can be ob-
tained by monitoring the PL spectra, the temperature value can be calculated using the
corresponding linear fitting relationships. Furthermore, the cycling experiment results in
Figure 4c exhibits very small changes in the IBEE/ISSE during six consecutive cycles of
repeatedly cooling and heating in the range of 77 to 297 K, indicating its excellent reliability
and reversibility as a temperature sensor.
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of integral PL peak areas of BEE and SSE; and (c) thermal stability of the integrated BEE and SSE PL 

peak area ratio over six cycles of heating and cooling between 77–297 K. 

According to the analysis of a series of temperature changing phenomena of CdS/ZnS 

core/shell QDs, it was found that the temperature changing phenomena can be applied to 

the preparation of temperature sensors. As shown in Figure 4a, the CIE chromaticity dia-

gram depicts the trajectory of (x, y) coordinates of the temperature-dependent PL spectra 

from the CdS/ZnS core/shell QDs shown in Figure 2. The CIE chromaticity coordinates 

varied dramatically from (0.190, 0.102) to (0.302, 0.194) with temperature, which also in-

dicates its potential application in temperature sensors. 

The corresponding temperature-induced BEE peak energy, BEE FWHM, BEE inten-

sity shift (Figure S1a–c, black sphere symbols) can be described by a linear function (red 

solid line): 𝑊 = −2.5775 × 10−4𝑇 + 2.30881 , 𝑊 = 1.58895 × 10−4𝑇 + 0.06644 , 𝑊 =

2581.16439𝑇 + 80115.15603, where 𝑇 is the temperature. The linear fitting degree is ex-

pressed by Adj. R-Square, whose value is close to 1 the better. It can be seen from Figure 

S1 that the Adj. R-Square of the relationship between temperature and BEE peak energy, 

BEE FWHM, BEE intensity of the CdS/ZnS QDs sensor are all greater than 0.99, which 

means they all have obvious linear relationship. 

The temperature-dependent dual-emission PL spectra of the CdS/ZnS QDs can also 

be characterized by ratio measurement. As shown in Figure 4b, the ratiometric measure-

ment result of the integrated PL peak area, 𝑅 = 𝐼𝐵𝐸𝐸 ⁄ 𝐼𝑆𝑆𝐸 , shows two different linear re-

lationships. It displays a linear function relationship of 𝑅 = −0.10743𝑇 + 20.03117 at 
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integral PL peak areas of BEE and SSE; and (c) thermal stability of the integrated BEE and SSE PL
peak area ratio over six cycles of heating and cooling between 77–297 K.

4. Conclusions

In summary, the temperature-dependent PL spectra of CdS/ZnS core/shell QDs were
investigated in the temperature range of 77–297 K, and a series of temperature-changing
phenomena were described and explained. It was found that the band-edge emission BEE
intensity decreases continuously, while the SSE intensity first increases and then decreases
with the increase of temperature. For BEE intensity, in the low-temperature range, a small
activation energy (29.5 meV) in the nonradiative recombination process led to the decrease
of PL intensity of CdS/ZnS core/shell QDs, and at high temperatures the PL intensity
attenuation was caused by thermal escape process. The temperature-dependent variation
trend of the SSE intensity is determined by the competition of the trapping process of the
surface trap states and the effect of thermally activated non-radiative defects. Considering
the quantum confinement effect, the redshift in the peak energies of both band-edge and
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surface states with increasing temperature is analogue to the temperature dependent band
gap contraction of bulk materials. Moreover, the PL spectrum FWHM increased with the
temperature, which mainly caused by the coupling of exciton and acoustic phonon. The
CIE chromaticity coordinates changed dramatically from (0.190, 0.102) to (0.302, 0.194),
with temperature, which also suggested that the CdS/ZnS core/shell QDs are expected to
be applied in temperature sensors.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22228993/s1, Figure S1: Temperature-dependent band-edge
emission (BEE) peak energy, BEE full width at half-maximum (FWHM) and BEE intensity of CdS/ZnS
QDs, and corresponding linear fitting relation curve; Table S1: Comparison of previously reported
semiconductor quantum dots (QDs)-based temperature sensors. References [24,42,44–52] are cited in
the supplementary materials.
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